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Abstract

Optimistic concurrency relies on speculative execu-
tion, read-write conflict detection, and checkpoint-
rollback techniques to provide a programming model
that replaces locks with the abstraction of atomic,
isolated execution of critical sections. Previous re-
search has shown that on chip multi-processors, a
class of workloads featuring irregular parallelism and
rare read-write conflicts can reap significant benefits
from the TM model because complex synchroniza-
tion code can be avoided without the scalability sac-
rifice that is the hallmark of coarse-grain synchro-
nization. In a distributed in a distributed setting,
however, with current technological parameters, this
class of workloads becomes vanishingly small. More-
over, this class does not include the workloads cur-
rently used to evaluate TM and distributed TM sys-
tems.

We construct a model that predicts performance
for a distributed software transactional memory
(DSTM) executing a given workload. The model as-
sumes optimal pipelining, batching, and locality, and
predicts performance by finding the critical path in-
duced by read-write sharing. We validate the model
against real executions from TM benchmarks in the
literature, finding that it tracks observed scalabil-
ity to within 17%. We apply this model to popular
TM benchmark applications, observing that none
scale in a distributed context because transactions
are too short in relation to network latencies. Tradi-
tional latency hiding techniques such as prefetching,
batching, and speculation are do not help, and in
fact, sometimes make performance worse. We con-
clude current TM benchmarks are not appropriate
workloads for a distributed system using optimistic
concurrency.

1 Introduction

Optimistic concurrency in general, and transactional
memory (TM) in particular, have enjoyed consid-
erable attention from the research community in
recent years, due to their promise of a program-

ming model that enables the developer to write
scalable programs without writing complex synchro-
nization code. This promise is very attractive for
irregularly parallel programs, where available par-
allelism is abundant, but difficult-to-predict read-
write sharing patterns make algorithms hard to ex-
press functionally. For such programs, a TM run-
time system can discover ordering constraints dy-
namically using speculation, harvesting performance
gains that exceed the overheads introduced by com-
munication, accounting, and re-execution. In chip
multi-processor environments, where a TM runtime
enjoys low-latency communication through shared
memory, TM’s promise has been largely shown to be
achievable [11]. Distributed software TM (DSTM)
research [12, 13, 14, 9, 3, 5, 6] conjectures that sim-
ilar performance improvements and complexity re-
ductions can be achieved for irregular parallel pro-
grams at cluster scale.

This paper argues precisely the opposite: opti-
mistic concurrency is unlikely to yield significant
performance benefits in a distributed execution envi-
ronment. DSTM is, in fact, over-optimistic. Trans-
actional memory (TM) systems rely on speculation
to hide synchronization latency induced by read-
write shared objects or memory cells: in a dis-
tributed context, speculation may be further lever-
aged to hide communication latency that is fre-
quently a bottleneck when implementing distributed
shared memory. However, DSTMs can be effective
at hiding these latencies only for workloads that
have a profitable balance of computation latency to
communication latency. When a workload cannot
strike this balance, communication latencies cannot
be hidden, compute resources must stall, and poor
scalability is the consequence. The class of work-
loads for which a profitable balance be struck on
modern hardware is vanishingly small, and notably,
does not include the workloads evaluated in the TM
and DSTM literature to date.

We build a model that predicts scalability for
workloads on a general model of a distributed soft-
ware transactional memory (DSTM) system. The
goal of the model is to establish a bound on the im-
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pact of read-write sharing on end-to-end execution
latency for a given DSTM and execution platform.
The model assumes optimal pipelining, batching of
operations, and locality. We validate this model
against real executions from the STAMP [22] bench-
mark suite, showing that it tracks observed scala-
bility to within a 17% error rate when we model
execution platforms matching those used to evalu-
ate STAMP. We then synthesize models of multiple
popular benchmark applications from the TM litera-
ture and observe that none scale well when we model
platforms whose communication latencies approach
those likely to be observed in a cluster environment.
The poor scalability derives fundamentally from a
poor balance of transaction execution latency and
communication latency, which in turn derives from
the sharing patterns in the benchmarks themselves.
Moreover, traditional latency hiding techniques are
ineffective. Batching transactions together reduces
communication, but at the cost of creating addi-
tional conflicts that ultimately hurt scalability. Ag-
gressive speculation past control flow boundaries [21]
is similarly ineffective. We show that with today’s
technological parameters, current benchmarks are
inappropriate workloads for a distributed STM: a
modest-sized cluster (16 nodes) fails to scale past
2× even assuming RDMA-scale interconnect laten-
cies, and all but one are slower than a serial all-local
execution when communication latencies reach the
order of TCP/IP message latency.

