
Abort Free SemanticTM by Dependency Aware Scheduling of
Transactional Instructions?

(Extended Abstract)

Shlomi Dolev1, Panagiota Fatourou2, and Eleftherios Kosmas2

1 Ben-Gurion University of the Negev
dolev@cs.bgu.ac.il

2 University of Crete & FORTH-ICS
{faturu,ekosmas}@csd.uoc.gr

Abstract. We present a TM system that executes transactions without ever causing any aborts.
The system uses a set of t-var lists, one for each transactional variable. A scheduler undertakes
the task of placing the instructions of each transaction in the appropriate t-var lists based on
which t-variable each of them accesses. A set of worker threads are responsible to execute these
instructions. Because of the way instructions are inserted in and removed from the lists, by the
way the worker threads work, and by the fact that the scheduler places all the instructions of a
transaction in the appropriate t-var lists before doing so for the instructions of any subsequent
transaction, it follows that no conflict will ever occur. Parallelism is fine-grained since it is achieved
at the level of transactional instructions instead of transactions themselves (i.e. the instructions of
a transaction may be executed concurrently).

1 Introduction

In asynchronous shared memory systems, where processes execute in arbitrary speeds and communication
among them occurs by accessing basic shared primitives (usually provided by the hardware), having
processes executing pieces of code in parallel is not an easy task due to synchronization conflicts that
may occur among processes that need to concurrently access non-disjoint sets of shared data. A promising
parallel programming paradigm is Transactional Memory (TM) where pieces of code that may access data
that become shared in a concurrent environment (such pieces of data are called transactional variables or
t-variables) are indicated as transactions. A TM system ensures that the execution of a transaction T will
either succeed, in which case T commits and all its updates become visible, or it will be unsuccessful, so
T aborts and its updates are discarded. Each committed transaction appears as if it has been executed
“instantaneously” in some point of its execution interval.

When a conflict between two transactions occurs, TM systems usually abort one of the transactions
to ensure consistency; two transactions conflict if they both access the same t-variable and at least one
of these accesses is a write. To guarantee progress, all transactions should eventually commit. This
property, albeit highly desirable, is scarcely ensured by the currently available TM systems; most of these
systems do not even ensure that transactions abort only when they violate the considered consistency
condition (this property is known as permissiveness [7]). The work performed by a transaction that aborts
is discarded and the transaction is later restarted; this incurs a performance penalty. So, the nature of
TM is optimistic; if transactions rarely abort then no work is ever discarded. In terms of achieving good
performance, the system should additionally guarantee that parallelism is achieved. So, transactions
should not be executed sequentially and global contention points should be avoided. TM algorithms that
never abort transactions have the additional benefit that they support irrevocable transactions.

In this paper, we present SemanticTM, an opaque [9] TM algorithm which achieves (1) the strongest
progress guarantee by ensuring that transactions never abort, and (2) fine-grain parallelism at the trans-
actional instruction level: in addition to instructions of different transactions, instructions of the same
transaction that do not depend on each other can be executed concurrently.

SemanticTM employs a list for each t-variable. A scheduler places the instructions of each transaction
in the appropriate lists in FIFO order. Specifically, an instruction is placed in the list of the t-variable that

? An extended version has been presented in the 2013 Workshop on Transactional Computing (TRANSACT).



it accesses. A set of worker threads execute instructions from the lists, in order. The algorithm is highly
fault-tolerant. Even if some worker threads fail by crashing, all transactions whose instructions have
been placed in the lists will be executed. We remark that for relatively simple transactions that access
a known set of t-variables, and their codes contain read and write instructions on them, conditionals
(i.e. if, else if, and else), loops (i.e. for, while, etc.), and function calls, the work of the scheduler
can be done at compile time (so the scheduler component is worthless in this case). For simplicity of
presentation, this is the case that we focus on in this paper. It is remarkable that SemanticTM is wait-free
in this case.

TM algorithms that never abort transactions have been recently presented in [1, 3, 10, 11]. Although
read-only transactions in these algorithms are wait-free, the algorithms in [1, 10] restrict parallelism by
executing all update transactions sequentially using a global lock; on the other hand, in the algorithms
presented in [3, 11] update transactions may abort and they require locks to execute some of the trans-
actional instructions. Work on transactional scheduling [2, 4, 6, 15] is related to SemanticTM but most
transactional schedulers use locks and aborts are not avoided. In [12], a lock-based dependence-aware TM

system is presented which dynamically detects and resolves conflicts. The algorithm serializes transac-
tions that conflict; in case of aborts, cascading aborts may occur. The current version of SemanticTM
copes only with transactions that their data sets are known. However, SemanticTM ensures that for
simple transactions, all transactions will always commit within a bounded number of steps.

