
Wait-Free Universal Constructions that ensure Timestamp-Ignoring

Disjoint-Access Parallelism

Faith Ellen
University of Toronto

faith@cs.toronto.edu

Panagiota Fatourou ∗

University of Crete & FORTH-ICS
faturu@csd.uoc.gr

Eleftherios Kosmas †

University of Crete & FORTH-ICS
ekosmas@csd.uoc.gr

Alessia Milani
University of Bordeaux

milani@labri.fr

Corentin Travers
University of Bordeaux
travers@labri.fr

Abstract

A universal construction is a method to execute sequential code in an asynchronous shared-
memory system. To ensure fault-tolerance and enhance performance, universal constructions
are designed to be wait-free and disjoint-access-parallel.

In a previous paper we proved that no universal construction can ensure both wait-freedom
and disjoint-access parallelism. To circumvent this impossibility, while still achieving enhanced
parallelism, we propose a weaker version of disjoint-access parallelism, called timestamp-ignoring
disjoint-access parallelism. It allows two operations to access a common timestamp object, even
if they are working on disjoint parts of a data structure.We present a universal construction
that ensures wait-freedom and timestamp-ignoring disjoint-access parallelism.

1 Introduction

The dominance of multicore machines has led to an increasing need for easy ways to develop parallel
code. Several parallel programming paradigms have evolved to address this need. Transactional
Memory (TM) is an important example. It enables (appropriately-enhanced) pieces of sequential
code to be executed in a concurrent environment. The goal of a universal construction is the same.
It supports a single operation, called Perform, which takes as parameters a piece of sequential
code and a list of input arguments for this code. The algorithm that implements Perform applies
a sequence of operations, called primitives, on base objects provided by the system to simulate the
execution of the piece of sequential code in a concurrent environment. We say that each instance
of Perform simulates the execution of an operation, described by the sequential code passed to
it.

We are interested in universal constructions that satisfy wait-freedom [11], a strong progress
condition which requires that each process finishes the execution of its operation in a finite number

∗Supported by the European Commission under the 7th Framework Program through the TransForm (FP7-MC-
ITN-238639) project and by the ARISTEIA Action of the Operational Programme Education and Lifelong Learning
which is co-funded by the European Social Fund (ESF) and National Resources through the GreenVM project.
†Supported by the project “IRAKLITOS II - University of Crete” of the Operational Programme for Education

and Lifelong Learning 2007 - 2013 (E.P.E.D.V.M.) of the NSRF (2007 - 2013), co-funded by the European Union
(European Social Fund) and National Resources.

1



of steps, no matter what speed it has relative to other processes and despite the failure of other
processes. To enhance parallelism, it is desirable that a universal construction also exhibits a
property known as disjoint-access parallelism, which says that operations working on different
parts of a data structure do not interfere with one another.

Since its original appearance [13], disjoint-access parallelism has been extensively studied [2, 3]
and many variants of it have been considered [1, 4, 10]. Most of these definitions employ the concept
of a conflict graph of an execution interval. The execution interval of an operation is a sequence
of consecutive steps taken by the processes that starts with the first step of the call to Perform
corresponding to this operation and terminates when this call returns. Two operations overlap if
the call to Perform for one of them occurs during the execution interval of the other.

The nodes of a conflict graph of an execution interval I represent the operations whose execution
intervals overlap with I and an edge connects two operations in the graph if these operations access
at least one common data item. Two processes contend on a base object if they both access it
and at least one of these accesses attempts to modify the object. Strong versions of disjoint-
access parallelism [10] require that the execution of two operations cannot contend on the same
base object if the operations are not connected by an edge in the conflict graph, whereas weak
versions [4] require only that there is a path between the two operations in the graph.

