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Unifying Divergence Bounding and Locality Awareness in
Replicated Systems with Vector-Field Consistency

Lúıs Veiga · André Negrão · Nuno Santos · Paulo Ferreira

Abstract Data replication is a very relevant technique for
improving performance, availability and scalability. These
are requirements of many applications such as multiplayer
distributed games, cooperative software tools, etc. How-
ever, consistency of the replicated shared state is hard to
ensure. Current consistency models and middleware sys-
tems lack the required adaptability and efficiency. Thus,
developing such robust applications is still a daunting task.

We propose a new consistency model, named Vector-
Field Consistency (VFC), that unifies i) several forms of
consistency enforcement and a multi-dimensional criteria
(time, sequence and value) to limit replica divergence, with
ii) techniques based on locality-awareness (w.r.t. players
position).

Based on the VFC model, we propose a generic meta-
architecture that can be easily instantiated both to cen-
tralized and (dynamically) partitioned architectures: i) a
single central server in which the VFC algorithm runs, or
b) a set of servers in which each one is responsible for a slice
of the data being shared. The first approach is clearly more
adapted to ad-hoc networks of resource-constrained devices
while the second, being more scalable, is well adapted to
large-scale networks. We developed and evaluated two pro-
totypes of VFC (for ad-hoc and large-scale networks) with
very good performance results.

Keywords Consistency Management · Replicated
Objects · Locality-Awareness · Multiplayer Games

1 Introduction

Replication is a fundamental technique employed in dis-
tributed systems to improve reliability, scalability, perfor-
mance and to support disconnected operation. Replica-
tion has been widely applied in different contexts such as
cooperative work, replicated databases and services, and
more recently, distributed multiplayer games, both in ad-
hoc, mobile and large-scale networks. However, replication
also entails the issue of maintaining consistency among the
replicas of an object. Consistency has been addressed both
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with traditional pessimistic (lock-based) as well and opti-
mistic approaches [27].

Optimistic approaches essentially trade increased avail-
ability, reduced latency and bandwidth usage, in exchange
for some discrepancy or divergence among replicas, albeit
only temporarily. Hence, applications may allow data in-
consistencies up to a certain limit defined by application
programmers according to the semantics of applications.
The criteria for relaxing consistency vary: by divergence
between the values of replicas,on a time-basis [1], by ap-
plying application based predicates on replica values [15,
30], sequential ordering [14], or with hybrid approaches [30,
31]. Nonetheless, these proposals are inadequate to cope
with the dynamics of distributed multiplayer games: con-
sistency requirements change often and quickly through-
out the game execution, namely w.r.t. the players’ position
in the virtual world. On the other hand, current middle-
ware for multiplayer games embodies the notion of locality-

awareness (traceable to [28,20]) but employs very limited
consistency models [3] (e.g., strict consistency in part of
the game world and none on the rest of it), or use it
just to drive load-balancing [8] and network traffic between
servers [11].

Current distributed multiplayer games support large
numbers of players and maintain large virtual worlds (e.g.,
Everquest, World of Warcraft). Employing a network of
multiple servers is a common approach to improve the per-
formance of commercial games, with the game state (e.g.
player positions, maps, scores) being shared among the net-
work nodes. Enforcing data consistency requires additional
communication for update propagation and synchroniza-
tion operations. To mitigate negative impacts on latency
and bandwidth, and to ensure scalability, two classes of ap-
proaches are followed, frequently combined. First, a game’s
virtual world is either duplicated or statically partitioned
into several mini-worlds [23], each assigned to a different,
independent server. Thus, users are confined to a single
server at each moment and are unable to interact with
players handled by other servers. Partitioned schemes do
allow users to move to other partitions, but force them
to cross some form of artificial boundary (e.g., portals,
tunnels) specially designed for that purpose. Scalability is,
therefore, achieved at the cost of interactivity and, possi-
bly, designing freedom. Second, programmers tend to use
programming tweaks, low level optimizations and error-
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prone message-passing approaches to keep the shared data
consistent. As a side effect, software becomes harder to
manage and less reliable.

In this paper, we propose and evaluate a new con-
sistency model for replicated objects called Vector-Field

Consistency (VFC) that unifies optimistic consistency (di-
vergence bounding) with locality-awareness techniques. It
allows players to maintain a global vision of the complete
game world, without resorting to artificial boundaries (such
as portals), while ensuring interactivity through graceful
(and bounded) degradation of data consistency. Metaphor-
ically, it operates as a dolphin or submarine sonar using
higher frequencies for increased accuracy limited to short
ranges, and lower frequencies for wider range scans but
with lower precision.

VFC selectively and dynamically strengthens/weakens
replica consistency based on the ongoing game state while
elegantly managing i) how the consistency degree changes

throughout game execution w.r.t. each player, and ii) how
the consistency requirements are specified. First, by em-
ploying locality-awareness techniques, VFC considers that
throughout the game execution, there are certain ‘obser-
vation points’ we call pivots (e.g. the player’s position)
around which the consistency is required to be strong and
weakens as the distance from the pivot increases. Since piv-
ots can change with time (e.g. if the player moves), objects’
consistency needs can also change with time. Second, it
provides a 3-dimensional vector for specifying consistency
degrees, where each dimension bounds the replica diver-
gence in time (delay), sequence (number of operations) and
value (magnitude of modifications) constraints. Game pro-
grammers (or even game designers) can parameterize VFC
by specifying both the pivots and the consistency degrees
according to game logic.

The advantages of VFC are manyfold. First, it is flexi-
ble and easily perceived by programmers: pivots and con-
sistency degrees are intuitive settings allowing game pro-
grammers to specify consistency requirements for a wide
range of game scenarios. Second, VFC allows user experi-
ence to proceed within acceptable parameters in the sense
that, to the players, game rules are being abided to, and
users are provided with complete and relevant information
(e.g., immediate surroundings, opponents’ scores) to make
sensible game decisions. Also, by intelligently selecting the
critical updates to send and postponing the less critical
ones, VFC is efficient in the utilization of resources, it re-
duces network bandwidth usage and masquerades latency.
Thus, for each particular game, programmers are able to
specify the consistency requirements that enable a more
efficient use of the network by tolerating bounded incon-
sistencies that do not jeopardize the overall game state and
the players’ experience.

This paper is organized as follows. Section 2 describes
the VFC consistency model. Section 3 presents a meta-
architecture to enforce the VFC model and its instantia-
tion in two architectures: centralized and distributed with
partitioning. Section 4 describes the main implementation

details of two prototypes (for ad-hoc and large-scale net-
works). Section 5 presents and discusses the experimen-
tal results obtained. Section 6 surveys the relevant related
work, and Section 7 closes with some conclusions.

2 Consistency Model

In VFC, objects are positioned within a virtual world, an
abstraction of an N-dimensional space. Without loss of gen-
erality, we consider the virtual world to be 2-dimensional.
In many games these abstractions map immediately to the
game semantics; for example, in the Pac-Man game, the
virtual world is a 2-dimensional maze populated with ob-
jects such as avatars, ghosts and dots. Each node of the
network has a local view consisting of a full local replica
of the virtual world. Each view may have bounded incon-
sistencies. VFC characterizes how these inconsistencies are
managed.

Broadly, VFC offers bounded divergence guarantees,
stronger than eventual consistency but weaker than strict
consistency. In eventual consistency, delays in update prop-
agation are essentially unbounded, uncommitted updates
may be subject to reordering in logs, and replicas may ex-
perience oscillation in values. In VFC, updates are state-
transfers, the latest update received completely precludes
or supersedes previous ones, even if some have been omit-
ted. Updates are serialized at servers and propagated to
clients. Updates received by clients are never applied out
of order; therefore replicas never diverge (they may lag)
and players never experience game going ”backwards in
time”. Strict consistency requires global synchronism or
pessimistic locking regarding data reads with severe perfor-
mance and scalability penalties. VFC is by design an opti-
mistic approach, while ensuring that lasting or unbounded
divergence, among data replicas, never takes place.

The remainder of this section describes the two main
ideas underlying the VFC model: consistency zones de-
scribe how the consistency of object replicas varies in each
view (see Section 2.1), and consistency vectors characterize
the consistency degrees (see Section 2.2). Section 2.3, pro-
poses two generalizations of the basic VFC model and sys-
tematizes the parameters for setting VFC from the game
programmers’ viewpoint.

2.1 Field-Generated Consistency Zones

Within a particular view, object consistency depends on
its distance to a pivot (P ). The pivot characterized by a
position in the virtual world and it can move over time. A
pivot can be an object (e.g. the Pac-Man player) or just
a function (e.g. an editor cursor). Figure 1.a illustrates a
virtual world populated with objects o1, o2, o3, o4 and o5.
The pivot (o5) is highlighted with a star.

By analogy with the electric (
−→
E ) and the gravitational

(
−→
G ) fields, a pivot generates a ‘consistency field’ deter-

mining the consistency of each object as a function of the
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a. Conceptual consistency zones. b. Simplified consistency zones.

Fig. 1 Consistency zones centered on a pivot within a virtual world.
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a. Node A view. b. Node B view.