2 SemanticTM
Main Ideas. SemanticTM uses a set of lists, called t-var lists, one for each t-variable. A thread, called
scheduler, places the instructions of each transaction in the appropriate t-var lists based on which t-
variables each of them accesses. It also records any dependencies that may exist between the instructions
of the same transaction. Some worker threads execute instructions from the t-var lists. We use compiler
support to know, for each instruction, any dependency that lead to or originate from it. Figure 1 shows
the main structure of SemanticTM.

 

execute ready 
transactional 
instructions 

Code of 
Application 

T1: e1, in1, out1, f1 
T1: e2, in2, out2, f2 

 

T2: e3, in3, out3, f3 
 

T3: e4, in4, out4, f4 
T3: e5, in5, out5, f5 

…
Scheduler 

x 

val 

e1, in1, out1, f1 

e5, in5, out5, f5 

z 

val 

e3, in3, out3, f3 

e4, in4, out4, f4 

T1: e1, in1, out1, f1 
T3: e5, in5, out5, f5 

…
T1: e2, in2, out2, f2 

…

T2: e3, in3, out3, f3 
T3: e4, in4, out4, f4 

…

Working Threads 

y 

val 

e2, in2, out2, f2 

Dependence 
Analysis 
Module 

Fig. 1. Main components of SemanticTM. For simple transactions the scheduling component is not needed.

In SemanticTM, all the instructions of each transaction T are placed in the t-var lists before the
instructions of any subsequent transaction. Each of the workers repeatedly chooses, uniformly at random,
a t-var list and executes the instructions of this list, starting from the first ready. Processing transactions
in this way ensures that conflicts never occur; so, transactions never abort. As an example, consider the
simple transactions T1, T2 of Figures 2, 3, respectively. Since they both read and write t-variables x and
y, there are conflicts between them. Without loss of generality, assume that the instructions of T1 are
placed in the t-var lists first. Then, the instructions of lines 1 and 2 of T1 will be placed in the t-var

2



list for x before the write to x on line 6 of T2. Similarly, the write to y of line 3 of T1 will be placed in
the t-var list for y before the write to y of line 5 of T2. Since the worker threads respect the order in
which instructions have been inserted in the lists when they execute them, the instructions of T1 on each
t-variable will be executed before the instructions of T2 on this t-variable, and thus no conflict between
T1 and T2 will occur. This explains why no transaction ever aborts in SemanticTM.

1 x := 3
2 x + +
3 y := x

Fig. 2. T1.

4 z := 2
5 y := z
6 x := y

Fig. 3. T2.

7 x := 1

8 if (. . .) then

9 x := 2
10 else

11 x := 4

12 y := x

Fig. 4. T3.

The set of t-variables accessed by a transaction is its data set. Notice that an array can either be itself
a t-variable, or each of its elements can be a t-variable. We call control flow statements the conditionals
and loops, and we use the instruction cond to refer to such a statement. The instructions of a transaction
are read, write, and cond instructions. We call block the set of its instructions in the body of a control
flow statement; so each cond instruction is associated with a block.

Dependencies. If the execution of an instruction e1 requires the result of the execution of another
instruction e2, then there is a dependency between e1 and e2. This dependency is an input dependency
for e1 and an output dependency for e2. A dependency between a read and a write is called data
dependency. We remark that SemanticTM will place five instructions for T1 in the t-var lists: e1 which is
a write on x (line 1), a read e2 and a write e3 to x (line 2), a read e4 on x and a write e5 to y for line
3. There is an output dependency from e1 to e2 and one from e3 to e4. SemanticTM does not maintain
input dependencies for any read instruction e on a t-variable x, since all writes to x on which e depends
have been placed in the t-var list of x before e and thus the read can get the value from the matadata
of x (by the way the algorithm works, this value will be consistent). Thus, SemanticTM records input
dependencies only for write and cond instructions.