In [7] we proved that a universal construction cannot be both wait-free and feeble disjoint-
access parallel. Feeble disjoint-access parallelism is weaker than all previously proposed definitions
of disjoint-access parallelism so their result holds even if feeble disjoint-access parallelism is replaced
with any previous definition. To prove the impossibility result, we employed a singly-linked unsorted
list of integers supporting the operations Append(v), which appends a node with value v to the end
of the list, and Search(v), which searches the list for v starting from the first element of the list.
We proved that, in any implementation resulting from the application of a universal construction
to this data structure, there is an execution of Search that never terminates. We also showed
that this impossibility result can be circumvented by restricting attention to data structures whose
operations can each only access a bounded number of different data items.

In this paper, we show that a natural relaxation of the definition of disjoint-access parallelism
can overcome the impossibility result without this restriction. Specifically, we define a variant of
disjoint-access parallelism, called timestamp-ignoring disjoint-access parallelism. It is similar to
classical disjoint-access parallelism [4], but allows multiple operations to access a wait-free static
timestamp object, even though the sets of data items that the operations access do not intersect. A
(static) timestamp object [8] supports one operation : getTimestamp(), which returns a timestamp
from a universe U with a binary relation < such that t < t′ if an instance of getTimestamp()
that returned t finished before an instance of getTimestamp() that returned t′ began. A wait-free
timestamp object can be easily implemented with a fetch&increment object or a shared global
clock.

Definition 1 A universal construction is timestamp-ignoring disjoint-access parallel if, in every
execution, any two operations op and op′ that contend on some base object, other than the timestamp
object, have a path between them in the conflict graph of the minimum execution interval containing
their executions intervals.

Several examples of algorithms that ensure timestamp-ignoring disjoint-access parallelism can
be found in the literature. For instance, several well-known transactional memory systems [6, 14, 16]
assign timestamps to transactions. Each transaction may then use its timestamp (as well as the

2



timestamps of other transactions) to resolve conflicts and/or determine whether the data items it
has read are consistent. If the access to the global timestamp object is not taken into consideration,
some of these algorithms are disjoint access parallel (e.g. [6],[14] and [9]). However, none of these
algorithms are wait-free. The definition of timestamp-ignoring disjoint-access parallelism can be
motivated by the existence of these algorithms. This definition allows operations operating on
different parts of the simulated data structure to proceed in parallel without any interference,
except for accesses to the timestamp object. If the getTimestamp() operation never attempts to
modify the timestamp object, for example, when it is implemented from a shared global clock
that increments automically, then timestamp-ignoring disjoint-access parallelism is the same as
disjoint-access parallelism.

An entry point to a data structure is any data item passed as input to an instance of an operation
on the data structure. In the example of the linked-list used to prove the impossibility result in [7],
the entry point for Search is first which is the pointer to the first element of the list, and the entry
point for Append is last which is a pointer to the last element of the list. Data items, such as first
and last, that exist from the beginning of the execution are called static. Different instances of the
same operation can have different entry points. For example, different entry points can be created
by having a process store a pointer to some node of the data structure in a persistent local variable
each time it executes an operation, and pass this pointer as input to the next operation it executes.

In Section 2, we present an algorithm which shows that the impossibility result in [7] does
not hold for universal constructions that ensure timestamp-ignoring disjoint-access parallelism and
wait-freedom.

2 The TI-DAP-UC Universal Construction

We present TI-DAP-UC, a universal construction that ensures wait-freedom and timestamp-ignoring
disjoint-access parallelism, provided that the number of entry points in the data structure is
bounded.

It is an extension of the universal construction DAP-UC presented in [7]. The additions to DAP-
UC are highlighted in the code (Figures 1 and 2). For clarity, we first provide a brief description of
the way DAP-UC works and then explain how DAP-UC can be enhanced to get TI-DAP-UC.

For each operation op it executes, DAP-UC allocates a shared record where it stores information
about the operation. When a process p wants to execute an operation op, p starts by executing its
simulation phase where it locally simulates the execution of op’s instructions without modifying the
shared representation of the simulated state. Specifically, p maintains a local dictionary in which it
stores the information about every data item it accesses while simulating op. DAP-UC also maintains
a data record for each data item x. The first time op accesses x, it makes an announcement by
writing appropriate information in x’s data record. It also detects conflicts with other operations
that are accessing x by reading this data record. Conflicts are resolved using a simple priority
scheme in which operations invoked by processes with lower ids have higher priority. Suppose an
operation op executed by p accesses the same data item as another operation op′ executed by p′. If
the process that invoked op′ has higher priority than the process that invoked op, then p helps p′

complete op′ before it continues with the execution of op. Otherwise p causes all processes executing
op′ to restart and the process that invoked op will help complete op′ (once the execution of op is
complete) before invoking a new operation. These actions guarantee that processes never starve.