Fig. 2 Two views of the same virtual world.

distance between the object and the pivot. Thus, pivots
generate consistency zones, iso-surfaces, ring shaped, con-
centric areas around them, such that the objects positioned
within the same consistency zone are enforced the same
consistency degree. For example, in Figure 1.a, pivot P is
in the center of four consistency zones labeled zi, where
0 ≤ i ≤ 4. Objects o2 and o3 are enforced the same consis-
tency degree since they are in zone z3.

Each consistency zone maps to a consistency degree (ci)
of a consistency scale. A consistency scale C = 〈c1, . . . , cn〉
is an ordered set of ci, each specifying the consistency to
be enforced within zone zi. The property ci > ci+1 holds,
meaning that ci enforces stronger consistency than ci+1.
Thus, consistency zones are arranged monotonically; con-
sistency degrees become weaker as the distance to P in-
creases. In Figure 1.a, darker consistency zones impose
stronger consistency requirements. For example, if P rep-
resents the player and the other objects are ghosts of the
Pac-Man game, each ghost’s consistency weakens as it is
farther from the player. Specification of consistency degrees
is detailed in Section 2.2.

Consider λi the radius of the outer circumference of zi.
We define zi as follows: i) if i = 1 then z1 is the circle of
radius λ1, ii) if i > 1 then zi refers to the area enclosed
between zi and zi−1 (a ring). Thus, if a pivot P is sur-
rounded by n consistency zones, it is necessary and suffi-
cient to specify λi to all i where 1 ≤ i < n. The consistency
zone zn refers to the area beyond the circumference of ra-
dius λn−1. This is represented by vector Z = [λ1, ..., λn−1].

Since it is computationally more expensive to determine if
an object is within a radial surface, we define consistency
zones as concentric squares instead of concentric circles,
as depicted in Figure 1.b. Also, λ represents not the ra-
dius of the outer circumference, but half the side of the
outer square (or its apothem). For example, consistency
zones of Figure 1.b are defined by Z = [1, 2, 3] and ob-
jects are distributed by the following zones: {o1, o5} → z1,
{o2, o3} → z2, {o4} → z3.

Determining the consistency degree of an object de-
pends on its relative position w.r.t. the pivots. Thus, the
same object may have different consistency degrees in dif-
ferent views. Figure 2 illustrates this by depicting the views
of two nodes, A (Figure 2.a) and B (Figure 2.b), respec-
tively, with pivots PA and PB. Both pivots generate the
consistency zone pattern Z = [1, 2, 3]. Hence, for example,
o2 → z2, in A, while o2 → z4 in B. This implies that o2

consistency is stronger in A than in B, which is expected
since o2 is closest to a pivot in A.

In a game with two (or more) pivots, the definition of
the consistency zones and corresponding consistency de-
grees is obviously a relevant issue that depends on the game
semantics. For example, when two pivots, each for a dif-
ferent player, have their outer consistency zones with very
small intersection, this may lead each player to observe
slight intermittence (e.g., interaction or battles among non-
player entities), although no differences in outcome. De-
pending on their relative distances and movement, each
player may observe such interactions (individual actions)
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with different lag/delay, with different detail (e.g., num-
ber of shots), but without lasting divergence and, there-
fore, no significant impact in player’s decisions and game
semantics. This can be prevented with a consistency zone
definition (and consistency degrees) that takes into account
the game semantics.

2.2 Consistency Degree Vectors

VFC describes the consistency degrees as 3-dimensional
consistency vectors κ = [θ, σ, ν]. κ bounds the maximum
objects divergence in a particular view, i.e. between the
objects latest updates and their replicas in that view. In
short, for each object o, κ bounds the staleness of o in a
particular view. Each dimension is a numerical scalar defin-
ing the maximum divergence of the orthogonal constraints
time (θ), sequence (σ), and value (ν)1, respectively.

– Time – Specifies the maximum time a replica can be
without being refreshed with its latest value, irrespec-
tive of the number of updates performed in-between.
Consider that θ(o) provides the time passed from the
last replica update. The time constraint κθ enforces
that, at any time, θ(o) < κθ. This scalar (not neces-
sarily integer) quantity measures time in seconds.

– Sequence – Specifies the maximum number of lost replica
updates, i.e. updates that were not applied to a replica.
Similarly, consider that σ(o) indicates the number of
lost updates. The sequence constraint κσ enforces that,
at any time, σ(o) < κσ. The unit is the number of lost
updates.

– Value – Specifies the maximum relative difference be-
tween replica contents or against a constant (e.g. top-
value). Consider that ν(o) provides this difference. The
value constraint κν enforces that, at any time, ν(o) <
κν . The unit of variation is a percentage. It captures the
effects of updates (i.e., their impact or importance) on
the object’s internal state and is implementation depen-
dent (e.g. it may reflect a drift or discrepancy regarding
the player’s score or the player’s life charge/energy).

The overall maximum divergence is obtained by the
disjunction of all the κ vector dimensions. For example,
consider the consistency vector κ = [0.1, 6, 20]. Hence, at
maximum, replicas are outdated in κθ = 0.1 seconds or
κσ = 6 lost updates or with a κν = 20% variation in
the replica internal state. To indicate the least possible
requirements, i.e. no requirements on that dimension, we
use ‘.’ (mathematically, this symbol represents ‘∞’). For
example, κ = [0.1, 6, .] imposes no consistency constraints
whatsoever regarding the replica internal state.

In VFC, consistency degrees are specified by κ vectors.
In order to specify a consistency scale obeying ci > ci+1

with κi and κi+1 vectors, the condition κi+1 > κi must
hold, i.e. for every κi+1u

≥ κiu
and there is at least one

1 Although in modern Greek, the vee sound is written using the letter
β, we prefer to use the letter ν, for its resemblance with the latin v.

Parameter Description

Oi Subset of objects that the consistency specification refers to.

Oi are exclusive meaning that for every two φi and φj of φ,

if o ∈ Oi ⇒ o 6∈ Oj . Moreover, for every object o, there

must be a φi such that o ∈ Oi.

Z Consistency zone vector Z specifying how to draw the con-

sistency zones around the pivots. It is #Z sized and specifies

#Z + 1 consistency zones.

C Consistency scale characterizing the consistency degrees for

applying into the consistency zones. It is #C sized with #C =

#Z + 1 consistency degrees.

V Set identifying the pivot objects for each view of the virtual

world.

Table 1 Table describing the φ parameters of VFC.

v such that κi+1v
> κiv

, u, v ∈ {θ, σ, ν}. For example,
C = 〈[0.2, 2, 10], [0.2, 5, 10]〉 is a valid consistency scale:
[0.2, 2, 10] stands for a stronger consistency degree than
[0.2, 5, 10] because the number of admitted lost updates is
higher in the latter (5) than in the former (2) and the other
dimensions are equal. Also, we define κM = [., ., .] as the
highest consistency degree, and κm = [0, 0, 0] as the lowest
consistency degree, such that κm ≤ κi ≤ κM .

2.3 VFC Generalization

In this section we introduce two generalizations allowing
a broader utilization of the VFC model: multi-pivot and
multi-zones generalizations. The multi-pivot generalization
admits more than one pivot per view. Figure 3 illustrates
such a case, with two pivots P1 and P2 in the same view.
Objects are assigned the consistency degree w.r.t. the clos-
est pivot.

In other words, VFC supports game semantics usually
employed in some role-playing games and real-time strategy

games, where a (human) player may have multiple avatars
by controlling several game entities (e.g., characters, sol-
diers), turning their locations into important points in the
virtual world; each one would be a pivot around which
stronger consistency may be required (when compared to
other areas of the virtual world).

The multi-zones generalization allows different sets of
objects to be characterized differently w.r.t. their consis-
tency requirements. For example, in Pac-Man, objects stand-
ing for ghosts and for rooms may be characterized with
different consistency requirements. Thus, n sets of objects
may be assigned specifically: i) consistency zones, ii) con-
sistency degrees, and iii) pivots. Specification of each set is
designated by φi, where 1 ≤ i ≤ n; φ refers to all φi. Fig-
ure 4 shows an example of two object set specific settings
φ1 and φ2. The former characterizes objects {o1, o2, o4, o5}.
The latter characterizes objects {o3, o6, o7, o8}. Both have
the same pivot but different consistency zone specifica-
tions.

Summary. In order to specify the consistency require-
ments, game programmers need to provide the VFC φ
settings by describing individual object sets φi. Each φi
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setting is described by φi = [Oi, Z, C, V ], where Oi ⊆
O. Table 1 summarizes these parameters. As an exam-
ple, the φ settings relative to Figure 2 can be described
by φ1 = [O, Z, C, P ], where O = {o1, o2, o3, o4, o5, o6},
Z = [1, 2, 3], C = 〈κm, [., 1, .], [., 2, .], κM〉 and, finally, V =
{A → {o6}, B → {o5}}. In this example, there is a single
object set φ1.

3 Architecture

VFC is aimed at supporting the design of multiplayer dis-
tributed games both for ad-hoc and for large-scale net-
works. Based on the model previously described, we present
a generic meta-architecture that can be instantiated in
these two scenarios according to their specific characteris-
tics. Both specific architectures enforce VFC by managing
the game state between the network nodes and provides
programmers with the adequate means to parameterize
VFC according to game semantics.