2 Models

To make our argument empirically, we must first
construct effective models of the various artifacts
present in a DSTM system. In this section we de-
scribe how we model a DSTM execution environ-
ment and implementation, and how we model the
execution of a given workload within that environ-
ment. We elucidate a set of minimal assumptions
about models of the platform, DSTM implementa-
tion, TM workloads, and show how wee can charac-
terize and synthesize workload models that allow us
to make performance estimates that have acceptable
fidelity to real implementations.

The goal is to construct a model that applies to
as many scenarios as possible. Since our goal is to
estimate an upper bound on scalability, we can make
simplifying assumptions that err on the side of re-
porting higher scalability: if we still observe that
workloads hardly scale, then we know that the con-
clusion would still hold with a more accurate model.
In this spirit we abstract away the communication

needed to keep the shared memory consistent (e.g.
two phase commit) and instead consider that if one
machine writes to some memory that is the read
by another, it takes at least one message delay for
the data to go from one machine to the other. Our
model therefore is that we have computers (“nodes”)
connected by a complete network with uniform la-
tency and infinite bandwidth (so we use the same
delay for all communication, without having to be
concerned with compression techniques or Bloom fil-
ters). Memory is shared, and we represent the pro-
gram to be executed as a partial order of tasks, rep-
resenting all the allowable task interleavings. For
example, if two functions A and B are run in par-
allel, then we place no edge between them in the
program representation.

2.1 Workload model

A workload represents a set of possible executions
of a particular program. Our goal is to estimate
an upper bound on the scaling of that workload
(the speedup relative to a single-computer execu-
tion). The workload (like the initial program) is a
partial order of tasks, but in addition to the exist-
ing edges (that we call “control-flow edges”), we add
new edges (“data-flow edges”) to represent ordering
constraints that arise through conflict. For example,
if task A writes to some memory that task B then
reads, then we insert a data-flow edge from A to B
representing the fact that they cannot be run con-
currently. These edges are inserted between any two
tasks that access the same memory, when at least
one of the accesses is a write. We omit these edges if
the tasks are already ordered in the input program
(doing so is safe since it only increases the scaling
reported by the model).

We call the resulting graph the workload. Every
total order that is compatible with the workload or-
der represents a valid serialization of the program;
those orders yield a correct output.

2.2 DSTM model

From the workload, we can compute the time to ex-
ecute in a single machine (“serial runtime”) and the
time to execute on many machines (“parallel run-
time”). Their ratio bounds the scaling available in
that particular workload.

To estimate this time, we assign a computer and
duration to every task. We also assign a delay for
every data-flow edge that goes from one computer
to another. The task duration is taken from the lit-
erature. The edge delay is set to the latency of a
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communication link. We use several kind of links
(from in-memory to TCP/IP) to determine the im-
pact of this delay.

The sum of all node durations yields the serial run-
time. The parallel runtime is determined by finding
the graph’s critical path and adding all delays along
that path. Varying the number of machines yields
different parallel runtimes. We use 16 when we com-
pare to experiments with 16 machines (Section 4),
and infinity when looking for an upper bound on
available parallelism.

The parallel runtime does not take into account
the time to detect conflicts and recover from them:
instead we measure as if the scheduler knew in ad-
vance which tasks would conflict, and ran those se-
quentially to avoid having to re-execute anything.
Once again this is safe because it only increases the
reported scaling bound. Similarly, we are optimistic
when accounting for synchronization: if task B reads
what A writes, a real implementation might first
send the data to an intermediate computer, or it
may need several message delays to ensure all up-
dates are atomic. Instead we count only a single
message delay: this is a lower bound since the data
at a minimum has to get from A to B.