After locally simulating the instructions of op, p (or any helper of op) enters the modifying phase

3



of op. During this phase, one of the local dictionaries of the helpers of op becomes shared. All
helpers of op then use this dictionary and apply the modifications listed in it, so that all apply the
same updates for op. This ensures consistency.

DAP-UC does not ensure wait-freedom when it is applied to data structures on which each
operation can access an unbounded number of different data items. For example, in a singly-linked
list, suppose a process q repeatedly appends new data items at the end of the list. The steps of
another process p doing a Search for an element that is not in the list can be interleaved with the
steps of this execution so that q cannot distinguish it from its own infinite solo execution. Thus q
never helps p terminate its Search. Moreover, the Search by process p cannot terminate because
it cannot determine which nodes were in the list when it was invoked.

To overcome this limitation, TI-DAP-UC enhances DAP-UC in the following ways. When p
invokes an operation op, it acquires a new timestamp by calling getTimestamp. The timestamp
and all entry points of op are stored in the data record vx of each data item x created by op. Static
data items have timestamp 0 and entry point null. The first time op accesses a data item x, it
announces itself in vx and then checks whether the timestamp of x is larger than the timestamp of
op. If so, the execution interval of op overlaps with the execution interval of the operation op′ that
created x, and op announces itself in the data record of each entry point to the data structure used
by op′. Any successive operation that uses any one of these entry points will detect a conflict with
op and help it to complete, in accordance with the priority scheme used in DAP-UC. We assume
an upper bound on the number of entry points to the data structure. Therefore, an operation
op accesses a finite number of dynamic data items before it is announced in the data record of
each entry point used by each operation that creates a data item that op accesses. Each operation
invoked after this point will either not contend with op or will help op, if it is not yet completed.

In the singly-linked list, suppose a Search accesses a data item that was created by an Append
operation op′, which was invoked after the Search. Then the Search is announced in the data
record, vlast, for the pointer to the last element in the list. Hence, the next Append invoked by
each process q will help the Search to complete, if the Search is still in progress.

Finally, we prove that our algorithm does not violate timestamp-ignoring disjoint-access par-
allelism. The difficult case is when op is an operation that accesses a data item x created by an
operation op′ with a larger timestamp. Then op announces itself in the data records of the entry
points used by op′. Let op′′ be any operation that accesses one of these entry points y. Because op′

is concurrent with op, its execution interval overlaps the minimum execution interval containing
the execution intervals of op and op′′. Thus, op′ belongs to CG. Since op′ accesses both y and x,
there is an edge between op′ and op and an edge between op′ and op′′ in CG. Thus, there is a path
between op and op′′ in CG.

Theorem 2 TI-DAP-UC produces timestamp-ignoring disjoint-access parallel, wait-free implemen-
tations when applied to data structures with a bounded number of entry points.

3 Discussion

In this paper, we have proposed a new version of disjoint-access parallelism, timestamp-ignoring
disjoint-access parallelism, and a universal construction that ensures wait-freedom and this relaxed
version of disjoint-access parallelism for unbounded data structures.

The universal construction proposed in this paper requires Θ(n) space overhead per data item.
It is an open problem whether a more efficient universal construction can be designed.

4



Finally, it may be of interest to study other relaxations of disjoint-access parallelism. For
example, S-ignoring disjoint-access parallelism, where S is a set of base objects (of possibly different
types), ensures that disjoint-access parallelism is guaranteed when accessing all objects other than
those in the set S.

References

[1] Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou. Disentangling Multi-object Operations (Extended
Abstract). In Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing
(PODC), 1997, pages 111–120.