3.1 Generic VFC Meta-Architecture

The VFC model is general enough to contemplate a wide
set of architectural solutions. Thus, we provide a generic
VFC meta-architecture (see Figure 5) that allows several
instantiations; in particular, and without loss of generality,
we focus on both centralized and (dynamically) partitioned
architectures: i) a single central server in which the VFC
algorithm runs, or b) a set of servers in which each one is
responsible for a slice of the data being shared (e.g. a part
of the game scenario). The first approach is clearly more
adapted to ad-hoc networks of resource-constrained devices
while the second, being more scalable, is well adapted to
large scale networks.

Thus, for ad-hoc networks, the solution follows a single-
server multiple clients architecture.2 Upon the establish-
ment of the ad-hoc network, one of the nodes becomes the
server which is responsible for enforcing VFC. Naturally,

2 The rationale for this choice is mainly due to the limitations of wire-

less communication technology (e.g. Bluetooth) that imposes a single

node of the network to relay all messages between any two nodes.

the server device may also act as a client allowing all nodes
to participate in the game.

For large-scale networks, the virtual world is partitioned
into different, but not independent, regions handled by dis-
tinct servers. Players can move freely around the virtual
world, transparently switching between regions of differ-
ent servers and are able to seamlessly interact with play-
ers located in other regions. Each server enforces VFC for
the region under its responsibility. In addition, each server
communicates, through a subscription protocol, with other
servers to apply VFC for players located in others, con-
tiguous or not, regions. This solution is particularly suited
to massively multiplayer online games (MMOG) in which
a large number of players interact through an extensive
virtual world, shared over a wide area network. Players
control an entity (the avatar) that represents them in the
game’s virtual world. Avatars can move across the game
map and interact with each other according to the instruc-
tions given by the human player through some input device
(e.g., a keyboard or a mouse). Players can also find several
objects (e.g., health items, food, weapons,...) and computer
controlled characters (e.g., NPCs - non-player characters).
Each avatar has its own state that comprises several prop-
erties like position, health, abilities and owned items. In-
teractions with other avatars or objects may change both
its state and the others’.

Thus, in both architectures, the server (in a centralized
solution) or the servers (in a partitioned solution) have a
coordinating role regarding data management: write-lock
management, update propagation and VFC enforcement.
The client-server protocol is orchestrated by the Session
Manager components of each server. Communication is
performed between clients and the corresponding server
on a star like topology using the services of components
Network Layer and Serialization Layer. The Client Man-
ager in the server administers client data and enforces the
consistency model through two components, the Session
Manager and the Consistency Management Block (CMB).
The Object Pool Manager manages the game objects and
encapsulates the stored data, performing every operation
on it on behalf of the other components.
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Fig. 5 VFC generic meta-architecture.

We now describe in more detail the VFC aspects that
are common to any architecture: first, reading/writing ob-
jects (Section 3.2) and, secondly, how VFC is enforced (Sec-
tion 3.3). Then, we focus on the architectural aspects that
result from having the virtual world partitioned among sev-
eral servers, each handling a region (Section 3.4). Note that
in the following two sections (addressing common VFC as-
pects), when referring to a server we mean a single server
in an ad-hoc architecture and, when in a large-scale par-
titioned architecture, a server means one of the several
servers, each one handling a specific region of the virtual
world. The communication that exists among such servers
to ensure VFC in multiple regions of the virtual world (i.e.
the subscription protocol) is addressed in section 3.4.

3.2 Read & Write Objects

The shared data is a collection of objects. Each client
node maintains local replicas of all objects in the Object
Pool container. The server maintains a primary copy of
the object pool while the clients keep replicas of such ob-
jects. From the architectural viewpoint, there is no restric-
tion whatsoever w.r.t. the representation of data (e.g. ob-
ject graphs, tuples, relations). Also, the Object Adaptation
Layer maps the application data representation to the ar-
chitectural specific internal data representation.

Clients read and write objects through a VFC API.
Read operations are performed on the local replicas with-
out locking requirements (clients may read stale data).
Write operations need to acquire locks in order to prevent
the loss of updates. The server manages locks centrally;
clients exchange messages with the server to acquire and
release them. Object updates are sent to the server when
clients release locks. The server propagates the new object
versions to the other nodes according to the VFC specifi-
cation.

With the exception of lock messages (for obtaining and
releasing locks), nodes operate periodically w.r.t. the in-
teractions between them. The server, periodically, sends a
message to all clients defining a round. This has a twofold

implication. In each round, the server sends round mes-
sages to the clients; updates are piggybacked on the round
messages and merged at client object pools at reception
time. On the other hand, it enables the execution of syn-
chronized application handler functions (activities) at the
client side. Whenever a round message is received the Ac-
tivity Manager executes client activities. This feature may
be used by many games based on turns. For example, ac-
tivities may be used to update players locations, scores or
other game state information. Since updates are received
and merged before executing activities, the game program-
mers know that local replicas are stable when their activ-
ities execute (albeit possibly stale within the bounds de-
fined by corresponding consistency κ vectors).

3.3 Enforcement of the VFC Model

The Consistency Management Block (CMB) at the server
side enforces the VFC model. The CMB coordinates the
propagation of updates to clients according to the VFC
consistency parameters specified by each client. There are
two phases: the setup phase and the active phase. During
the setup phase, clients register the objects to be shared
and send their consistency parameters (VFC φ settings)
to the server; the CMB aggregates all the clients φ set-
tings. The active phase is when clients may access the
registered objects. In this phase, the server processes: 1)
write requests (sent asynchronously by the clients piggy-
backed in lock release messages), and 2) round events (trig-
gered periodically). The CMB is involved in handling both
these events. It provides two functions that are called by
the Session Manager (SM): CMB-Update-Received and
CMB-Round-Triggered. As both functions are called,
the CMB accumulates and computes the required infor-
mation to build the clients’ consistency views according
to the previously specified φ settings. When called by the
SM, the CMB-Round-Triggered function returns the
updates to be sent to each client, which the SM piggybacks
in the round messages.

Besides supporting VFC, the CMB module offers a
generic interface allowing the support of different consis-
tency models. The remainder of this section describes the
internals of CMB that enforce VFC: update sending obeys
the φ settings specified by clients. For each step we describe
the algorithms underlying CMB-Update-Received and
CMB-Round-Triggered functions.

Consistency Management Block In order to guarantee that
all updates received since the last round event are taken
into account when sending updates to clients in the next
round, the CMB keeps track of which objects became dirty
meanwhile in a bidimensional array D: each element corre-
sponds to an object of the object pool regarding a particu-
lar client’s view. In each particular client’s view, an object
is considered dirty if, according to the VFC requirement,
its data should be propagated to the client.
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CMB-Update-Received(o, uo)

1 for c← 1 to #C

2 do if D[c, o] = 1

3 then continue

4 κ← K[c, o]

5 Sσ[c, o]← Sσ[c, o] + 1

6 if Sσ [c, o] ≥ κσ or

7 |ν(uo)− Sν [c, o]| ≥ κν

8 then D[c, o]← 1

9 Enqueue(U, 〈o, uo〉)

CMB-Round-Triggered(t, M)

1 Merge(O, U)

2 for c← 1 to #V

3 do u← New-Vector()

4 for o← 1 to #O

5 do κ← K[c, o]

6 tδ ← t− Sθ[c, o]

7 if D[c, o] = 1 or tδ ≥ κθ

8 then Add(u, O[o])

9 D[c, o]← 0

10 Sθ[c, o], Sσ [c, o], Sν [c, o]← t, 0, ν(O[o])

11 〈Z, C, P 〉 ← Φ(c, o)

12 zcloser ← −

13 for p← 0 to #P

14 do 〈px, py〉 ← 〈P [p].x, P [p].y〉

15 〈ox, oy〉 ← 〈O[o].x, O[o].y〉

16 z ← Max(|px − ox|, |py − oy|)

17 zcloser ← Min(zcloser, z)

18 K[c, o]← C[Z[zcloser]]

19 Piggyback(M [c], u)

a. CMB update handler. b. CMB round handler.

Fig. 6 Pseudo-code of CMB.

Figure 6 presents the pseudo-code of the algorithms im-
plementing this semantics. Whenever the server receives an
update from a client, CMB-Update-Received is invoked
and, if appropriate regarding the corresponding κ vector,
the object is marked as dirty in D’s correspoding entry and
putting the update in the queue of pending updates U . At
each round event, CMB-Round-Triggered is executed:
it merges the pending updates in the object pool and sends
all pending updates piggybacked in round messages to each
client after testing the respective D dirty flags. Each D flag
is then cleared meaning that the new versions were sent to
the respective client.

The following data structures are also required: Z, C,
P and K. Z, C and P refer to the data structures re-
lated to the clients φ settings (see Section 2.2). K is a
matrix storing per object κ vectors of each view, that are
valid during a time slot. κ vectors are computed per ob-
ject, per view, according to clients φ settings. A κ vector is
a consistency array that specifies when and which updates
must be propagated to a client. Each κ consistency vec-
tor expresses three orthogonal dimensions: time, sequence
and value. Each dimension is evaluated independently and
auxiliary data structures (S arrays) are kept for each di-
mension. Each dimension of each κ consistency vector is
evaluated as follows:

– Time – Sθ keeps the time of the last sent update. When-
ever this time exceeds the one specified by κθ, the up-
date is sent (see Figure 6.b lines 6-7) and the CMB
internal state (D and S arrays) is reset. The time is
approximated to a multiple of the round period.