A dependency that either leads to or originates from a cond instruction is called control dependency.
For each cond instruction, SemanticTM maintains an output control dependency from cond to each
instruction e of the block associated with it. As an example, there are two output control dependencies
for instruction 8 (to 9 and 11). We assume that for each write instruction on a t-variable x, or for each
cond instruction e, a function f can be applied to the values of the input dependencies of e in order either
to calculate the new value of x or to evaluate whether the condition is true or false, respectively. We
remark that f should be applied after all the input data dependencies of e have been resolved. Table 1
(in Appendix ??) provides a brief description of all possible dependencies for each instruction. The state
of an instruction is waiting, if at least one of its input dependencies has not been resolved, otherwise, it
is ready; an instruction is active if it is either waiting or ready.

By using compiler support, the dependencies between the instructions of a transaction are known
before the beginning of its execution. Each instruction, together with its dependencies (and function), is
placed in the appropriate t-var list, as a single entry. For example, Figure 1 illustrates the extraction of
instructions e1 and e2 from a transaction T1, e3 from T2, and e4 and e5 from T3, with input dependencies
in1, . . . , in5, output dependencies out1, . . . , out5, and functions f1, . . . , f5, respectively, and presents their
placement into the t-var lists of x, y, and z.

Conditionals. Each part of a conditional (if, else if, else) is associated with a cond instruction and
a block. Then, at runtime, only one of the cond instructions will be evaluated to true, whereas all the
others will be evaluated to false and their blocks’ instructions will be invalidated by the working threads
that execute these conds. In the current version of SemanticTM a cond instruction is placed in the t-var
list of the first instruction of its block.

Notice that a transactional instruction of some block, may have outside-block dependencies which
come from or lead to instructions that does not belong to the block. For instance, there may be outside-
block dependencies from the instruction of line 7 to the cond instructions of the if. . . then . . . else or to
the instructions of the conds’ blocks. In SemanticTM outside block dependencies are resolved in a direct

3



Transactional
Instruction

Dependencies
Input Output

Data Dep Control Dep Data Dep Control Dep

e = read(x) In SemanticTM, e has
no input data depen-
dencies

if e participates in
some block, it has an
input control depen-
dency originating from
the block’s cond

e forwards the value
it reads to write and
cond instructions that
depend on it

if e participates in
some loop’s block, an
output control depen-
dency originates from e
to its block’s cond

e = write(x) e may have input data
dependencies originat-
ing from reads

if e participates in
some block, it has an
input control depen-
dency originating from
the block’s cond

In SemanticTM, e
has no output data
dependencies

if e participates in
some loop’s block, an
output control depen-
dency originates from e
to its block’s cond

e = cond e may have input data
dependencies originat-
ing from reads

if e is a cond of a
loop cond, it has input
control dependency
originating from each
of its block’s instruc-
tions cond

e has output control
dependencies to each
of its block’s instruc-
tions

Table 1. Data dependencies between transactional instructions.

way because of the way that the transactional instructions are placed in the t-var lists. For example, to
execute line 12, SemanticTM places a read e and a write e′ in the t-var lists of x and y, respectively.
Then later on, when e is executed, all previous writes to x have been performed, so the metadata of x
contain a consistent value and e can read the value from there (so e does not have any input dependency).
However, there is a dependency from e to e′.

Loops. Let e be a transactional instruction that is included in a loop block; let c be the associated cond

instruction. SemanticTM places c and each instruction of the block in the appropriate t-var lists only
once independently of the number of times that the loop will be executed since this number may be
known only at run time. We remark that the execution of e (and c) in some iteration may depend on
the execution of some transactional instructions of the previous iteration; we call such a dependency
across-iteration.

In order to perform c multiple times, an iteration counter cntc is associated with c. This counter
stores the current iteration number of the loop’s execution. Moreover, the input control dependency of
e is implemented with a counter cnte; similarly, the input control dependencies of c are implemented as
counters as well. If cnte = cntc, then the input control dependency of e is resolved, otherwise not. Notice
that cnte can be either equal to or smaller by one from c’s iteration counter. This is so, since c can
initiate a new iteration only after its input control dependencies originating from its block instructions
have been resolved, i.e. after all these instructions have been executed for the current iteration; similarly,
these block instructions can be executed only if their input control dependencies (from c) have been
resolved.