The delay of committing changes is often a con-
cern, as a single task may transactionally modify
memory that is stored on multiple machines. Two
natural optimizations are batching and transgres-
sion [21]; our model accounts for both. In the case
of batching, the system commits multiple transac-
tions in a single message, as it is faster to send a
larger message than to wait for additional round-
trips. With transgression instead, the system com-
mits transactions one at a time but it continues ex-
ecution before hearing back, speculating that the
transaction will commit. Those systems need ex-
tra bookkeeping to properly cascade aborts in case
of misspeculation [30]. In our model, execution con-
tinues on the same machine without delay (just as it
does with transgression). Across machines we only
charge one message delay, as if each transaction com-
mitted immediately (as would be the case without
batching). So in both case we are at least as fast
as the best of both techniques. Misspeculation, in
both cases, may cause multiple transactions to have
to be re-executed. In our model instead we assume
an optimal schedule that runs every task as soon
as possible and avoids any re-execution. Thus our
model subsumes batching and transgression: neither
of these techniques should yield better scaling than
we predict.

input description source
txlat average transaction latency emp
pcttx % execution in transactions emp

RS,WS read-write set sizes emp
rptx retries per transaction emp

wvcnt number of waves code
width width of a row code
depth # of rows in a wave code

forkjoin fork-join connects waves code
lanefreq lane pattern code

Table 1: Input parameters for the synthesis tool. In-
puts marked “emp” are determined empirically (or
from published data), while those marked “code”
are determined by code inspection. A row is a set
of width tasks that are all at the same depth in the
task graph. We partition the execution into waves,
each consisting of depth rows. Some waves use the
fork-join pattern: single task join points precede and
follow each wave. The lane pattern frequency indi-
cates the number of control-flow edges: from 0 if
each task has a single predecessor and successor to
100% when each is a successor of the whole previous
row, and predecessor of the whole next row.

3 Methodology

In this section we describe the methodology used to
construct the fundamental argument of the paper.
In sum, to predict the scaling of an “ideal” imple-
mentation of a given TM benchmark, instead of try-
ing to write such an ideal (D)STM to run the bench-
mark, we run the benchmark on a simple STM and
then use the resulting trace to extrapolate its perfor-
mance on an ideal (D)STM. We have implemented
three benchmarks and the predictions match fairly
well with the performance numbers that have been
published before.

To enable predictions without having to re-
implement each benchmark, we then built a trace
generator that takes as input several parameters
that describe the algorithm (determined from pub-
lished numbers and after examining the benchmark’s
algorithm) and generates as output a synthetic trace.
We can then run our tool on this trace to find the
best-case scalability numbers.

Published benchmarks generally include sufficient
information to estimate the following metrics: av-
erage transaction latency, percentage of total exe-
cution in transactions, and the average number of
retries per transaction. We use these numbers in
combination with the trace from our implementation
of the benchmark to estimate best-case scalability.

3



We can also generate a trace without implement-
ing the benchmark, by feeding these values below to
our trace generator, along with additional parame-
ters shown in Table 1. Many of the parameters are
related to the construction of the task graph such
that available parallelism in the modeled workload
is accurately captured. Values controlling the struc-
ture of the resulting graph must be chosen based on
code inspection of the implementation being mod-
eled. The remaining parameters are used to synthe-
size read-write sets that feature sufficient read-write
sharing of objects/cells to induce the required aver-
age number of retries per transaction at runtime.

3.1 Critical Path estimation

A DSTM hides communication latency by overlap-
ping it with execution latency. To assess its po-
tential, we estimate the runtime on a given cluster
characterized by node count and inter-node commu-
nication latency, and for each benchmark we deter-
mine the minimum profitable average task latency
MPATL, the minimum average task latency for the
benchmark to finish more quickly on a parallel plat-
form than when run sequentially (with no communi-
cation overheads). Given the actual average task la-
tency ATL, their ratio is mathematically equivalent
to the average parallelism metric described in [2],
an upper bound on the scaling. We characterize
it in terms of individual task latencies to empha-
size the fact that scalability in a DSTM is a func-
tion of the amount of computation done per transac-
tion. Both metrics require computation of the criti-
cal path through the graph.

