
Reduced Hardware NOREC

Alexander Matveev
Tel-Aviv University

matveeva@post.tau.ac.il

Nir Shavit
MIT and Tel-Aviv University

shanir@csail.mit.edu

Abstract

The most promising Hybrid TM algorithms to date have been those designed around the NORec
STM, because they allow to limit the overall need to instrument instructions in the algorithms all hard-
ware fast-path. However, in order to provide opacity in the hardware transactions, the shared “clock” of
the NORec STM must be read at the start of the hardware transaction, which adds it to the track set and
causes high level of fast-path aborts. Solutions to this problem have required sandboxing or the use of
special non-speculative instructions that are not available on current hardware.

In a recent paper we presented the reduced hardware (RH) approach to designing Hybrid TM algo-
rithms. Instead of an all-software slow path, in RH transactions, part of the slow-path is executed using a
smaller hardware transaction. The purpose of this hardware component is not to speed up the slow-path
(though this is a side effect). Rather, using it one can eliminate a large part of the instrumentation from
the common hardware fast-path.

In this paper we present an RH version of the NORec Hybrid TM algorithm. It only reads the
shared “clock” of the NORec STM at the end of the hardware transaction, thus providing opacity with
low hardware abort rates. Moreover, the “mostly software” slow-path is obstruction-free (no locking),
allows complete concurrency between hardware and software transactions, and uses the short hardware
transactions only to write values during the software commit.

The performance benefits and complete obstruction-freedom of the new RH NORec algorithm raise
interesting questions about the tradeoffs of using a combination of hardware and software in the previ-
ously software-only slow-path of Hybrid TMs.

1 Introduction
IBM and Intel have recently announced hardware support for best-effort hardware transactional memory
(HTM) in upcoming processors [7, 8]. Best-effort HTMs impose limits on hardware transactions, but elim-
inate the overheads associated with loads and stores in software transactional memory (STM) implementa-
tions. Because it is possible for HTM transactions to fail for various reasons, a hybrid transactional memory
(HyTM) approach has been studied extensively in the literature. It supports a best effort attempt to execute
transactions in hardware, yet always falls back to slower all-software transactions in order to provide better
progress guarantees and the ability to execute various systems calls and protected instructions that are not
allowed in hardware transactions.

Riegel et al. [5] provide an excellent survey of HyTM algorithms to date, and the various proposals on
how to reduce the instrumentation overheads in the frequently executed hardware fast-path: the key to good
HyTM performance.

In the past two years Dalessandro et al. [2] and Riegel et al. [5] have proposed Hybrid TMs based on the
NORec STM.These are the most promising Hybrid TMs to date because they allow to limit the overall need
to instrument instructions in the algorithms all hardware fast-path.

The first proposal, Hybrid NORec [2], is a hybrid version of the efficient NORec STM [3]. In it, write
transactions’ commits are executed sequentially and a global clock is used to notify concurrent read trans-
actions about the updates to memory. The write commits trigger the necessary re-validations and aborts of



the concurrently executing transactions. The great benefit the NORec HyTM scheme over classic HyTM
proposals is that no metadata per memory location is required and instrumentation costs are reduced sig-
nificantly. However, in order to provide opacity in the hardware transactions (and thus avoid the need for
sandboxing), the global clock of the NORec STM must be read at the start of the hardware transaction,
which adds it to the transaction’s tracking set and causes high level of fast-path aborts.

The second proposal, by Riegel et al. [5], effectively reduces the instrumentation overhead of hardware
transactions in HyTM algorithms based on both the LSA [6] and NORec [3] STMs. It does so by using
non-speculative operations inside the hardware transactions. Unfortunately, these operations are supported
by AMD’s proposed ASF transactional hardware [1] but are not supported in the best-effort HTMs that IBM
and Intel are bringing to the marketplace.

