
Write-observation and Read-preservation
TM Correctness Invariants

Mohsen Lesani Jens Palsberg
UCLA, University of California, Los Angeles
lesani@ucla.edu, palsberg@ucla.edu

1. Introduction
A transactional memory (TM) is a concurrent object with the three
read, write and commit methods. The clients of a TM are trans-
actions, a sequence of read and write invocations that are possi-
bly succeeded by a commit invocation. A transactional processing
system is the composition of a TM and as set of clients. The clients
issue the invocation events and the TM issues the response events.
TM should guarantee that every concurrent execution of an arbi-
trary set of client transactions is indistinguishable from a sequential
execution of them. Correctness conditions for TM such as opacity
[7], VWC [11], and TMS1 and TMS2 [5] define the indistinguish-
ably criterion and the set of correct histories.

Considering the promised safety properties, designing a correct
TM is an art. TM algorithms are subtle programs that compose
a TM from a set of base concurrent objects. Their subtly makes
them vulnerable. Lesani et al [14] reported bugs and fixes for
a couple of previously proposed TM algorithms. Verification of
TM algorithm has been a topic of recent attention. Researchers
have employed model checking, automatic invariant generation
and theorem proving to verify the correctness of TM algorithms.
Model checkers from Cohen et al. [1, 2], and Guerraoui et al.
[8–10] are the pioneering approach to verification of TM. Model
checking can automate the verification process but is either based
on assumptions about the TM algorithm or only scalable to a finite
number of threads and locations or simplified algorithms. Later,
Emmi et al. [6] tried to automatically infer invariants that are
strong enough to entail the correctness criterion. Their research
tackled the very central part of the problem but reported resorting
to simplified algorithms due to scalability issues. Later, Lesani et
al. [12] presented a machine checked theorem proving framework
and a full proof of NORec TM algorithm [3]. The framework can
be employed to verify realistic algorithms but requires translation
of the algorithm to a transition system and more importantly, the
process involves coming up with non-trivial invariants.

Verification of TM algorithms has been a formidable problem
in part because the target correctness criterion is a monolithic
complicated condition. In an early work, Tasiran [15] presented a
decomposition of the correctness condition for a specific class of
algorithms. Can the correctness of TM be stated as a conjunction of
simpler meaningful conditions? In other words, is there an intuitive
functional decomposition of TM correctness conditions? What are
the separate invariants that the TM designers should maintain?

We present intuitive invariants for the correctness of TM algo-
rithms. We say that a history is markable if there is a specific order-
ing relation called marking such that three invariants are satisfied.
These invariants are not only required but also sufficient for opac-
ity. We prove the equivalence of markability and opacity. Roughly
speaking, the first invariant called write-observation requires that
each read operation returns the most current value and the second

invariant called read-preservation requires that the location which
is read is not overwritten in a certain interval and the third invari-
ant is the well-known real-time-preservation property. We will look
at these invariants more closely in the next section. Separation of
concerns brings modularity in understanding, design and verifica-
tion. Decomposition of the correctness condition showcases dif-
ferent aspects of it. Separate required conditions informs design-
ers and helps them concentrate on maintaining one condition at a
time. It also allows studying the effect of separate correctness as-
pects on performance. In addition, separation has obvious benefits
of modularity and scalability for verification. The marking relation
can be defined using the execution order or the linearization order
of method calls on the used base objects. Thus, proofs of markabil-
ity can be aided by and mirror design intuitions. Another important
property of markability statement is that it can be proved using a
program logic that we are developing. We are working on a ma-
chine checked proof of markability of the TL2 [4] algorithm.

2. Markability
In this section, we explain our main idea of markability. For clarity,
we explain the crux of the problem by focusing on marking of
complete histories with only global reads and writes. We present
the formal and general definition of markability later.

A transaction history is markable if and only if there exists
a marking of it that is write-observant, read-preserving, and real-
time-preserving. We will explain each concept in turn.

A marking of a transaction history is a relation on the union of
the transactions and the read operations in the history. We can think
of the marking as the union of a collection of orders:

• The effect order: The effect order is a total order of the transac-
tions.

• The access orders: Consider a read operation R that reads from
a location i and doesn’t abort. Let writers of i be the committed
transactions that have write(s) to location i. For each such R,
the access order is an antisymmetric relation that orders R and
every writer of i.

The effect order represents the order in which the transactions
appear to take effect, that is, the order that justifies the correctness
of the history. The access order represents where R’s access to
location i has happened between the accesses by the writers of i.
In other words, the access order identifies the writer whose written
value the read operation has read.