[2] H. Attiya and E. Dagan. Universal operations: Unary versus Binary. In Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Computing (PODC), 1996, pages 223–232.

[3] H. Attiya and E. Hillel. Built-in Coloring for Highly-Concurrent Doubly-Linked Lists. In Proceedings
of the 20th International Symposium on Distributed Computing (DISC), 2006, pages 31–45.

[4] H. Attiya, E. Hillel, and A. Milani. Inherent Limitations on Disjoint-Access Parallel Implementations
of Transactional Memory. In Proceedings of the 21st Annual Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2009, pages 69–78.

[5] V. Bushkov, R. Guerraoui, and M. Kapalka. On the Liveness of Transactional Memory. In Proceedings
of the 31st ACM Symposium on Principles of Distributed Computing (PODC), 2012, pages 9–18.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Proceedings of the 20th International
Symposium on Distributed Computing (DISC), 2006, pages 194–208.

[7] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and C. Travers. Universal Constructions that Ensure
Disjoint-Access Parallelism and Wait-Freedom. In Proceedings of the 16th Annual ACM Symposium on
Principles of Distributed Computing (PODC), 2012, pages 115–124.

[8] F. Ellen, P. Fatourou, and E. Ruppert. The Space Complexity of Unbounded Timestamps. In Proceed-
ings of the 21st International Conference on Distributed Computing (DISC), 2007, pages 223–237.

[9] P. Felber, C. Christof Fetzer, P. Marlier, and T. Riegel, Time-Based Software Transactional Memory.
IEEE Trans. Parallel Distrib. Syst., 21(12), 2010, pages 1793–1807.

[10] R. Guerraoui and M. Kapalka. On Obstruction-Free Transactions. In Proceedings of the 20th Annual
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2008, pages 304–313.

[11] M. Herlihy. Wait-free Synchronization. ACM Transactions on Programming Languanges and Systems,
13(1), 1991, pages 124–149.

[12] M. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems, 12(3), 1990, pages 463–492.

[13] A. Israeli and L. Rappoport. Disjoint-Access-Parallel Implementations of Strong Shared Memory Prim-
itives. In Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing
(PODC) 1994, pages 151–160.

[14] T. Riegel, P. Felber, and C. Fetzer. A Lazy Snapshot Algorithm with Eager Validation. In Proceedings
of the 20th International Symposium on Distributed Computing (DISC), 2006 , pages 284–298.

[15] N. Shavit and D. Touitou. Software Transactional Memory. In Proceedings of the 14th Annual ACM
symposium on Principles of Distributed Computing (PODC), 1995, pages 204–213.

[16] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict Detection and Validation
Strategies for Software Transactional Memory. newblock In Proceedings of the 20th International Sym-
posium on Distributed Computing (DISC), 2006 , pages 179–193.

5



1 type varrec

2 value val

3
tmval tm
set of ptr to varrec pvar

4 ptr to oprec A[1..n]

5 type statrec

6 {〈simulating〉,
7 〈restart, ptr to oprec restartedby〉,
8 〈modifying, ptr to dictionary of dictrec changes, value output〉
9 〈done〉
10 } status

11 type oprec

12 code program
13 process id owner
14 value input
15 value output

16
tmval tm
set of ptr to varrec pentry

17 ptr to statrec status
18 ptr to oprec tohelp[1..n]

19 type dictrec

20 ptr to varrec key
21 value newval

22 Announce(opptr, x) by process p:
23 q := opptr → owner
24 LL(x→ A[q])
25 if ¬ VL(opptr → status) then return
26 SC(x→ A[q], opptr)
27 LL(x→ A[q])
28 if ¬VL(opptr → status) then return
29 SC(x→ A[q], opptr)

30 return

31 Conflicts(opptr, x) by process p:
32 for p′ := 1 to n excluding opptr → owner do
33 opptr′ := LL(x→ A[p′])
34 if (opptr′ 6= nil) then /* possible conflict between op and op′ */
35 opstatus′ := LL(oppptr′ → status)
36 if ¬VL(opptr → status) then return
37 if (opstatus′ = 〈modifying, changes, output〉)
38 then Help(opptr′)
39 else if (opstatus′ = 〈simulating〉) then
40 if (opptr → owner < p′) then /* op has higher priority than op′, restart op′ */
41 opptr → tohelp[p′] := opptr′