– Sequence – Sσ is simply a counter of the number of up-
dates that where received by the server since the last
update was sent. There is a counter per object. When
an update is received, this counter is incremented. When
the counter exceeds the value κσ, the object is set to
dirty in D in order to send the update in the next round
(see Figure 6.a lines 5-8).

– Value – This qualitative dimension implies querying the
object state to test when the difference to the last prop-
agated version exceeds κν . This query is evaluated by
a function ν, provided by the game programmer and
dependent of the game semantics. Sν keeps the query
result of the last propagated version and do the test of
Figure 6.a line 7 whenever an update is received.

Calculating κ vectors is straightforward (see Figure 6.b,
lines 11-18). Function Φ(c, o) → 〈Z, C, P 〉 retrieves the φ
settings referring to o for each client view s: Z, C and P .
The algorithm proceeds as follows: 1) determines in which
consistency zone zcloser the object is, and 2) resolves and
stores in K the object consistency degree κ. Regarding the
first step, since the object may be positioned in more than
one consistency zone, each one belonging to a pivot, it is
necessary to know which of these consistency zones im-
poses strongest consistency requirements. This is found by
detecting which pivot is closer to the object, hence the z
variable to evaluate the distance to a pivot and zcloser to
keep the shortest one. Finding the distance from object o
to a pivot P = 〈px, py〉 implies discovering in which P cen-
tered square of side l the object 〈ox, oy〉 is positioned such
that z = l/2 = Max(|px − ox|, |py − oy|). Since consistency
zones are delimited by squares centered in P , it is enough
to compare z with half the length of the squares that bound
a certain consistency zone (e.g. s1 for the inner square and
s2 for the outer square). Thus, the object is ensured to be
in a determined consistency zone if s1 < z ≤ s2. The op-
eration that provides the number of the consistency zone
based on zcloser is Z[zcloser] in line 18. After determining
which is the consistency zone of the closest pivot, deter-
mining which is the corresponding consistency degree is
simply done by consulting the C table.
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Fig. 7 Partitions with different dimension.

3.4 Inter-Server Subscription Protocol

As previously mentioned, each partition of the virtual world
is assigned to one server of a distributed server network.
Players are assigned to one of the servers based on the
position of their avatars in the virtual world.

Because the area-of-interest (AOI) of a player may cross
partitions handled by a different server (including non-
adjacent partitions, as depicted by Figure 7), servers may
need to share information with each other in order to en-
force the consistency model and, thus, allow inter-partition
interaction. To do so while minimizing server synchroniza-
tion requirements, we designed a subscription protocol in
which each server only knows about the non-adjacent servers
it actually needs to be aware of (i.e., those whose partition
may be crossed by one of its players’ AOI). Furthermore,
the protocol also ensures that an update from a player is
received only by the servers whose objects may be affected
by it. As a result, the protocol requires having only a par-

tial view of the network (each server knows only a subset
of the complete server set), which favors the scalability of
the system.

In the partitioned architecture of VFC, servers are or-
ganized in a peer-to-peer Content Addressable Network
(CAN [25]). Like in a CAN, each peer (in this case, a
server) is responsible for one partition of the virtual space
and, consequently, for the objects (i.e., avatars, other game
items) located on it. Each server has only a partial view of
the network, i.e, it knows only a subset of the total number
of servers of the network. The partial view always contains
the servers responsible for its adjacent partitions and it
may also contain a dynamic number of other servers, added
to the partial view as a result of the subscription protocol.

The partitioning of the virtual world is defined as servers
join the network. Like in a CAN, a joining server chooses
one of the existing servers and splits its partition in half,
becoming responsible for one of the halves. Choosing with
which server to split depends on the actual goal of the
join: if the server is joining to relieve the load on one of
the servers it has to know about that server beforehand
(e.g., from a load monitor) and splits with it; if the goal
is to improve the overall performance of the network, the
system simply follows the CAN node join protocol, i.e, the
server chooses a random position of the virtual world and
joins that server.

3.4.1 Inter-partition Interaction

Two players may potentially interact when one is within
the other’s AOI. Thus, inter-partition interaction occurs
when two interacting players are located on different par-
titions, adjacent or not. This means that the view of a
given player may require information from multiple servers.
Inter-partition interaction is supported by a player sub-
scription protocol that gathers the information each server
needs to know in order to enforce the consistency model.
The protocol is divided in three parts (performed at inde-
pendent times) and runs as follows.
Partition Subscription: When a server joins the net-
work it immediately identifies and connects to those servers
whose partition its objects’ AOI may cross. To do so, it in-
spects the objects located on its newly defined partition to
find the one with the largest AOI radius R. It then pub-
lishes to the network the dimensions of the area partition

outset defined by adding R to each side of the partition.
Publication consists in broadcasting the publication mes-
sage to the server’s neighbors: the server sends the message
to its direct neighbors who, in turn, forward it to their
neighbors and so forth, until every server whose partition
is crossed (or contained) by the partition outset receives it;
forwarding stops as soon as it reaches a server whose parti-
tion is not crossed (nor contained) by the outset. As a result
of this publication, every server whose region is crossed by
the partition outset informs the publishing server of its ex-
istence and is added to its partial view.
Object Subscription: The main task of the Subscrip-

tion Manager (see Figure 5) consists in subscribing its own
player objects (pivot objects) to servers that may contain
information required by its players. It does so by execut-
ing an object subscription protocol when relevant changes
occur that runs as follows:

1. The protocol starts by checking if any of its player’s
AOI crosses the partition of any server on its partial

view. If it finds one such object, it adds the mapping
“server ↔ player object” to a subscription queue to be
processed in the next step.

2. Then, the subscription queue of step 1 is used to pub-
lish the list of objects to the corresponding servers, de-
termined in that step. Publication is performed by di-
rectly sending, to each server, the list of objects whose
AOI crosses its partition and, thus, require information
about objects only known by it.

3. After the subscription process is finished, the mappings
“object ↔ subscribed server” are stored in a subscrip-

tion table.

Server Synchronization: The second part of the pro-
tocol consists in synchronizing objects between the servers
according to the subscription results. Synchronization con-
sists in forwarding/propagating the contents of each ob-
ject’s primary replica to the subscribing nodes. It is per-
formed, conservatively, every time a player submits an up-
date, although with an optimistic approach: when an up-
date is received the server consults its subscription table
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and retrieves from it the entry of the subscription table
corresponding to the object to update; then, if necessary,
it forwards the received update to the servers on that list.

As a result of these steps (i) the servers become aware
of those players located in other partitions that may need
information about their objects and (ii) each server knows
to which other server updates to a given object have to
be forwarded. Thus, each server has all the information it
needs in order to enforce the consistency model and, as a
result, allow consistent inter-partition interaction.

3.4.2 Ensuring VFC Across Partitions

As a result of the subscription protocol, each server has two
disjoint sets of players: a set of owned players comprising
the players that are located at the server’s partition; and a
set of subscribed players composed of the players that are
located at a partitions handled by a different server, but
whose AOI crosses the server’s partition.

Obviously, a player must receive updates from every
game object that is within his AOI, even those located at
different partitions. This is achieved by having each server
updating both its owned and subscribed players with the
information about the objects located on its partition. This
means that each server enforces VFC only for the slice of
a player’s AOI that crosses its partitions. As a result, the
responsibility of enforcing VFC for a given player is dis-
tributed between the servers whose partitions are inter-
sected by the player’s AOI. Considering Figure 7, consis-
tency for the player p represented by the solid (black) circle
would be enforced complementarily by the four servers: S1

would be responsible for updating p with the information
about its four owned objects, S2 would update it consider-
ing only its two owned objects, and so forth.

The enforcement of the consistency model requires servers
to keep information about the state of each players’ local
copy of an object regarding the object’s latest state. For
this purpose, each server stores a consistency table that
keeps, for each owned and subscribed player p and for each
object o that is within the server’s partition (i.e., for each
owned object), the data related to the three metrics of con-
sistency of the model:

– The time elapsed since the last time o was refreshed at
player p;

– The number of updates to o that were not sent to p,
since the last time it was refreshed with o;

– The value that object o had the last time it was sent
to p.

With this information, VFC is able to enforce consis-
tency on its players by executing the following tasks:

1) Update Processing: To update players according
to their VFC specification, servers monitor the updates
to their (owned and subscribed) objects. For that purpose,
every time a server receives an update it executes one of the
following actions, depending on the origin of the update:

– If the update is received from a player, then it concerns
an owned object. Hence, the server updates its consis-

tency table by updating, for each player (owned and
subscribed), the entry corresponding to the updated ob-
ject. This includes updating, for each player, the time
elapsed since the object was refreshed and the number
of lost updates of the object.

– If the update is received from a server as a result of
server synchronization, then it concerns a subscribed

object corresponding to a player p owned by a different
server. As such, the information received is only nec-
essary (as far as VFC is concerned) to update the ob-
ject’s position, so that, when enforcing the consistency
model to p, VFC can correctly identify which objects
are within p’s AOI.