In a recent paper we presented the reduced hardware (RH) approach to designing Hybrid TM algorithms.
Instead of an all-software slow path, in RH transactions, part of the slow-path is executed using a smaller
hardware transaction. The purpose of this hardware component is not to speed up the slow-path (though
this is a side effect). Rather, using it we are able to eliminate a large part of the instrumentation from the
common hardware fast-path.

In this paper we present for the first time an RH version of the NORec Hybrid TM algorithm. It overcomes
the drawbacks of the above Hybrid NORec proposals by reading the shared global clock of the NORec
STM only at the end of the hardware transaction, thus providing opacity with low hardware abort rates.
Moreover, the “mostly software” slow-path is obstruction-free (no locking), allows complete concurrency
between hardware and software transactions, and uses the short hardware transactions only to write values
during the software commit, which is different from our previous RH design, where the small hardware
transactions were required to speculate on the read locations’ metadata. The result, as we show, is the best
performing HyTM to date.

We believe that the performance and complete obstruction-freedom of the new RH NORec algorithm raise
interesting questions about the tradeoffs of using a combination of hardware and software in the previously
software-only slow-path of Hybrid TMs, and more generally, in the cost of the opacity property itself.

2 Reduced Hardware NORec

Algorithm 1 RH NORec fast-path transaction implementation

1: function RH NOREC FP START(ctx)
. no instrumentation - only start the hardware

transaction
2: HTM Start()
3: end function
4:
5: function RH NOREC FP WRITE(ctx, addr, value)

. no instrumentation - simply write the location
6: store(addr, value)
7: end function
8:

9: function RH NOREC FP READ(ctx, addr)
. no instrumentation - simply read the location

10: return load(addr)
11: end function
12:
13: function RH NOREC FP COMMIT(ctx)

. increment the global clock to notify other
transactions about possible update to the memory

14: global clock ← global clock + 1
15: HTM Commit()
16: end function

Here, in a nutshell, is how the our hybrid protocol works. The RH NORec protocol has a multi-level
fallback mechanism: for any transaction it first tries a pure hardware fast path; If this fails it tries a new
“mixed” slow-path, and if this fails, it tries an all software slow-slow-path.

On the slow-path, RH NORec executes the original NORec STM transaction. The transaction body is
executed purely in software. It collects read-set and write-set, postpones the actual data writes to the commit
phase, and performs current read-set value-based revalidation on every NORec global clock change. The

2



Algorithm 2 RH NORec slow-path transaction implementation

1: function RH NOREC SP START(ctx)
2: ctx.tx version← global clock
3: end function
4:
5: function RH NOREC SP WRITE(ctx, addr, value)

. add to write-set
6: ctx.write set← ctx.write set ∪ {addr, value}
7: end function
8:
9: function RH NOREC SP READ(ctx, addr)

. check if the location is in the write-set
10: if addr ∈ ctx.write set then
11: return the value from the write-set
12: end if
13: cur value← load(addr)

. log the read and revalidate if required
14: ctx.read set← ctx.read set∪{addr, cur value}
15: if ctx.tx version 6= global clock then
16: if ¬revalidate read set value based(ctx) then
17: stm abort(ctx)
18: end if
19: end if
20: return cur value
21: end function
22:
23: function RH NOREC SP COMMIT(ctx)

. read-set revalidation
24: label: start revalidate
25: local global clock ← global clock
26: if ¬revalidate read set value based(ctx) then
27: stm abort(ctx)
28: end if
29: HTM Start()

. verifies read-set revalidation is still valid
30: if local global clock 6= global clock then
31: htm abort(ctx)
32: end if

. write the values and update the global clock
33: for addr, new value ∈ ctx.write set do
34: store(addr, new value)
35: end for
36: global clock ← global clock + 1
37: HTM Commit()

. we can safely restart the commit revalidation,
if the failure reason is not hardware capacity limita-
tion

38: if the HTM failed NOT due to capacity then
39: goto start revalidate
40: else
41: fallback to slow-slow mode
42: end if
43: end function

key new element in RH NORec, is that the commit-time write-back of the new values, executes in a single
speculative hardware transaction. The commit saves the current global clock value, starts read-set value-
based revalidation and then initiates a small hardware transaction, which first verifies that the current global
clock is equal to the saved one. This check verifies that the read-set revalidation is still valid, and then the
small hardware transaction performs the writes and global clock update. Unlike the original Hybrid NORec,
there are no locks, and the transaction is obstruction-free.