Next, we will explain write-observation and read-preservation.
Note that as read is the only method in the transactional memory
interface that exposes the state of the TM object, both of these two
invariants constraint the return values of read operations.

Write-observation means that each read operation should read
the most current value. Let us explain this idea in more detail.

T' T T''

R

T' T T''

R
(B) (C)

T' T'' T T'''

R
(A)

Figure 1. Illustrations of (A) write-observation, (B) read-preservation, and (C) a violation of read-preservation

Consider a read operationR from the location i. The pre-accessors
are the writers of i that come beforeR in the access order forR. We
can use the effect order to determine the last pre-accessor that is, the
pre-accessor that is greatest in the effect order. Write-observation
requires that the value that R has read is the same as the value
written by the last pre-accessor. Figure 1.A illustrates the idea: The
figure shows the marking relation v that is both the effect order
T ′ v T ′′ v T v T ′′′ and the access order T ′ v R v T ′′′.
T is the transaction that performs R. Additionally, T ′ and T ′′′ are
writers of i while T ′′ is not a writer of i. T ′ is the last pre-accessor
for R. Thus, R is expected to return the value that T ′ writes.

Read-preservation means that the location read by a read oper-
ation is not overwritten between the read accesses the location and
the transaction takes effect. Let us explain this idea in more detail.
Consider a read operation R by transaction T from location i. In-
tuitively, read-preservation requires that no writer of i should come
between R and T in the marking relation. More precisely, read-
preservation requires that there is no writer T ′ of i that accesses i
after R and takes effect before T and there is no write T ′ of i that
takes effect after T and accesses i before R. (Note that depending
on whether a transaction takes effect earlier or later in its lifetime,
one of these two conditions is usually trivially true.)

In other words, read-preservation requires the writers to both
access i and take effect on the same “side” of R and T . More pre-
cisely, if a writer T ′ accesses i before R (T ′ is marked before R in
the access order), then T ′ takes effect before T (T ′ is marked be-
fore T in the effect order) too. Similarly, read-preservation requires
that if T ′ accesses i after R, it takes effect after T too.

Figures 1.B and 1.C illustrate read-preservation. R is a read
from i by T . Additionally, T ′ and T ′′ are writers of i. The arrows
show the marking relation. Figure 1.B shows a marking that is read-
preserving. There is no writer between R and T . T ′ accesses i
before R and takes effect before T too. T ′′ accesses i after R and
takes effect after T too. Figure 1.C shows a marking where read-
preservation is violated by both T ′ and T ′′. T ′ is between R and T
and T ′′ is between T and R.

The real-time-preservation condition requires that if all the
events of a transaction T happen before all the events of another
transaction T ′, then T is less than T ′ in the effect order.

When a transaction history H is markable, we can pick a mark-
ing and construct a justifying history by ordering the transactions
in the effect order. To see why the effect order makes a justifying
history, consider an arbitrary read R from i by T . We call the writ-
ers of i that take effect before T , pre-effectors. Let T ′ be the last
pre-effector in the effect order. We need to show that the value that
R returns is the value that T ′ writes. We remind that we call the
writers that access i before R, pre-accessors. First, we argue that
pre-accessors are exactly pre-effectors. If a writer accesses before
R, by read-preservation, it takes effect before T . If a writer takes
effect before T , by antisymmetry of effect order, it does not take
effect after T . Thus, by read-preservation, it does not access after
R. Thus, by antisymmetry of access order, it accesses before R.
Second, from write-observation, we have that R returns the value
written by the last pre-accessor in the effect order. Thus from the
two above statements, we have that R returns the value written by
the last pre-effector in the effect order. This means that R returns

the value written by T ′. This is the essence of the condition needed
to prove opacity. We will formalize this intuition in section 4.

Our marking theorem says that a history is opaque if and only
if it is markable. So, to prove that a history is opaque we can
focus on proving that it is markable. The algorithm designer can
usually define the marking order readily from the guarantees (such
as linearization orders) of the base objects.

The goal of this extended abstract is to introduce the notion of
marking. We are working on machine checked proofs of marka-
bility of TL2 and DSTM (visible reads) algorithms. We conjecture
marking relations for these two algorithms in the appendix [13].
In TL2, write-observation is satisfied by the the following: In the
commit procedure, writes to a location are mutual exclusive by ac-
quiring a lock. In the read procedure, it is checked that the version is
unchanged while the value is being read and the lock is released. In
DSTM (visible reads), write-observation is satisfied by aborting the
tentative writer in the write procedure. In TL2, Read-preservation
is satisfied by validation checks in the read procedure and also val-
idation checks in the commit procedure. In DSTM (visible reads),
read-preservation is satisfied by aborting the last writer in the read
procedure and aborting the previous readers in the write procedure.