2) Client Updating: VFC propagates updates to clients
periodically, according to their consistency specification
and the information gathered in the update processing step.
The process of updating clients is as follows:

1. First, the server identifies, for each player (owned and
subscribed) p, which of the objects owned by the server
(i.e, those that are located on its partition) are within
p’s AOI. Then, for each object o previously identified,
it checks in which consistency zone of p’s AOI object
o is located. Finally, it verifies if o is in violation of
the consistency degree associated with that consistency
zone. If so, that object is queued and, after verifying
the remaining objects, the server sends it to the player
p.

2. After verifying consistency for every player (owned and
subscribed), the server sends them the objects identi-
fied in the previous step.

As a result of these steps VFC achieves a distributed
and decentralized consistency management algorithm in
which the consistency of a single player is enforced not
by a single server but by the complementary work of a
group of servers. Having the load and the responsibility
of enforcing consistency partitioned between the servers
of the network improves the flexibility of the system and
promotes scalability.

In this distributed setting with partitioning, serializ-
ability is ensured at each server. For each client, causality
regarding its updates is ensured since FIFO order is en-
forced when sending updates to the servers. Asynchronism
among servers is necessary for scalability, performance,
playability. Thus, servers neither globally relay nor ac-
knowledge each round (i.e. there is no distributed consen-
sus). It is worthy to note that such synchronized rounds
could be enforced within clusters, not in wide area. There-
fore, updates performed by a given client to several ob-
jects owned by different servers, sent in the same round,
may not arrive in the same exact round to each of the
other clients (nonetheless, updates to individual objects
are always propagated in total order). In this sense, inter-
partition causality is temporarily relaxed, although recov-
ered in the next round, as updates arrive. This allows
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preservation of intent, a reasonable measure of causality
assurance: the user sees a wider portion of the game world,
observes interaction outcomes correctly, temporarily with
lower detail or some lag/delay.

3.4.3 Player Transfer

We take advantage of the fact that the subscription pro-
tocol previously described needs information from objects
located on remote servers to transfer a player’s data be-
fore the player actually moves to a new partition. When a
server Si sends a subscription message directly to another
server Sj it piggybacks the player’s data on that message.
When Sj receives the message it gets all the information
it needs about the player from the piggybacked data.

The actual transfer of a player from his current des-
ignated server Si to his new designated server Sd occurs
only when the player’s avatar moves to that server’s par-
tition. The transfer is triggered by Si after it receives an
update from the player that positions its avatar on an ad-
jacent region. After finding out (by analyzing the entry of
the subscription table corresponding to the object) which
server Sd is responsible for that region, Si issues the trans-
fer request to it. Because the player’s data has previously
been transferred from Si to Sd, the latter needs no addi-
tional information. As such, the transfer request is, in fact,
a simple one-way asynchronous transfer notification.

4 Implementation

VFC has been implemented mainly as middleware pro-
totypes for the two targeted architectures: ad-hoc (VFC-
hoc) and large-scale networks (VFCLS). In this section we
describe the essential implementation details, in addition
to the detailed architectures explained earlier, regarding
the main aspects of VFC core implementation, and the
VFC-hoc and VFCLS prototypes. Additionally, we have
implemented a multiplayer ad-hoc game using VFC and
a simulating engine to compare VFCLS with competing
approaches. As a more sophisticated proof-of-concept of
application of the VFC model, we are currently extending
an open-source distributed first-person shooter multiplayer
game, in order to make use of VFC. We provide more de-
tails of this ongoing work in the next section.

The relevant core of VFC implementation consists of
the Consistency Management Block (CMB) and the Ses-
sion Manager components. The CMB internals implement
the algorithms presented in Figure 6, regarding both the
functionality and the data structures. The Session Man-
agers of both the client and server sides execute the proto-
col that provides the VFC services to the game program-
mers. Each implements its own state machine (see Fig-
ure 8). Shaded circles represent the states; arrows between
the states represent state transitions. State transitions are
triggered by events. Each arrow description has two parts
separated by a slash: the left side is the event name, the

right side is the outgoing message sent to the remote peer.
Straight arrows represent incoming messages, dashed ones
represent API requests or internal events.

Session Managers coordinate in order to enforce the two
phases already presented in Section 3: the setup and the ac-

tive phases. Broadly speaking, first, the server declares its
intention to accept client connections and enters the Setup

state. Then, clients connect to the server and subscribe to
its services. Clients may now submit to the server the ob-
jects to be shared, which the server forwards to every client.
When the server receives an enable request, it switches to
the Active state and the system enters the active phase.
While in this state, the server sends periodic round mes-
sages and handles lock and release requests. Updates are
received by the server piggybacked with the release mes-
sages. The system leaves this phase when clients send the
server a disable request causing the server to switch to the
Idle state.

As far as VFC is concerned, the virtual world is a
bounded area populated with DataUnits. A DataUnit (DU)
is an object that represents a shared game entity (like an
avatar or a food object). Each DU carries a unique integer
session identifier duId and the coordinates of the DU in
the virtual world. Users are represented in the system by
class UserAgent (UA). Like DUs, UserAgent objects also
have a unique integer session identifier (uaId), along with
an also unique nickname and reference/address, invoked
to propagate notifications and updates. Servers also store
a list containing the mapping between UserAgents and its
corresponding DataUnits.

VFC-hoc internals: A prototype of VFC-hoc was imple-
mented in Java and deployed on J2ME MIDP 2.0 CLDC
1.0 compliant devices (Nokia 6600 phones), according to
the meta-architecture described in Figure 5. We use Blue-
tooth to support communication between the devices. The
Network Layer uses JSR 82, the J2ME Bluetooth API, for
discovery of nearby devices and services, management of
active connections and sending/receiving data. Note that
internally, the Network Layer is multithreaded in order to
prevent blocking and increase parallelism. All messages ex-
changed between devices are implemented as Java objects.

Game state state can be represented as Java object
graphs with individual objects registered in Objects Pool.
Due to the lack of binary object serialization support in
J2ME, a Serialization Layer was implemented in order to
(un)marshal objects (see Figure 5). It requires objects to
implement a specific interface allowing the middleware to
read and write the object fields. The game programmer
does not have to implement this code; a code enhancer was
developed to transparently extend the application source
code accordingly.

VFCLS prototype internals: The VFCLS prototype
was developed in Java with Sun J2SE 6.0 development kit
(JDK) and runtime environment. VFCLS was developed
using only the standard Java libraries provided by JDK.
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a. Client-side state machine. b. Server-side state machine.

Fig. 8 Client and server Session Manager state machines.

We used Java Remote Method Invocation (RMI) to sup-
port communication between the nodes of the system.

Integration with Applications and Programming
Languages: For a consistency model to be widely used,
it should be seamlessly integrated with popular program-
ming languages, such as Java and C#. We describe how
programmers can programmatically specify VFC φ set-
tings. Pivots are registered by name and objects are as-
sociated with them using the overloaded methods defined
by VFC setPivot(String, Object), setPivot(String,
Object[]). Sets of objects are selected by applying VFC
declarative tags to object classes in source code, repre-
sented as Java annotations (@VFCPlane{}, @VFCZone{})
or .NET attributes

([VFCPlane()], [VFCZone()])with parameters stating zone
ranges and κ-tuple components (e.g. @VFCZone{int range,

float time, int seq, float vDiff}).
Java support for annotations is limited. In J2SE, it dis-

allows multiple applications of the same annotation (even
with different parameters) to the same class. Therefore,
we make use of composite annotations (e.g. @VFCPlane{}
that encapsulates the parameters of multiple @VFCZone{}
annotations). In J2ME, there is no support for annotations
whatsoever. Therefore, they are parsed as source code com-
ments and classes extended to bear annotation parameters
as private static fields.

Games must register objects in order for VFC to man-
age them. The VFC middleware can make use of reflection
to allow registration of object graphs. At the client-side the
game client must register the players’ avatar with VFC.
Likewise, at the server-side, the game server application
may (depending on the game’s design) register objects cor-
responding to non-player computer controlled characters.

To allow inspection of objects by VFC, classes must
implement the IVFCConsistency interface that describes
three methods: getPosition for objects to provide their
current coordinates in the virtual world, getValue to pro-
vide their internal data to be propagated, and vDiff to
provide an application-dependent measure (in percentage)
of difference w.r.t. contents of another object.

After registration, objects can also be updated accord-
ing to game logics. When an object is locally updated by

a client, the game client (either explicitly or via enhanced
source code) informs VFC via a UserUpdate notification.
As a result, the update can be sent to the client’s desig-
nated server.

If desired, game clients and server applications can be
informed when a state update message is received from
a server. For this purpose, when the application starts,
they must register themselves as update listeners using a
RegisterStateUpdateListener function provided by VFC.

VFC also provides functions for applications to query
the local object pool. This allows, for example, game servers
to perform validation and anti-cheating periodically, in-
stead of every time an update is received.

5 Evaluation

In this section, we present the main results relative to VFC
evaluation, regarding its suitability and flexibility for gam-
ing experience, and its performance resorting to micro-
benchmarks. The evaluation of VFC takes into account
the two architecture instantiations proposed: ad-hoc, and
large-scale networks.