42 if ¬VL(opptr → status) then return
43 SC(opptr′ → status, 〈restart, opptr〉)
44 if (LL(oppptr′ → status) = 〈modifying, changes, output〉) then

Help(opptr′)

45 else Help(opptr′) /* opptr → owner > p′ */
46 return

Figure 1: Type definitions and the code of Announce and Conflicts of TI-DAP-UC.

6



47 value Perform(prog, input) by process p:
48 opptr := pointer to a new oprec record

opptr → program := prog, opptr → input := input, opptr → output := ⊥, opptr → owner := p

opptr → tm := getTimestamp(), opptr → pentry := input.entry

opptr → status := simulating, opptr → tophelp[1..n] := [nil, . . . , nil]

49 Help(opptr) /* p helps its own operation */

50 for p′ := 1 to n excluding p do /* p helps operations that have been restarted by its operation op */
51 if (opptr → tohelp[p′] 6= nil) then Help(opptr → tohelp[p′])

52 return(opptr → output)

53 Help(opptr) by process p:
54 opstatus := LL(opptr → status)

55 while (opstatus 6= done)

56 if opstatus = 〈restart, opptr′〉 then /* op′ has restarted op */
57 Help(opptr′) /* first help op′ */
58 SC(opptr → status, 〈simulating〉) /* try to change the status of op back to simulating */
59 opstatus := LL(opptr → status)

60 if opstatus = 〈simulating〉 then /* start a new simulation phase */
61 dict := pointer to a new empty dictionary of dictrec records

/* to store the values of the data items */
62 ins := the first instruction in opptr → program
63 while ins 6= return(v) /* simulate instruction ins of op */
64 if ins is (WriteDI(x, v) or ReadDI(x)) and (there is no dictrec with key x in dict)

then /* first access of x by this attempt of op */

65
if (opptr → tm < x→ tm) then

for each y in x→ pvar do Announce(opptr, y)

66 Announce(opptr, x) /* announce that op is accessing x */
67 Conflicts(opptr, x) /* possibly, help or restart other operations accessing x */
68 if ins = ReadDI(x) then valx := x→ val else valx := v /* ins is a write to x of v */
69 add new dictrec 〈x, valx〉 to dict /* create a local copy of x */
70 else if ins is CreateDI() then
71 x := pointer to a new varrec record

72 x→ tm := opptr → tm, x→ pvar := opptr → pentry

73 x→ A[1..n] := [nil, . . . , nil]
74 add new dictrec 〈x, nil〉 to dict
75 else /* ins is WriteDI(x, v) or ReadDI(x) and there is a dictrec with key x in dict */

/* or ins is not a WriteDI(), ReadDI() or CreateDI() instruction */
76 execute ins, using/changing the value in the appropriate entry of dict if necessary
77 if ¬VL(opptr → status) then break /* end of the simulation of ins */
78 ins := next instruction of opptr → program

/* end while */

79 if ins is return(v) then /* v may be empty */
80 SC(opptr → status,〈modifying, dict, v〉) /* try to change status of op to modifying */

/* successful iff simulation is over and status of op not changed since beginning of simulation */
81 opstatus := LL(opptr → status)

82 if opstatus = 〈modifying, changes, out〉 then
83 opptr → outputs := out
84 for each dictrec 〈x, v〉 in the dictionary pointed to by changes do

85 LL(x→ val) /* try to make writes visible */
86 if ¬VL(opptr → status) then return /* opptr → status = done */
87 SC(x→ val, v)

88 LL(x→ val)
89 if ¬VL(opptr → status) then return /* opptr → status = done */
90 SC(x→ val, v)

/* end for */
91 SC(opptr → status, done)
92 opstatus := LL(opptr → status)

/* end while */
93 return

Figure 2: The code of Perform and Help of TI-DAP-UC.

7