This change in the slow-path allows us to implement the hardware fast-path transactions without reading
the NORec global clock on every fast-path transaction start. Instead, we only required to update the global
clock on every fast-path transaction commit. As a result, the RH NORec avoids many of the original
Hybrid NORec’s false aborts that limited its scalability. Intuitively, this suffices because for any slow-path
transaction, concurrent hardware transactions will either see all the new values written, or all the old ones,
but will fail if they read both new and old versions because this means they overlapped with the slow-path’s
hardware commit.

Algorithm 1 and 2 show the pseudo-code implementation for RH NORec hardware fast-path and software
slow-path respectively.

How likely to fail is the hardware part of the mixed slow-path transaction? Because in the slow-path
the transaction body is executed purely in software, any system calls and protected instructions that might
have failed the original hardware transaction can now complete in software before the commit point. In the
commit point, the small hardware transaction performs only the actual writes, so the hardware requirements
are reduced to be only the write-set locations, and there is no requirement to speculate on the read-set
locations. Still, the commit write-back may fail due to hardware capacity limitations, because the write-set

3



is too large, but this cases are usually rare, and if they happen we fallback to the slow-slow mode, where
concurrent hardware and software transactions run the original Hybrid NORec.

3 Performance Evaluation

PERF TL2 HTM IF RH1	  NOREC	  0 RH1	  NOREC	  10 RH1	  NOREC	  100 HY	  NOREC	  0 RH1	  NOREC	  10RH1	  NOREC	  100
1 147607 1761728 394603 1710422 1703244 1756247 1774142 1653352 1747309
2 287178 3269232 724919 3120193 3076256 2655421 2499233 2175643 1802532
3 413337 4468491 921699 4329657 4089158 3447058 2690257 2523377 1856010
4 439961 5595259 1167909 5155431 4610695 3331380 2790897 2260111 1949542
5 520169 5170298 999537 4976121 4439163 3259043 2423629 2036096 1639172
6 597166 4863448 718280 4533900 4223312 3119930 2174969 2028128 1697913
7 616521 4401019 595102 3794246 3673352 2851798 1770394 1893454 1675971

ABORTS TL2 HTM IF RH1	  NOREC	  0 RH1	  NOREC	  10 RH1	  NOREC	  100 HY	  NOREC	  0 RH1	  NOREC	  10RH1	  NOREC	  100
1
2
3
4
5
6
7

0.00E+00	  

1.00E+06	  

2.00E+06	  

3.00E+06	  

4.00E+06	  

5.00E+06	  

6.00E+06	  

1	   2	   3	   4	   5	   6	   7	  

To
ta
l	  O

pe
ra
Ao

ns
	  

number	  of	  threads	  

HTM	  

Standard	  HyTM	  

TL2	  

RH	  NOREC	  Fast	  

RH	  NOREC	  Mix	  10	  

RH	  NOREC	  Mix	  100	  

HY	  NOREC	  Fast	  

HY	  NOREC	  Mix	  10	  

HY	  NOREC	  Mix	  100	  

10K	  RB-‐Tree	  
40%	  muta1ons	  

Figure 1: The graphs show the throughput of 10K sized Red-Black Tree for 40% mutations.

We execute the benchmarks on Intel 8-way Haswell chip with 2 cores, each multiplexing 2 hardware
threads (HyperThreading). For our testing we use a red-black tree benchmark. The algorithms we bench-
mark are:

HTM Hardware Transactional Memory: all of the transactions are executed with Intel Haswell RTM mech-
anism without any additions.