5.1 VFC-hoc: VFC for Ad-hoc and Mobile Networks

VFC-hoc was deployed on Nokia 6600 phones connected
via Bluetooth. To evaluate VFC-hoc qualitatively, we im-
plemented a distributed multiplayer version of the popular
Pac-Man game, illustrated in Figure 9. It has a maze di-
vided into a matrix of 8 × 8 rooms; each room is assigned
a 2-coordinate position. Players have access to the whole
maze; yet, during the game, each player’s device only shows
the room where its avatar is in at that instant, stating the
room coordinates (0, 0) at the center of the screen. If two
players’ avatars are in the same room, they can see each
other. If they are in adjacent rooms a periodic beep warns
of opponent’s proximity.

The quantitative evaluation studies the impact of VFC
enforcement on overall VFC-hoc performance. Our micro-
benchmarks focus on the most costly operation – the CMB-

Round-Triggered function, described in the CMB algo-
rithm (see Figure 6), and on network delays. This function
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Fig. 9 Game view in one phone.
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not only performs intensive computations but it is also ex-
ecuted periodically, once per round. From the algorithm,
we can see that, disregarding the cost of the merging op-
eration in line 1, the overall cost is proportional to the
number of clients. Thus, we evaluated the algorithm cost
for a single client.

We continuously ran this micro-benchmark on phones
and measured the execution time of the CMB-Round-

Triggered function (at the server side) by varying two
factors: i) the number of objects in the pool (between 1000
and 10000 objects), and ii) the percentage of updates pig-
gybacked in the round messages to the client (0%, 50%
and 100% simulated update percentages).3 Additionally,
experiments were conducted with the following fixed con-
ditions: i) the simulated φ settings included 1 pivot and
small C and Z (arrays with 3 positions), ii) object payload
was 4 bytes (e.g. 2 small integers for space coordinates).
Figure 10 presents the performance measurements. Each
result is annotated with the corresponding volume of data
to be sent to the client.

In order to measure the cost of wireless communication,
a second micro-benchmark was executed on the phones to
measure network propagation time using Bluetooth. The
size of the messages varied from 1 to 10000 bytes. Figure 11
presents the obtained propagation times which allows us to
establish a comparison w.r.t. the VFC evaluation result.

Results show that VFC performance is influenced by
the number of updates sent to clients, and therefore in-
fluenced by the VFC parameterization: weak consistency
requirements cause less updates to be sent, increasing effi-
ciency. Also, for a reasonable number of objects, the com-
putation time is less than the corresponding transmission
time in the network. Hence, the VFC computation costs
can be masqueraded if they are performed in parallel with
the transmission of the updates to clients and there is still
time to attend game logic and rendering on the clients.
Further, since the propagation time is nearly stable for
messages below 200 bytes, the CMB may be enhanced to
adapt the number of updates in order to increase efficiency.

3 Updates are piggybacked in the round message if the test of line 7 of

Figure 6.b is true. The micro-benchmark simulated this setting according

to the update percentage provided as input.

Variation Description
Aura1 Aura with radius of 40 units
Aura2 Aura with radius of 80 units
Aura3 Aura with radius of 120 units
VFC1 VFC with three zones with radius [40, 80, 120]

and respective K vectors [3,0,0], [10,10, 0] and
[50,10,500]

Table 2 Description of the different parameter variations

5.2 VFCLS: VFC for Large-Scale Networks

To evaluate VFCLS we developed a simulation infrastruc-
ture to simulate and compare different types of architec-
tures (Centralized and Replicated C/S), as well as different
usages of locality-awareness (Interest Management models,
in particular auras), with VFCLS. Clients are simulated by
a game skeleton where automatic clients move their objects
- small circles - in straight lines along the game map, peri-
odically changing the direction of their trajectory. The size
of each object is 200 bytes, 50 ints or floats for game
information. The tests were performed on two Intel Core2
Quad processors with 8.0 GB of RAM running Ubuntu
Linux, connected by a Gigabit LAN.

Locality-Awareness: To compare the VFC consistency
model with aura based IM regarding the bandwidth re-
quirements imposed on players, we employed the parame-
ter variations described in Table 2, and illustrated in Fig-
ure 12. The results in Figure 13 show the measured band-
width in a context with variable number of players (50, 100
and 500) in a 1000x1000 virtual world. As expected, the
performance of auras decreases as their radius increases, as
the number of objects inside the AOI is higher. In VFC1,
on the other hand, varying the radius of consistency zones
does not necessarily mean that the bandwidth spent will
increase. Since VFC has other configurable parameters, it
is possible to increase the range covered by VFC zones
while maintaining, or even reducing, bandwidth. This way,
it is possible to enlarge player’s visibility with little or no
impact on bandwidth, although at the cost of fidelity (that
decreases progressively or gracefully, nonetheless).

Although VFC1 only performs better than Aura3, to
fully understand the meaning of these results, we have to
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Fig. 12 AOI size and variations

Fig. 13 Client-side usage requirements: auras versus VFC

Fig. 14 Execution times of function round-trigger for different ar-
chitectures: VFCLS and replicated architecture highlight

Fig. 15 Per-server bandwidth usage of different architectures

analyze them in light of Figure 12. Aura1 corresponds to
the inner zone of VFC1. Hence, it is natural that VFC1
uses more bandwidth than Aura1. However, VFC1 corre-
sponds only to an example VFC consistency vector defined
by us. A different consistency vector could perform better
than VFC1 and possibly yield bandwidth results similar to
Aura1. Finally, we can see that the resulting bandwidth of
Aura3 is higher than VFC1. More importantly, these re-
sults happen despite the fact that Aura3 and VFC1 cover
the same exact area of the virtual world, a more relevant
comparison. This is due to the high flexibility that VFC
exhibits.

Architecture: We compared VFCLS with the centralized
architecture (such as that of VFC-hoc) and a replicated ar-
chitecture, by varying both the number of clients and the

number of servers for each of the two distributed architec-
tures (VFCLS and the replicated one), described in Table
3. We simulated clients with the following VFC specifi-
cation: 3 consistency zones [120, 200, 500] and respective
consistency vectors κ = [(3,0,0), (10,5,100), (50,10,500)].
The virtual world consisted of a 5000 x 5000 map. To an-
alyze performance throughput we measured the execution
time of function CMB-Round-Triggered in VFCLS. This
also provides the impact on game’s playability, as the more
often a system is able to update its clients, the more in-
teractive the game is. Figure 14 shows results considering
500 and 1000 players. It shows that VFCLS outperforms
the replicated architecture both with 500 and 1000 players.
With 500 players, VFCLS4s only outperforms the equiv-
alent Rep4s, while Rep9s achieves better results, but still
worse than VFCLS9s. With 1000 players, both VFCLS4s
and VFCLS9s outperform the two replicated architectures,
with each reducing by more than half the execution times
of their replicated equivalent (Rep4s and Rep9s, respec-
tively). Moreover, both can provide a highly interactive
experience to its users, as the execution times are low. We
can also see the difference between execution times of VF-
CLS9s with 500 and 1000 players is not meaningful, indi-
cating good potential for scalability in VFCLS.

Server-to-client Bandwidth: Figure 15 shows results
regarding bandwidth. At first glance, it looks like VFCLS
not always saves bandwidth (500 players, VFCLS4s tops;
with 1000 players, it is VFCLS9s). However, to fully un-
derstand this, we need to also take into account the results
of the previous performance analysis. Since VFCLS is able
to issue an higher number of round messages per second,
it performs consistency enforcement more often than the
other (slower) architectures. For instance, Rep4s can only
perform consistency enforcement about once per second in
the 1000 players context, while VFCLS9s does it almost
five times more (considering that rounds are issued every
100 milliseconds, as was the case of our testing). Therefore,
VFCLS is able to send messages more often to its players,
which results in the higher bandwidth requirements. How-
ever, this is a false drawback, since it means that VFCLS
can provide a highly interactive experience that the repli-
cated architecture cannot.

Inter-server Communication: Table 4 shows the av-
erage number of messages exchanged between servers in a
game context with 100 players. The results were obtained
by replaying the traces obtained during a 5 minute sim-
ulation. We can see that VFCLS, due to its partitioning

Name Description
VFC Single server centralized architecture
Rep4s Replicated architecture with four servers.
Rep9s Replicated architecture with nine servers.
VFCLS4s Four servers VFCLS
VFCLS9s Nine servers VFCLS

Table 3 Description of the evaluated architectures
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approach and the subscription protocol, limits the propa-
gation of player update messages between servers. In par-
ticular, considering the 9 server configurations, VFCLS9s
exchanges more than six times less messages than Rep9s.
Even with a small number of servers, VFCLS4s reduces the
number of synchronization messages to less than half, re-
garding Rep4s. Furthermore, the network overhead caused
by transfer and subscription messages is not meaningful,
which favors scalability. Even more relevant is that the dif-
ference between VFCLS4s and VFCLS9s, regarding those
two types of messages, is relatively low. This indicates that
the addition of servers has a small impact on synchro-
nization, which also strongly favors scalability. Regarding
server synchronization, in Rep4s and Rep9s, a server ex-
changes synchronization messages with every other server
(3 and 8 servers, respectively). VFCLS, on the other, lim-
its the number of synchronizing servers to a small set. Not
only this reduces the network load, it also means that if a
conflicting update occurs, the number of servers (and, as
a result, players) affected by it is limited.