3. Histories
Strings. If s1 and s2 are strings, we write s1 b s2 iff s1 is a
subsequence of s2. For example, bd b abcde. Let s be an isogram
(i.e. contains no repeating occurrence of the alphabet.) For any
s1, s2 ∈ s, we write s1 �s s2 iff the last element of s1 occurs
before the first element of s2 in s. For example ab �abcde de. We
use s(i) to denote the ith element of s.

Method calls and events. Let O denote the set of objects, n
denote the set of method names, Thread denote the set of threads,
V denote the set of values and Label denote the set of labels.
We use l, R and W as labels. The set of invocation events is
Inv = {inv(l . o.nT (v)) | l ∈ Label, o ∈ O,n ∈ N,T ∈
Thread, v ∈ V }. The set of response events is Res = {ret(l .
v) | l ∈ Label, v ∈ V ∪ {A,C}}. (A and C are used later to
denote abortion and commitment of transactions.) The set of events
isEv = Inv∪Res. We will use the term completed method call to
denote a sequence of an invocation event followed by the matching
response event (with the same label). We use l . o.nT (v):v to
denote the completed method call inv(l . o.nT (v)) · ret(l . v).

Operations on event sequences. Let E and E′ be event se-
quences. We use E · E′ to denote the concatenation of E and E′.
For a thread T , we useE|T to denote the subsequence of all events
of T in E. For an object o, we use E|o to denote the subsequence
of all events of o in E. Sequential is the set of sequences of com-
pleted method calls possibly followed by an invocation event.

Execution history. An execution history X is a sequence of
events where each invocation event has a unique label and every
thread T is sequential (i.e. X|T ∈ Sequential). Let H istory
denote the set of execution histories. We say label l is in X and
write l ∈ X if there is an invocation event with label l in X .
Let Labels(X) denote the set of labels in X . Let Threads(X)
denote the set of threads inX . As the labels are unique in a history,
the following functions on Labels(X) are defined. The functions
objX , nameX , threadX , arg1X , arg2X , retvX map labels to

Reads(H) = {R | R ∈ H ∧ objH(R) = this ∧
nameH(R) = read ∧ retvH(R) 6= A}

W rites(H) = {W |W ∈ H ∧ objH(W) = this ∧
nameH(W) = write ∧ retvH(W) 6= A}

Trans(H) = {T | ∃l ∈ H : threadH(l) = T}
TSequential = {S ∈ THistory | ��S is a total order of Trans(S)}

Committed(H) = {T | ∃l ∈ H : threadH(l) = T ∧ retvH(l) = C}
Aborted(H) = {T | ∃l ∈ H : threadH(l) = T ∧ retvH(l) = A}

Completed(H) = Committed(H) ∪Aborted(H)

Live(H) = Trans(H) \ Completed(H)

TComplete = {H ∈ THistory | ∀T ∈ Trans(H) : T ∈ Completed(H)}
CommitPending(H) = {T ∈ Live(H) | ∃l ∈ H : threadH(l) = T ∧ nameH(l) = commit

iEv(l) b H ∧ ¬(rEv(l) b H)}
TExtension(H) = {H ′ ∈ THistory | H is a prefix of H ′ ∧ ∀T ∈ Trans(H ′)⇒ T ∈ Trans(H) ∧

Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

V isible(S, T) = filter
(
S, λT ′.(T ′ = T) ∨

(
(T ′ ≺≺S T) ∧ T ′ ∈ Committed(S)

))
NoWriteBetweenS(W,R) = ∀W ′ ∈W rites(S) : W ′ �S W ∨ R ≺S W

′

SeqSpec(i) = {S ∈ Sequential | ∀R ∈ Reads(S) : ∃W ∈W rites(S) :

W ≺S R ∧ NoWriteBetweenS(W,R) ∧
retvS(R) = arg2S(W)}

TSeqSpec = {S ∈ TSequential ∩ TComplete | ∀T ∈ S : ∀i ∈ I :
(V isible(S, T) | i) ∈ SeqSpec(i)}

F inalStateOpaque = {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ TSeqSpec}

Figure 2. F inalStateOpaque

the receiving object, the method name, the thread identifier, the first
and the second argument, and the return value associated with the
labels. Similary, iEv and rEv functions on Labels(X) map labels
to the invocation and the response events associated with the labels.

