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Abstract—Existing Transactional Memory (TM) algorithms
typically abort many transactions that could be safely committed.
The extent to which a TM allows such spurious aborts is captured
by the theory of Input Acceptance. Recently, the Time-Warping
Multi-version (TWM) algorithm was proposed to minimize spu-
rious aborts without hampering practical performance. In this
work we seek to theoretically assess the input acceptance of TWM
and compare it with other TMs.

I. INTRODUCTION

The growing interest in TM research has led to the de-
velopment of STMs designed to maximize single-threaded
performance and reduce book-keeping overhead [1], [2], [3],
[4]. As a consequence, these algorithms are optimized for
uncontended scenarios and end up rejecting a large number
of serializable schedules (i.e., creating spurious aborts). Con-
versely, several (mostly theoretical) proposals [5], [6], [7], [8],
[9], [10] were designed with the main concern of reducing
spurious aborts, and ultimately achieving permissiveness [8].

We have recently identified a sweet spot between efficiency
(i.e., avoiding costly book-keeping operations) and the ability
to avoid spurious aborts, proposing [11] the Time-Warping
Multi-version (TWM) algorithm: (1) TWM deterministically
accepts many common patterns rejected by practical TM algo-
rithms, by tracking only direct conflicts between transactions;
and (2) it exploits multi-versioning to further reduce aborts
and achieve mv-permissiveness [12].

The key idea in TWM is to allow a write transaction
to commit “in the past”, by ordering the data versions it
produces before those generated by already committed, con-
current transactions. In this case we say that T performs a
time-warp commit. The validation scheme of TWM detects
a specific pattern named triad. A triad exists whenever there
is transaction T that is both the source and target of anti-
dependency edges [13] from two concurrent transactions T ′

and T ′′ (where, possibly, T ′ = T ′′). We call T a pivot, and
define the TWM validation scheme as follows: a transaction
fails its validation if, by committing, it would create a triad
whose pivot time-warp commits.

In this work we seek to compare TWM with other existing
TMs from a theoretical perspective. For this we shall use the
theory of Input Acceptance [6], summarized in the following
section.

II. USING THE THEORY OF INPUT ACCEPTANCE

The key idea of input acceptance is to identify a sequence
of input events (an input pattern) that, when fed to a TM,
leads to aborting at least one transaction. In such case the input

pattern is rejected by the TM. If the pattern results in no aborts,
then it is accepted. An input class is a set of input patterns,
which is rejected only when all its input patterns are rejected.
Conversely, a class is accepted only when all the patterns it
comprises are accepted. Next, we conduct our analysis using
the notation of input acceptance [6]. By comparing the input
class of different TM algorithms (also called designs, in this
context), it is possible to define a hierarchy of TMs that
captures their relative ability of avoiding spurious aborts. We
note that, in contrast, it would not be possible to achieve such
a fine-grained classification by using solely the permissiveness
concept [8]. To the best of our knowledge, the only opaque-
permissive (online) TM is AbortsAvoider [7]. Every other
online TM is simply not permissive. Yet, in practice there
exist significant performance differences between such non-
permissive TMs.

We briefly summarize the notation used in the input ac-
ceptance framework. Its idea is to depict the patterns using
events Γx

t , where Γ denotes a read (r) or write (w) event of
transaction t over datum x. Start and commit input events are
respectively denoted by s, c. Moreover, an event π∗ means any
of the previous events (including itself). This set of primitives
is complemented with the Kleene closure ’*‘, complement
operator ’¬‘, and the choice operator ’|‘. This allows denoting
¬(wx

p | w
y
i )∗ as any sequence of events except the writes of

transaction Tp to x or Ti to y. To simplify the new classes that
we present next, we complement the previous notation with the
following. We assume the inputs are well formed accordingly
to Gramoli et al. [6] and also that a commit event for i cannot
occur as a replacement of a π∗, if ci is explicitly demanded in
the input sequence. Further, we use the permutation operator
ε as a suffix for a sequence of events to indicate any possible
permutation of those events.

Finally, we represent dependencies between transac-
tions [13] according to their execution history as follows: (1)
A

wr−−→ B when B read-depends on A because it read at least
one of A’s updates; (2) A ww−−→ B when B write-depends on A
because it overwrote at least one of A’s updates; (3) A 99K B
when A anti-depends on B because A read some version of
a variable for which B commits a new version.