Arch. Inter-server Average
Subs. Transf.

Messages Servers

in Synch

Rep4s 285747 3 — —
VFCLS4s 104671 1.12 213 115
Rep9s 230967 8 — —
VFCLS9s 37373 1.27 301 167

Table 4 Server communication in VFCLS.

VFC-enabled First-Person Shooter Game: We are
currently extending an open-source first-person shooter dis-
tributed multiplayer game to make use of VFC: ”Cube 2:

Sauerbraten”.4 In Figure 16, we illustrate how a client per-
ceives the game world, depicting 3 consistency zones and,
according to player’s orientation, its field-of-view.

Currently, this game employs only one server. For the
purpose of evaluating VFC performance w.r.t. bandwidth
usage (both inbound and outbound) by the server, we
tested Cube2-VFC with 3 Intel Quad-Core machines with
8 GB RAM, connected via 1 Gigabit LAN. One executes
the server and two others execute 48 simulated players
(i.e., bots employing the game’s very own artificial intel-
ligence engine), 24 in each. During 10-minute runs, bots

move around the game world in search of weapons and en-
ergy, while looking for enemies and shooting each other on
sight.

Figures 17 and 18 evaluate bandwidth usage by employ-
ing VFC when compared with the game’s original imple-
mentation. We measured bandwidth usage rate necessary
to propagate: i) objects (i.e., player’s object contents due
to player’s movements with consequent modification in po-
sition), ii) so-called events (shooting, triggering of sound
effects, in-game messaging, etc.), and iii) total bandwidth
usage (sum of the previous two, albeit dominated by object
propagation).

4 http://sauerbraten.org/

Fig. 16 Sky view of game world observed by client with object dis-
tribution across consistency zones (with indication of player’s field-
of-view).

On one hand, in Figure 17, we observe that inbound
bandwidth rate, at the server, is similar with both ap-
proaches, i.e., introduction of VFC makes mostly no im-
provement nor degradation. This makes sense since the
server must still receive all updates (movements) and events
from all clients. On the other hand, in Figure 18, we can
observe that VFC offers savings in total bandwidth us-
age of roughly 50%, an encouraging result. In particular,
VFC cuts to half the bandwidth usage necessary to propa-
gate objects, because it only propagates objects when this
is required in order to meet the requirements expressed
in κ vectors (VFC objects vs. native objects). Regarding
events (VFC events vs. native events), there are also sav-
ings because the server is now applying VFC consistency
requirements and thus filtering events (namely shooting
and triggered sound effects) that are taking place too far
from the player or, at least, propagating them less often
(e.g., the player perceives farther shootings as delayed, and
with fewer shots but still, he/she knows some other farther
player is over there and shooting). Thus, it requires sending
fewer messages to each of the clients.

In summary, although there is still a centralized server,
VFC clearly introduces relevant bandwidth savings that
improve game scalability w.r.t. the number of supported
players, while ensuring the game experience’s playability.

6 Related Work

In this section, we discuss and compare related work ad-
dressing relevant aspects in common with our work. VFC is
a consistency model protocol that unifies optimistic consis-
tency (divergence bounding) with locality-awareness tech-
niques (traditionally employed in multiplayer games, but
also applicable to cooperative editing). The meta-architec-
ture proposed has been instantiated in two architectures
for different scenarios (ad-hoc and large scale networks).
The implemented prototypes aim at providing middleware
support to ease the adoption of VFC in the development
and deployment of multiplayer games. Therefore, due to
space limitations, we focus mainly on the following: i) work
on optimistic consistency in distributed systems with repli-
cated data, ii) techniques specifically employed to improve
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Fig. 17 Input bandwidth usage rate (B/sec.) at the server. Fig. 18 Output bandwidth usage rate (B/sec.) at the server.

the performance and scalability of multiplayer games, re-
sorting to middleware leveraging locality-awareness, iii) other
middleware and network architectures for large-scale mul-
tiplayer gaming.
Optimistic Consistency with Replicated Data: Op-
timistic consistency techniques [27] (and divergence bound-
ing in particular) are traditionally used in loosely-coupled
scenarios, such as cooperative work, mobile computing,
replicated databases. They are also suited to multiplayer
games, as they may be employed to reduce bandwidth us-
age and masquerade latency.

Real-time guarantees [1] allow an object replica to re-
main in use while stale (i.e., without being refreshed) for a
specified maximum time, before the replica must be made
consistent. Order bounding [14] limits the number of un-
committed updates that may be applied to a replica. Trans-
actions proceed faster because they can ignore the effects
of a bounded number of other transactions preceding them.

Numeric bounding, as described in TACT [30,31], is a
multi-dimensional consistency model proposing its combi-
nation with order bounding. Divergence bounds are ap-
plied to conits (i.e., physical or logical units of consis-
tency) defined by the programmer. Numeric bounding de-
fines maximum quotas (number or weight) for allowable
updates to each replica (e.g. $100 for a number of repli-
cas of a $1000 bank balance). A given replica cannot be
further updated until it is made consistent w.r.t. oper-
ations performed on the other replicas, when its quota
has been exhausted (e.g. by money withdrawals). While
TACT proposes a multi-dimensional model for consistency
enforcement and limiting replica divergence, it does not
take locality-awareness into account. There is no notion
of spacial relation neither among individual data objects
nor among users. The middleware is oblivious to them.
State is simply represented as individual database records
or shared/replicated variables in servers. Therefore, it can-
not be used in game scenarios where the consistency degree
required for an object varies with player position and cor-
responding sensing and acting ranges. Numeric bounding
is related with escrow techniques [15] on updates to data
performed by mobile databases during disconnection peri-
ods, such as reservations in Mobisnap [24].

In VFC, we clearly extend optimistic consistency tech-
niques by introducing support for locality-awareness. Fur-
thermore, we can leverage the fact that, in our meta-archi-
tecture, each part of the game scenario is under the control
of an assigned server. By monitoring all object updates, we
extend escrow and numeric bounding techniques, allowing
application programmers to define limits on the value di-

vergence resulting from updates performed by other nodes
(instead of simply limiting their own updates in a conser-
vative manner).
Locality Awareness in Multiplayer Games and Sim-
ulation Environments: The notions of locality-awareness
can be traced back to interest-management (or IM [20]),
used to filter routing massive volumes of data in large-scale
distributed simulations. It is motivated by the observation
that players (or simulated entities) are not equally inter-
ested in (or affected by) every object (e.g., other players,
entities, items). Instead, they are more concerned about
objects located near them (e.g., their AOI) and, as the
proximity to objects decreases, so does the player’s inter-
est in them. This observation is typically materialized by
two different approaches and their variations: region based,
and user based (e.g., auras, orientation, line-of-sight). Re-
gions are contiguous partitions (either static or dynamic)
of the game scenario defined by servers [29,3]. Players in
the same region receive updates from each other, but not
from others in different regions, which is not the case with
VFC.

An aura [19] is a concentric consistency zone defined
around a player’s avatar. When the auras of two avatars
intersect they can see each other; outside of its aura, a
player sees nothing. The work in [21] (specific to peer-to-
peer - P2P - gaming) reduces auras to a field-of-view, using
obstacles in the virtual world to further reduce the scope
of the aura. The work in RING [10] is particularly targeted
to environments with high level of occlusion. Updates are
forwarded only to entities in line of sight, regardless of dis-
tance. A3 [4] reduces updates further by combining auras
with player orientation in a two-level consistency approach:
a 180 degrees field-of-view hides all updates behind the
user but a small radius aura ensures that in case of fast
rotations, close players and objects appear without delay.
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Auras have a traditional problem with objects whose dis-
tance to the player oscillates around the aura radius: they
keep on appearing and disappearing abruptly, which does
not happen with VFC. Leveraging knowledge about user
orientation, aiming, and line-of-sight is specially relevant
in some classes of games (first-person-shooters) but not ap-
plicable to e.g., real-time strategy games. Moreover, they
require additional information, and possibly intervention,
regarding game logic and scenario geometry.

Locality-awareness was proposed in [8] to perform load
balancing on massive multiplayer games, with an adapt-
able mechanism to partition vast virtual worlds into re-
gions handled by a cluster of dedicated servers to ensure
scalability. Based on their locations, players are redirected
to servers in charge of the corresponding partition. To han-
dle hot-spots (e.g. crowding, player flocking), heuristics de-
termine when to reduce server load (by splitting highly
populated partitions) and leverage idle resources (coalesc-
ing empty partitions in the same server). VFC can extend
such mechanisms to allow interactions between users han-
dled by different servers.

Matrix [3] proposes the use of locality-awareness by per-
ceiving a multiplayer game as a decomposable system [28]
with stronger interaction within each given subsystem (e.g.
a room, a game level) than among different subsystems

(e.g. across rooms). Based on this premise, a radius or zone

of visibility can be identified for each event in the game,
outside of which, the corresponding updates need not be
propagated (e.g. a shot in another room). Thus, the system
enforces pockets of locally-consistent state. While already
offering an approach based on localized consistency, Ma-
trix still adheres to an overly limitative approach of all-or-

nothing consistency, with no method of stating maximum
replica divergence. Furthermore, it makes use of a global
consistency radius instead of multiple and dynamic zones
of consistency with different divergence bounds, as we pro-
pose in VFC.