A history X is equivalent to a history X ′, X ≡ X ′, if one is a
permutation of the other one that is only the events are reordered but
the components of the events (including the argument and return
values) are preserved.

Real-time relations. For an execution history X , we define the
real-time relations ≺X , �X , ∼X , -X on Labels(X) as follows:
First, l1 ≺X l2 iff rEv(l1) �X iEv(l2). l1 �X l2 iff l1 ≺X

l2 ∨ l1 = l2. Second, l1 ∼X l2 iff l1 ⊀X l2 ∧ l2 ⊀X l1. Third,
l1 -X l2 iff l1 ≺X l2 ∨ l1 ∼X l2.

From the definition of Sequential we have that X ∈
Sequential iff ∀l, l′ ∈ X : l �X l′ ∨ l′ ≺X l. For an ex-
ecution history X , we define the thread real-time relations ≺≺X

and ��X as follows. First, T ≺≺X T ′ iff X|T �X X|T ′. Second,
T ��X T ′ iff T ≺≺X T ′ ∨ T = T ′.

We now define shared memory and transaction histories.
Shared Memory. The shared memory is a singleton object

mem that encapsulates the set of locations Loc where each loca-
tion, i ∈ I , I = {1, . . . ,m} stores a value v ∈ V . The object
mem has three methods readT (i), writeT (i, v) and commitT .
The method call readT (i) returns the value of location i or A (if
the transaction is aborted). The methodwriteT (i, v) writes v to lo-
cation i and returns ok or returns A. The method commitT tries to
commit transaction T and returns C (if the transaction is success-

fully committed) or returns A (if it is aborted). The objectmem (or
this) can be implicit, that is, readT (i) abbreviates this.readT (i).

Transaction History. A transaction history H is Init · H ′,
where Init is the transactionwriteT0(1, v0), . . . , writeT0(m, v0),
commitT0 :C that initializes every location to v0, and for all
T ∈ H ′ : H ′|T is a prefix of O.F where O is a sequence of reads
l . readT (i):v and writes l . writeT (i, v) (for some l ∈ Label,
i ∈ I , and v ∈ V) and F is one of the following sequences: (1)
inv(l . readT (i)), ret(l . A) (for some l ∈ Label and i ∈ I), (2)
inv(l . writeT (i, v)), ret(l . A) (for some l ∈ Label, i ∈ I , and
v ∈ V), (3) inv(l.commitT), ret(l.C), or (4) inv(l.commitT),
ret(l . A) (for some l ∈ Label). Let THistory denote the set of
transaction histories. The projection of H on i, written H|i, de-
notes the subsequence of historyH that contains exactly the events
on location i.

4. The Marking Theorem
In this section, we present a formal definition of opacity, define
markability for general histories and state the marking theorem.
F inalStateOpaque is defined in Figure 2. As the definitions are
self-descriptive, we narrate the definitions only in the appendix
[13].

First, we present some preliminary definitions in the upper part
of Figure 3. A local read is a read that is preceded by a write
by the same transaction to the same location. Intuitively, a local
read should read a value that is previously written by the same
transaction and hence the name. A global read is a read that is not

LocalReads(H) = {R | R ∈ Reads(H) ∧ ∃W ∈W rites(H) :

threadH(R) = threadH(W) ∧ arg1H(R) = arg1H(W) ∧ W ≺H R}
GlobalReads(H) = Reads(H) \ LocalReads(H)

LocalWrites(H) = {W |W ∈W rites(H) ∧ ∃W ′ ∈W rites(H) :

threadH(W) = threadH(W ′) ∧ arg1H(W) = arg1H(W ′) ∧ W ≺H W ′}
GlobalWrites(H) = W rites(H) \ LocalWrites(H)

LocalTSeqSpec = {H ∈ THistory | ∀R ∈ LocalReads(H) : Let T = threadH(R), i = arg1H(R) :

∃W ∈W rites(H|T |i) :
W ≺H|T |i R ∧ NoWriteBetweenH|T |i(W,R) ∧
retvH(R) = arg2H(W)}

WritersH(i) = {T ∈ Trans(H) | ∃l ∈W rites(H) : arg1H(l) = i ∧
threadH(l) = T ∧ T ∈ Committed(H)}

N oWriterBetweenH,i(q1,v, q2)⇐⇒
∀T ∈W ritersH(i) : T v q1 ∨ q2 v T

LastPreAccessorH(R, T ′)⇐⇒
Let i = arg1H(R), T = threadH(R) :