A. Invisible Writes Invisible Reads

The Invisible Writes Invisible Reads (IWIR) design is char-
acterized read operations that do not modify shared memory
and by write operations that are buffered in private memory
until the transaction is deemed successful (e.g., in TL2 [1]). In
the the work of Gramoli et al. [6], it was shown that the IWIR
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Fig. 1: Class C3 and a history output by a IWIR TM for an
example pattern included in the class.

design rejects all the patterns in a class named C3. We present
this class in Fig. 1, along with an example of a possible history
output by a IWIR TM when fed with a pattern included in C3.
The essence of this class is to capture the classic validation
that ensures data items read are still up-to-date at commit time.
As we can see, it only enforces the existence of a single anti-
dependence between concurrent transactions Ti 99K Tj , where
Tj commits before Ti.

The other designs corresponding to Visible Reads Visible
Writes (VWVR) (e.g., SXM [14]), and Visible Writes Visible
Reads (VWIR) (e.g., TinySTM [4]), were shown to have a
lower input acceptance than IWIR in [6].

B. Time-Warp Multi-version

To study TWM we create new classes to capture the patterns
that it rejects, reported in Fig. 2. These classes are governed by
the detailed algorithm presented in [11]. Briefly, they account
for the rule that a transaction aborts only if it completes a triad
in which the pivot time-warp commits.

We first present Cnsr to capture degenerate triads that
are composed of just two transactions; this is the simple
case where any of the two transactions in the triad can be
seen as the pivot. For that, both Ti and Tj read and write
two variables, creating a cycle due to the anti-dependencies
Ti 99K Tj 99K Ti. An example history of this class is shown
in the left side of Fig. 2. Note that this class is more restrictive
than C3, i.e., Cnsr ⊆ C3.

Then we present class Ctw to capture the case where the
triad is composed of three different transactions. For this, we
identify an explicit transaction Tp in the patterns, which can
be seen as the pivot of the triad. The essence of Ctw is to
enforce two anti-dependencies between the three transactions
in the triad: Ti 99K Tp 99K Tj . We divide the expression of
Ctw in two parts, Ctw1 and Ctw2, to enhance readability —
they are very similar to each other, and Ctw2 differs only in
that it generates sequences of events where wy

p takes place
before Ti starts. The example history shown on the right side
of Fig. 2 is derived using the component of Ctw1.

Finally, we show Ctwall, which is comprised of all the
previous classes. In the following, we prove that this class
represents all input patterns rejected TWM.

Lemma 1. Class Ctwall is an upper bound of the patterns
rejected by TWM.

Proof: To prove this, we observe that every abort in TWM
happens only when the algorithm is fed with an input pattern
captured by Ctwall.

TWM aborts a transaction Ti when: (1) Ti is validating; (2)
there is some Tp whose write Ti misses, i.e., Ti 99K Tp; and (3)
Tp time-warp committed because it missed the write of another
transaction, say Tj , such that Tp 99K Tj . The set of conditions
that trigger this abort are thus captured by patterns contained
in class Ctw. Namely, by instantiating Ctw, with either Ctw1 or
Ctw2, and specifying that cp happens before ci.

We are left with aborts in the following conditions: (1) Tp is
validating; (2) there is some Ti that missed a write of Tp, i.e.,
Ti 99K Tp; and (3) Tp missed the write of another transaction,
say Tj , such that Tp 99K Tj . In this case it is possible that Ti
and Tj are the same transaction, which is captured by class
Cnsr where any of the transactions can be seen as our pivot
Tp. Otherwise, when we actually have three transactions, this
is also captured by Ctw, but with ci happening before cp.

Consequently we have that all aborts of TWM are captured
by Ctwall, which makes it an upper bound on the patterns
rejected by it.

We can now use this result to start placing TWM in the
hierarchy.

Theorem 2. TWM has a larger input acceptance than the
IWIR design.

Proof: By Gramoli et al. [6] we have that the IWIR design
rejects all the patterns contained in class C3. By Lemma 1 we
have that Ctwall captures all patterns rejected by TWM. It is
straightforward to see, by examining the regular expressions
defining these two classes, that Ctwall ⊆ C3. Therefore we can
conclude that TWM has a larger input acceptance than IWIR.