The work in Donnybrook [6] employs a more aggres-
sive version of locality awareness by restricting interest
management to a limited number of entities (i.e., players)
regardless of their spatial distribution and density. It is
specifically tailored to reduce traffic of first-person shoot-

ers in P2P scenarios. It leverages the notion that (human)
players can only keep up with a limited number of simul-
taneous opponents (a interest set of five); therefore, they
only receive updates from five users regardless of player
density. This set is recalculated at every frame w.r.t. prox-
imity and aim of other players, and interaction recency
with a fine-tuned weighting. It is very effective in a relevant
game (Quake III) but this (even more) strict all-or-nothing
approach targets only this class of games in P2P architec-
tures (interest set may not apply in others). It also requires
extensive information from and intervention to game logic.

The work in [17] describes how the usage of the MMASS
(Multilayered Multi-Agent Situated System Approach) model
can help to design, simulate, manage, and deploy large-
scale collaborative environments where people (or in fact

agents) may move around a specific scenery and inter-
act. Agents’ decisional information and interactions are
enriched with contextual awareness (in particular location-
awareness) targeting a ubiquitous computing scenario where
external sensors may also be employed. Although in a dif-
ferent context, we observe parallelism between the MMASS
and VFC approaches, while highlighting their differences.

In the MMASS model, the spatial structure (therefore,
agents’ location) is represented resorting to general adja-
cency or undirected connectivity multi-layered graphs. Ver-
texes hold information that may exist at interconnected
multi-layers, possibly corresponding to different types or
levels-of-detail of data. VFC makes usage of a cartesian
N-dimensional space that is more suited to gaming, and
requires less modifications on game code since it needs no
additional information regarding, for instance, specific ge-
ometrical information of the game world, and/or modifica-
tions to game logic. In MMASS, however, graphs are more
suited to effectively quickly decide if two agents may or
may not interact, albeit this requires additional specific
code to maintain adjacency information as agents roam
around.

Regarding event (in MMASS) and update (in VFC)
propagation, both are inspired by the fundamental notion
of field, although, embodied in very different ways and
with different goals. In MASS events comprise informa-
tion regarding interaction among agents and are propa-
gated across graph edges, subject to possible composition,
where custom agent-specific diffusion functions rule event
amplification or attenuation, i.e., if an event should be
propagated or not to adjacent agents. This equates to the
diffusion of a field, with a very important example being
the presence field (for proximity perception) that is emit-
ted by agents on the move. Therefore, the presence of an
agent is perceived by the agents where its presence field is
propagated before attenuation threshold is reached.

In VFC, field intensity (i.e., the promptness of the prop-
agation of an update to a client) must be ruled by distance-
based attenuation (as with the gravity and electrical field),
with specific field attenuation for each pivot and type of
object. The important difference is that in the MMASS
model, field range and attenuation result from customized
functions of each agent, advantageous for rich behavior
simulation. On the contrary, in VFC, field range and at-
tenuation, while customized, are fully described resorting
to declarative data (consistency zones and vectors) to avoid
significant and extensive intrusion (or modification) to game
logic code (possibly none with the help of reflection).

Large-Scale Architectures for Multiplayer Games:
Large-scale architectures for multiplayer games exist in two
main flavors: distributed client-server (either replicated or
partitioned), and peer-to-peer (P2P), with network traffic
reduction being essential to both.

In distributed client-server systems, the game manage-
ment is a responsibility of dedicated servers; clients simply
play the game. According to the approach to load bal-
ancing, these systems can be classified as partitioned or
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replicated. In a replicated system [16,9] each server holds
a copy of the complete virtual world, but is only in charge
of managing a subset of the players. The goal is to foster
responsiveness by assigning players to servers geographi-
cally closer to them. However, since all servers hold the
whole game state, the entrance of one player has a direct
impact on the performance of every server. To enforce IM,
servers compare all of their players with every object of the
system. As the system grows the overhead of representing
and processing every object becomes a bottleneck and the
performance of the system decays. Hence, the scalability
of these systems is limited.

Partitioned systems (such as VFC in large-scale net-
works) achieve load balance by dividing the virtual world
into partitions, assigning each one to a different server in
the network [3,7,2]. They provide mechanisms to make it
unnoticeable to the player, giving him the illusion of be-
ing in a single large contiguous virtual world. Servers must
synchronize in order to support interaction between play-
ers located on different partitions and movement of players
across partitions. In [2], the authors propose a partitioned
architecture that uses locks to support these two critical
situations: when a player moves to another partition or in-
teracts with a player located on a remote partition, his re-
sponsible server locks that partition, preventing other play-
ers from performing any actions and, consequently, avoid-
ing conflicts. However, if the servers are connected through
relatively high latency networks (like the Internet) locks re-
duce the system’s concurrency, leading to a strong cut in
performance. VFC does not suffer from this limitation, as
it does not require distributed locking of partitions. The
authors of [7] and of Matrix [3] propose solutions that do
not rely on locks. However, the former uses a static par-
titioning strategy disallowing servers joining the network,
preventing adaptation to load peaks. The latter does allow
the addition of servers, but its operation is based on a sin-
gle coordinator server that performs critical tasks related
to consistency management and state repartition. Com-
pared with VFC, that employs a decentralized approach,
and allows servers to join and leave, they lack on flexibility
and scalability.

P2P support for multiplayer games is an active research
topic [12,5,18]. In these systems, clients exchange updates
directly, instead of doing so through a server. They enable
game creation and enrollment to be performed in a ad-hoc
manner, instead of handled exclusively by central servers.
P2P systems put the burden of managing the virtual world
on peer applications executed on the players’ computers,
which are considerably resource constrained when com-
pared with dedicated servers. As the number of players of
a game increases so does network traffic and the amount of
data each peer receives and processes. As a result, the per-
formance of peers may degrade to reduce computational
capability and network bandwidth to forward messages to
other peers, instead of only one assigned server in VFC.
Furthermore, this architecture may not be acceptable to
developers of commercial games who want to provide the

game as registered, controlled, or paid service. The work
described in [13] proposes the use of peer-to-peer (P2P)
network topologies, such as Pastry [26], to handle massive
multiplayer games. Locality-awareness may be leveraged in
order to dynamically organize nodes in groups, reflecting
common areas of interest within the virtual world. There-
fore, updates to objects are only propagated to other nodes
within the same group, which encloses an isle of consistency
within the virtual world. Nonetheless, programmers must
explicitly pre-define the static partitioning of the virtual
world, defining areas of interest. Consistency is therefore
strictly enforced within each one and ignored outside alto-
gether, unlike in VFC.

The work in [11] is focused on traffic selection accord-
ing to its urgency (immediate forwarding) and relevancy

(reliable delivery) to maintain scalability in wide-area sce-
narios in multiplayer games. Game developers must de-
fine statically, for each entity (e.g. class of objects), lev-
els of urgency and relevance. The middleware generates
code that assigns network resources dynamically during
the game based on the provided requirements. Another
popular approach to reduce network traffic is dead reck-

oning [22] that consists in predicting player’s movement
until the next network packet arrives with updated posi-
tion and velocity. Although offering control at some level
over replica divergence, these works do not explore locality-
awareness. Thus, the divergence of all objects of a given
type (e.g. representing players) is driven by global param-
eters regardless of their relative spatial position w.r.t. each
player. This one-size-fits-all approach is inflexible and may
waste bandwidth w.r.t. a more fine-grained and adaptive
approach embodied in our proposal.

7 Conclusions

In this paper we present a novel consistency model and
meta-architecture to manage replicated data (VFC). In ad-
dition, we present middleware prototypes (VFC-hoc, VF-
CLS) adopting VFC to support multiplayer distributed
games both in ad-hoc and large-scale networks.

While some of previous works embody the notions of
consistency radius, locality of interest, or isles of localized

consistency, they adopt a rather all-or-nothing approach.
must be kept strongly consistent, while the values of (or
updates to) objects outside that area are simply discarded.
VFC combines and extends more sophisticated consistency
models (e.g., TACT), with the notion of locality-awareness

in a unified model. VFC offers an intuitive, simple and
flexible abstraction such that application programmers can
easily express their consistency requirements according to
application semantics.

Regarding future work, we envisage to perform thor-
ough empirical studies using real games to compare the
performance of VFC with other game consistency proto-
cols and frameworks, regarding namely: i) the benefit of
our solution in terms of efficiency/playability, and ii) the
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flexibility of VFC in parameterizing consistency require-
ments for different game scenarios.

We are currently addressing the adaptation of VFC to
other non-competitive settings such as cooperative work;
for example, cooperative document editing, or replicated
wikis, where position coordinates refer to sentences, para-
graphs, sections, etc. Another avenue in progress is embed-
ding VFC in a software development environment plug-in
(in particular, for Eclipse) for cooperative (team-based)
application development, where position coordinates refer
to project entities such as namespaces, modules, classes,
methods and fields.
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