To ensure correctness, an iteration number is associated with each of the input data dependencies
of e (or c); this iteration number is stored together with the corresponding input dependency into a
CAS object. When the iteration number of an input data dependency inDep of e (or c) is smaller than
the iteration counter of c, it follows that inDep is unresolved for the current iteration; if all input data
dependencies of e have their iteration number fields equal to the iteration counter of c, then all data
dependencies of e have been resolved. If the input control dependency is also resolved, then e can be
executed. Once e is executed, it resolves the control dependency to c by writing there an iteration number
equal to the current iteration counter plus one. When all dependencies of c have been resolved the counter
of c increases by one and c can be executed.

Acknowledgements. This work has been supported by the project “IRAKLITOS II - University of Crete”
of the Operational Programme for Education and Lifelong Learning 2007 - 2013 (E.P.E.D.V.M.) of the
NSRF (2007 - 2013), co-funded by the European Union (European Social Fund) and National Resources
It has also been supported by the European Commission under the 7th Framework Program through the

4



TransForm (FP7-MC-ITN-238639) project and by the ARISTEIA Action of the Operational Programme
Education and Lifelong Learning which is co-funded by the European Social Fund (ESF) and National
Resources through the GreenVM project.

The research has also been supported by Israel Science Foundation (grant number 428/11), Cabarnit
Cyber Security MAGNET Consortium, Deutsche Telekom Labs at BGU, Orange Research Labs, EMC,
the Israeli Ministry of Science and Technology (MOST), the Institute for Future Defense Technologies
Research named for the Medvedi, Shwartzman and Gensler Families, the Israel Internet Association
(ISOC-IL), the Lynne and William Frankel Center for Computer Science at Ben-Gurion University, and
the Rita Altura Trust Chair in Computer Science.

References

[1] Y. Afek, A. Matveev, and N. Shavit. Pessimistic software lock-elision. In 26th International Sym-
posium on Distributed Computing, DISC’12, 2012.

[2] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Watson. Steal-on-abort: Improving
transactional memory performance through dynamic transaction reordering. In Proceedings of the
4th International Conference on High Performance Embedded Architectures and Compilers, HiPEAC
’09, pages 4–18, Berlin, Heidelberg, 2009. Springer-Verlag.

[3] H. Attiya and E. Hillel. Single-version stms can be multi-version permissive. In Proceedings of the
12th international conference on Distributed computing and networking, ICDCN’11, pages 83–94,
Berlin, Heidelberg, 2011. Springer-Verlag.

[4] H. Attiya and A. Milani. Transactional scheduling for read-dominated workloads. In Proceedings of
the 13th International Conference on Principles of Distributed Systems, OPODIS ’09, pages 3–17,
Berlin, Heidelberg, 2009. Springer-Verlag.

[5] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Proceedings of the 20th international
conference on Distributed Computing, DISC’06, pages 194–208, Berlin, Heidelberg, 2006. Springer-
Verlag.

[6] S. Dolev, D. Hendler, and A. Suissa. Car-stm: scheduling-based collision avoidance and resolution for
software transactional memory. In Proceedings of the twenty-seventh ACM symposium on Principles
of distributed computing, PODC ’08, pages 125–134, New York, NY, USA, 2008. ACM.

[7] R. Guerraoui, T. A. Henzinger, and V. Singh. Permissiveness in transactional memories. In Pro-
ceedings of the 22nd international symposium on Distributed Computing, DISC ’08, pages 305–319,
Berlin, Heidelberg, 2008. Springer-Verlag.

[8] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional contention managers.
In Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing,
PODC ’05, pages 258–264, New York, NY, USA, 2005. ACM.

[9] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, PPoPP ’08,
pages 175–184, New York, NY, USA, 2008. ACM.

[10] A. Matveev and N. Shavit. Towards a fully pessimistic stm model. In 7th ACM SIGPLAN Workshop
on Transactional Computing, TRANSACT’12, 2012.

[11] D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in stm. In Proceedings of the
29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC ’10, pages
16–25, New York, NY, USA, 2010. ACM.

[12] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Committing conflicting transactions in an
stm. In Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’09, pages 163–172, New York, NY, USA, 2009. ACM.

[13] W. N. Scherer, III and M. L. Scott. Advanced contention management for dynamic software trans-
actional memory. In Proceedings of the twenty-fourth annual ACM symposium on Principles of
distributed computing, PODC ’05, pages 240–248, New York, NY, USA, 2005. ACM.

[14] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions and their applications. In
Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, SPAA
’08, pages 285–296, New York, NY, USA, 2008. ACM.

[15] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for transactional memory systems.
In Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures,
SPAA ’08, pages 169–178, New York, NY, USA, 2008. ACM.

5