C. Interval-based

This design typically maintains a lower and upper bound
for each transaction T (T.lb and T.ub), which denotes the
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Fig. 2: Class Ctwall and its decomposition. We also show two
example output histories: on the left, a degenerate triad with
only two transactions, derived from Cnsr; and on the right a
possible triad obtained from Ctw, by deriving from Ctw1 in the
choice operator.
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Fig. 3: Class Cib and an example history output by a TM using
the IB design for a pattern included in the class.

interval of possible serialization points for T (e.g. AVSTM [8]
and TSTM [9]). A transaction T is aborted in this design if
its interval is empty, i.e., whenever T.lb > T.ub. Otherwise, it
commits by choosing one point among the possible ones in the
interval, which is assigned to T.ser. Briefly, the idea is that
these bounds reflect the dependencies and anti-dependencies
of T : (i) when T reads a value committed by transaction T ′,
it enforces T.lb← max(T.lb, T ′.ser); (ii) when T ′ commits,
for each T whose footprint coincides on at least a datum, it
enforces T.ub← min(T.ub, T ′.ser).

Next, in Fig. 3, we present a new class Cib by restricting
class C3. The idea is to have a transaction Ti that may abort
(as in the original C3); for this to happen, we must restrict
both Ti.lb and Ti.ub according to the rules defined above. We
present an example pattern in Fig. 3, where Ta

wr−−→ Ti enforces
Ta.ser < Ti.lb, and Ti 99K Tj enforces Ti.ub < Tj .ser. Note
that this class is stricter than C3, meaning Cib ⊆ C3, as it can
be derived by adding constraints to C3. We can now use this
new class to study the power of the IB design.

Lemma 3. Class Cib is an upper bound of the patterns rejected
by the IB design.

Proof: We start by showing that the IB design may reject
only patterns contained in Cib. We observe that a transaction Ti
can only be aborted when T.lb > T.ub. This scenario occurs
only if the following conditions hold:

1) ∃ Ta : Ta
wr−−→ Ti ∨ Ta

ww−−→ Ti
2) ∃ Tj : Ti 99K Tj
3) Ta.ser > Tj .ser.

where Ta and Tb are two transactions such that with Ta 6=
Tb 6= Ti. As a result of the third condition, and using the rules
described above for the IB design, we obtain Ti.lb > Ti.ub,
which results in Ti aborting. It is straightforward to see that
the necessary conditions 1 and 2 are exactly embodied by class
Cib: it specifically dictates the existence of transactions Ta and
Tj creating the required dependencies, and no more than that.
If condition 3 is also verified, then this set of conditions is
both sufficient and necessary for aborting a transaction in IB.

By noting that Cib always ensures conditions 1 and 2, we
have that it is an upper bound on the input patterns rejected
by IB.

Theorem 4. The IB design has a larger input acceptance than
the IWIR design.

Proof: Once again, by Gramoli et al. [6], we have that
IWIR rejects all the patterns in C3. By Lemma 3 we have that

Cib captures all patterns rejected by IB. By examining the two
classes we can see that Cib ⊆ C3. Then, it follows that IB has
a larger input acceptance class than IWIR.

D. Comparing TWM and IB

By using Theorems 2 and 4, we can correctly place TWM
and IB above the IWIR design in terms of input acceptance.
The question now is to assess the relative power of TWM and
IB. For that, we study the acceptance of TWM with regard to
Cib and the acceptance of IB with regard to Ctwall. In doing
so, we arrive at the conclusion that they are incomparable.

Lemma 5. The IB design does not have larger input accep-
tance than TWM.

Proof: To prove this we use a counter-example input
pattern that is rejected by the IB design but accepted by TWM.

The first task is to find such pattern by deriving it from Cib.
For that we build a pattern P , contained in Cib, where Ta.ser
is arbitrarily increased by adding transactions to past(Ta). We
define past(T ) analogously to [10], as the transitive closure
of the set of transactions on which T depends, and removing
any anti-dependencies.

In other words, there exists a finite number of such transac-
tions in past(Ta) that makes Ta.ser > Tj .ser for any choice
of serialization points for Ti, thus causing the abort of Ti. As a
result, the IB design rejects P . This pattern P is easily derived
from Cib by: (1) replacing the first π∗ with the extension
described; (2) replacing the last π∗ with ci; and (3) removing
the other wildcards.