Standard HyTM The Standard Hybrid Transactional Memory: This represents the best performance that
can be achieved by current state-of-the-art hybrid TL2-Style TMs [5]. To make this hybrid as fast
as possible, we execute only the hardware fast-path transactions, by executing and retrying all of the
transactions only in the hardware fast-path mode (there is no fallback to the software slow-path).

HY NOREC Original Hybrid Norec: The hardware fast-path reads the global clock on start, and the soft-
ware slow-path executes STM Norec. There are three variations: Mix 10, Mix 100 and Fast. For the
first 10% of the fast-path aborts retry in the slow-path and for the second it is 100%. The Fast version
retries all of the aborts in the fast-path.

RH NOREC Reduced Hardware Norec: This is our new hybrid TM. The hardware fast-path only updates
the global clock on hardware commit, and the mixed software slow-path executes the transaction body
in pure software and the transaction commit writes in a small hardware transaction. In a similar way
to HyNORec there are three variations: Mix 10, Mix 100 and Fast.

TL2 This is the usual TL2 STM implementation [4], that uses a GV6 global clock.

Figure 1 shows the results for the different algorithms on a red-black tree of size 10K nodes and 40%
mutation operations. First, we can see that the Standard HyTM performs close to TL2 STM, eliminating all
the HTM performance benefits. This due to the fact that Standard HyTMs instrument every fast-path read
and write with STM’s metadata inspection. Hybrid Norec delivers better performance than the Standard
HyTMs, but still it incurs a high degradation relative to the HTM performance. Even Hybrid Norec Fast,
that retries all of the aborted transaction in the fast-path, and never uses the slow-path mode, performs
much worser than the HTM. In contrast, the RH-Norec Fast and Mix 10 are able to preserve close to HTM
performance, while Mix 100 degrades because of excessive use of the slow-path. But still, RH-Norec Mix
100 is better than the Hybrid Norec Fast. The main reason for RH-Norec advantage over Hybrid Norec,
is that RH-Norec hardware fast-path transactions only update the global clock on hardware commit, while
the Hybrid Norec fast-path transactions read this global clock on hardware start and update it on hardware
commit. Therefore, RH-Norec eliminates the Hybrid Norec’s false aborts related to global clock updates.

4



4 RH NORec - Optimization for HTM that supports non-speculative operations

Algorithm 3 RH NORec optimization - Fast-Path transaction

1: function RH NOREC OPT FP START(ctx)
2: HTM Start()
3: end function
4:
5: function RH NOREC OPT FP WRITE(addr, value)

. no instrumentation - simply write the new
value to the memory

6: store(addr, value)
7: end function
8:

9: function RH NOREC OPT FP READ(ctx, addr)
. no instrumentation - simply read the location

10: return load(addr)
11: end function
12:
13: function RH NOREC OPT FP COMMIT(ctx)
14: seq clock ← seq clock + 1
15: HTM Commit()
16: end function

RH NORec slow-path commit performs the following steps: (1) samples the global clock, (2) revalidates
the read-set, (3) executes a small hardware transaction that writes the write-set locations atomically, and (4)
revalidates that the current global clock is equal to the one it has read before (in step 1). As a result, the
slow-path commit will restart itself, if the global clock changes between steps (1) and (4). We can reduce
this abort window if the hardware allows non-speculative (non transactional) memory operations inside a
hardware transaction.

IBM new Power 8 ISA transactional memory specification defines a hardware transactional memory
system with a suspend-resume operations. They allow to suspend a hardware transaction, so that a non-
transactional code can execute, and then resume the transaction execution. RH NORec algorithm based on
this feature has a different slow-path commit implementation. The new slow-path commit starts a hardware
transaction that writes to every write location its current value, suspends itself, and then does the read-set
value-based revalidation (non-speculatively). On revalidation success, it resumes the hardware transaction,
writes the new values to the write locations and commits the hardware speculation. If the hardware fails to
commit, it restarts the slow-path commit procedure. The whole slow-path transaction is restarted only when
the read-set value-based revalidation fails.