T ′ ∈WritersH(i) ∧ T ′ < R ∧ T ′ 6= T ∧
N oWriterBetweenH,i(T

′,v, R)
v ∈W riteObs(H)⇐⇒

H ∈ LocalTSeqSpec ∧
∀R ∈ GlobalReads(H) : ∃W ∈ GlobalWrites(H) : Let T ′ = threadH(W) :

LastPreAccessorH(R, T ′) ∧
arg1H(R) = arg1H(W) ∧ retvH(R) = arg2H(W)

v ∈ ReadPres(H)⇐⇒
∀R ∈ GlobalReads(H) :

Let i = arg1H(R), T = threadH(R) :

N oWriterBetweenH,i(R,v, T) ∧ N oWriterBetweenH,i(T,v, R)
v ∈ RealT imePres(H)⇐⇒

��H ⊆ v
Markable = {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈Marking(H ′) :

v ∈ ReadPres(H ′) ∩W riteObs(H ′) ∩RealT imePres(H ′)}

Figure 3. Markable

local. A local write is a write that precedes a write by the same
transaction to the same location. A local write is overwritten by
the same transaction. A global write is a read that is not local. A
history is in the local transactional sequential specification if each
local read returns the value written by the last write of the same
transaction before the read. The writers of i are the committed
transactions that write to location i.

Let H ∈ THistory. A marking of H , v, is the union of the
following relations on Trans(H) ∪ Reads(H)

• The effect order: Trans(H) is totally ordered by v
• The access orders: For each R ∈ Reads(H) where i =
arg1H(R), R and every member of WritersH(i) are ordered
by v. Access order is antisymmetric.

Marking(H) is the set of markings of H .
Write-observation requires the history to be in the local trans-

actional sequential specification. Each local read should return the

value written by the last write in the same transaction. Also, it re-
quires that the value that every global read returns is the value writ-
ten by the global write of the last pre-accessor.

Read-preservation requires that the location read by a global
read operation is not overwritten between the read accesses the
location and the transaction takes effect.

The real-time-preservation condition requires that if T is before
T ′ in the real-time order, then T takes effect before T ′ as well.

A transaction history is markable if and only if there exists
a marking for an extension of it that is write-observant, read-
preserving, and real-time-preserving.

The marking theorem states that a transaction history is final-
state-opaque if and only if it is markable.

Theorem 1. (Marking) F inalStateOpaque = Markable.

Please see the appendix [13] for the proofs.

References
[1] Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle, and

Lenore D. Zuck. Verifying correctness of transactional memories. In
FMCAD, 2007.

[2] Ariel Cohen, Amir Pnueli, and Lenore D. Zuck. Mechanical verifi-
cation of transactional memories with non-transactional memory ac-
cesses. In CAV, 2008.

[3] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec:
streamlining stm by abolishing ownership records. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’10, pages 67–78, New York, NY,
USA, 2010. ACM.

[4] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In In
Proc. of the 20th Intl. Symp. on Distributed Computing, 2006.

[5] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally
specifying and verifying transactional memory. Formal Aspects of
Computing, 2012.

[6] Michael Emmi, Rupak Majumdar, and Roman Manevich. Param-
eterized verification of transactional memories. In Proceedings of
PLDI’10, ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 134–145, June 2010.

[7] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In PPOPP, pages 175–184, 2008.

[8] Rachid Guerraoui, Thomas A. Henzinger, Barbara Jobstmann, and
Vasu Singh. Model checking transactional memories. In ACM SIG-
PLAN Conference on Programming Languages Design and Implemen
tation, pages 372–382, 2008.

[9] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Software
transactional memory on relaxed memory models. In Proceedings of
CAV’09, Seventh International Conference on Computer Aided Verifi-
cation, pages 321–336, 2009.

[10] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Model
checking transactional memories. Distributed Computing, 2010.

[11] Damien Imbs, José Ramon de Mendivil, and Michel Raynal. Brief
announcement: virtual world consistency: a new condition for stm
systems. In Proceedings of the 28th ACM symposium on Principles
of distributed computing, PODC ’09, pages 280–281, New York, NY,
USA, 2009. ACM.

[12] Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework
for formally verifying software transactional memory algorithms. In
CONCUR, 2012.

[13] Mohsen Lesani and Jens Palsberg. The appendices. http://www.
cs.ucla.edu/~lesani/submission/wttm/.

[14] Mohsen Lesani and Jens Palsberg. Putting non-opacity. In Trans-
act’13, 2013.

[15] Serdar Tasiran. A compositional method for verifying software trans-
actional memory implementations. Technical Report MSR-TR-2008-
56, Microsoft Research, apr 2008.