Now we show that P is accepted by TWM. From the vali-
dation rule described for TWM, it follows that no transaction
is aborted if it commits without completing a triad where the
pivot time-warp commits. But the pattern P contains only one
anti-dependency, that of Ti 99K Tj , which is insufficient to
generate a triad. Consequently TWM accepts P . As a result,
P serves as the counter-example that proves the Lemma.

Lemma 6. TWM does not have a larger input acceptance than
the IB design.

Proof: We can prove this by showing an example pattern
P accepted by IB but rejected by TWM. We derive P from
Ctwall, by: (1) expanding Ctw1; and (2) removing all wildcards.
A possible ordering of events when expanding the permutation
operator (ε) is that reported on the right side in Fig. 2.
That pattern was already shown to be rejected by TWM in
Lemma 1.

We now argue that P is accepted by IB. For that, we note
that Ti.lb is constrained when Ti performs reads, which in
P happens only with ryi . Note that no transaction writes to
y in P . We can consider that a special transaction initially
writes every variable with a default value and serializes on
point 0. This means that Ti.lb is unconstrained. Consequently,
no matter what is the value of the upper bound, constrained
by Ti.ub < Tp, Ti.lb will always be lower and thus allow Ti
to commit successfully. As a result, IB accepts P and it serves
as a counter-example that proves the Lemma.



Theorem 7. TWM and the IB design are incomparable with
regard to input acceptance.

Proof: This follows trivially from Lemmas 5 and 6, as
neither approach has larger input acceptance than the other.

E. Serializability Graph Testing

Finally, we describe a design with higher input acceptance
than TWM and IB. To do so, we identify a design called
Serializability Graph Testing (SGT). This design draws its
key idea from the Serializability Theorem [15]. This theorem
states that a history H is serializable if and only if the
corresponding Direct Serialization Graph DSG(H) is acyclic.
The AbortsAvoider TM [7] explores this technique to ensure
online-opaque-permissiveness by maintaining an explicit DSG.
On the other hand, SSTM [6] also uses SGT, albeit it scatters
the corresponding metadata across transactions. This means
there is no centralized (or even explicit) DSG; but this is
merely an implementation detail.

III. REVISED INPUT ACCEPTANCE HIERARCHY

We can finally revise the hierarchy originally presented
in [6] according to our results, as shown in Fig. 4. By
Theorems 2 and 4 we place TWM and IB above IWIR, and
by Theorem 7 we place them side by side.

So far, in our analysis, we considered solely write trans-
actions. This was done because we compare both single-
versioned and multi-versioned TM designs, where the lat-
ter can deterministically avoid aborting read-only transac-
tions [12]. By accounting also for read-only transactions in our
input acceptance analysis, we introduce an additional design
called MV-IWIR. This design includes mv-permissive TMs
based on IWIR algorithms and, aside from this, uses the same
validation rule to commit update transactions. Both JVSTM [2]
and SMV [16] exploit this design by using invisible reads,
deferred writes, and multi-versions to guarantee that read-only
transactions never abort.

The only difference from IWIR to MV-IWIR is that read-
only transactions do not abort. This means that, by considering
only write transactions, MV-IWIR also rejects all the patterns
included in C3. If read-only transactions are identified a priori,
i.e., the s event of a read-only transaction is annotated, then
MV-IWIR obtains more input acceptance than IWIR. This is
trivially shown by verifying that those TMs always commit
Ti successfully in the execution shown in Fig. 1. As a result,
MV-IWIR only rejects a subset of the patterns contained in C3,
and thus has a larger input acceptance than IWIR. The reason

why TWM has a larger input acceptance than MW-IWIR is
that, despite both being mv-permissive, the class of update
transactions rejected by TWM is a subset of that rejected by
MV-IWIR.

We additionally observe that IB is incomparable with MV-
IWIR. On one hand, IB accepts the example execution in
Fig. 1, which is rejected by MV-IWIR if Ti is a write
transaction. On the other hand, MV-IWIR accepts the example
execution in Fig. 3 if Ti is a read-only transaction, which
was shown to be rejected by IB. TWM remains incomparable
with IB even with read-only transactions, as the considerations
concerning the existence of input patterns accepted by IB and
rejected by TWM (and vice versa) still apply.

This concludes our theoretical analysis of TWM, with the
resulting hierarchy justifying (together with our experimental
study [11]) the prominent place of time-warping in efficiently
minimizing spurious aborts in TM applications.
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Fig. 4: Comparing the input acceptance of the Time-Warp approach and of some well-known TM designs.
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