Algorithm 3 and Algorithm 4 show the implementation of RH NORec fast-path and slow-path transactions
for a processor that allows non-speculative operations inside a hardware transaction.

References
[1] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin Pohlack, Christof

Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Marlier, and Etienne Rivière. Evaluation
of amd’s advanced synchronization facility within a complete transactional memory stack. In Proceed-
ings of the 5th European conference on Computer systems, pages 27–40, New York, NY, USA, 2010.
ACM.

[2] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir, Michael L. Scott, and
Michael F. Spear. Hybrid norec: a case study in the effectiveness of best effort hardware transactional
memory. SIGPLAN Not., 46(3):39–52, March 2011.

[3] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: streamlining stm by abolishing
ownership records. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’10, pages 67–78, New York, NY, USA, 2010. ACM.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proc. of the 20th International Symposium
on Distributed Computing (DISC 2006), pages 194–208, 2006.

5



Algorithm 4 RH NORec optimization - Slow-Path transaction

1: function RH NOREC OPT SP START(ctx)
2: ctx.local seq clock ← seq clock
3: end function
4:
5: function RH NOREC OPT SP WRITE(addr, value)

. add to write-set
6: ctx.write set← ctx.write set ∪ {addr, value}
7: end function
8:
9: function RH NOREC OPT SP READ(ctx, addr)

. check if the location is in the write-set
10: if addr ∈ ctx.write set then
11: return the value from the write-set
12: end if

. log the read
13: value← load(addr)
14: ctx.read set← ctx.read set ∪ {addr, value}
15: if ctx.local seq clock 6= seq clock then
16: ctx.local seq clock ← seq clock
17: if ¬ revalidate read set(ctx) then
18: TxAbort(ctx)
19: end if
20: end if
21: return value
22: end function
23:
24: function RH NOREC OPT SP COMMIT(ctx)

. read-only transactions commit immediately
25: if ctx.write set is empty then
26: return
27: end if

. STEP 1: put the write-set locations into spec-
ulation (to be monitored by HTM)

28: HTM Start
29: for addr ∈ ctx.write set do
30: cur value← load(addr)
31: store(addr, cur value)
32: end for
33: HTM Suspend

. STEP 2: read-set revalidation
34: if ctx.local seq clock 6= seq clock then
35: ctx.local seq clock ← seq clock
36: if ¬ revalidate read set(ctx) then
37: TxAbort(ctx)
38: end if
39: end if
40: HTM Resume
41: for addr, new value ∈ ctx.write set do
42: store(addr, new value)
43: end for
44: seq clock ← seq clock + 1
45: HTM Commit
46: if HTM failed then
47: goto STEP 1
48: end if
49: end function
50:
51: function REVALIDATE READ SET(ctx)
52: for addr, old value ∈ ctx.read set do
53: cur value← load(addr)
54: if cur value 6= old value then
55: return false
56: end if
57: end for
58: return true
59: end function

[5] Torvald Riegel, Patrick Marlier, Martin Nowack, Pascal Felber, and Christof Fetzer. Optimizing hybrid
transactional memory: the importance of nonspeculative operations. In Proceedings of the 23rd ACM
symposium on Parallelism in algorithms and architectures, SPAA ’11, pages 53–64, New York, NY,
USA, 2011. ACM.

[6] P. Felber T. Riegel and C. Fetzer. A lazy snapshot algorithm with eager validation. In 20th International
Symposium on Distributed Computing (DISC), September 2006.

[7] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht, Christopher Barton,
Raul Silvera, and Maged Michael. Evaluation of blue gene/q hardware support for transactional mem-
ories. In Proceedings of the 21st international conference on Parallel architectures and compilation
techniques, PACT ’12, pages 127–136, New York, NY, USA, 2012. ACM.

[8] Web. Intel tsx
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell, 2012.

6