The approach to computing these metrics is as
follows. (1) Construct the workload trace, (2) Map
tasks to nodes, (3) add dataflow edges only among
tasks that may execute concurrently, (4) set ver-
tex weights based on average task latency, (5) as-
sign edge weights (dataflow costs one message la-
tency, control zero), (6) find the critical path, (7)
compute the minimum profitable task latency and
estimate the runtime, taking the same approach as
that in [2].

4 Evaluation

We have implemented three STAMP workloads for
Spectre [21] (yada, kmeans, vacation). Based on
traces from those implementations, combined with
data from the STAMP IISWC paper [22], the crit-
ical path tool makes speedup estimates with a 28%
geometric mean error from the numbers reported for
the same workloads in the paper. We conclude that
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Figure 1: Validation of model based on synthesized
workloads from STAMP [22], TMC2 [9], Volos et.
al [32], and DiSTM [12].

our model predicts performance of real workloads to
within a reasonable margin of error.

We collected data from benchmarks in the TM
literature for which we could make reasonable es-
timates allowing us to characterize and model the
workloads. Due to space constraints we do not
evaluate the super-set workloads in the DSTM lit-
erature: many are inappropriate because they are
synthetic [10], and in some cases, published data
is insufficient to construct a high-confidence model.
However, given the remaining list of TM bench-
marks, we validate the model by showing that if we
construct synthetic workloads based on the data in
the papers, we accurately predict the performance
reported in those papers. In fact, we are able to do
this fairly well, with a geomean error of approx. 17%
across all the benchmarks we consider, as shown in
Figure 1.

Next, we take those same workload models and
predict their performance across a range of commu-
nication latencies. We assume the communication
cost in a hardware transactional memory (HTM)
is approximately equivalent to a memory reference
latency, or 0.000001 msec. We assume localhost
communication latency (communication cost for a
loopback-based STM implementation) is order 0.01
msec. We approximate an RDMA memory refer-
ence latency as 0.1 msec, and TCP-based cluster
message latency as 1 msec. Figure 2 shows the pre-
dicted speedup of all the modeled benchmarks on a
16-node cluster, assuming these different inter-node
latencies.

The result shows that even on a modest cluster (16
nodes), communication costs kill performance (see
below). Even with RDMA-like latencies, few bench-
marks are able to scale beyond 2x with 16 nodes, and
all do better on a single machine with a similar num-
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Figure 2: Speedup estimates for TM workloads from
the literature on a DSTM platform across a range of
message latencies.

ber of cores. Once TCP/IP latencies are involved, all
but one workload is actually slower on 16 nodes than
on 1. Moreover, the assumptions in the model are
wildly optimistic about the ability of DSTM imple-
menters to minimize communication. We introduce
a single communication edge in the critical path IFF
there is RW sharing between remote transactions:
all other commits/validations and task management
costs are free. In particular, if there is a sharing
edge that is also a control flow edge, it is assumed
to have zero latency: obviously this introduces error,
but refining the model to eliminate the error would
do nothing but strengthen our argument. The data
below also assume ideal batching which is likely un-
achievable in a real implementation.

4.1 Limitations

While none of the workloads we looked at show scal-
ing in a distributed setting at 16 nodes, it is possible
that we have not considered some workloads that can
in fact scale. Further exploration is required. We
do not claim that the tasks done by the workloads
cannot scale, just that the algorithms implemented
appear not to. Different algorithms may scale bet-
ter, and indicate interesting directions of study for
abstractions for efficient distributed computation of
irregular workloads.

5 Related Work

A comprehensive review of the TM literature
through 2010 can be found in [11]. Trace-based per-
formance estimation is based on real exections using
Spectre [21].

We model TM workloads as a DAG of tasks, sim-
ilar to Cilk [2], and rely on similar metrics: the ra-
tio of MPATL to ATL is equivalent to Cilk’s aver-

age parallelism, and our speedup estimates are de-
rived from runtime estimates made using Cilk’s tech-
niques. We create models of workloads described
in the TM and optimistic literature [9, 22, 32, 12,
14, 15, 10]. The critical path tool estimates avail-
able parallelism and scaling by relying on dynamic
conflict information made available by instrument-
ing real executions [16, 25, 27, 26, 7, 1] or synthesiz-
ing workloads [10].

Programming models for shared mutable
state Many systems have taken up the challenge of
exploiting irregular parallelism [17, 19, 18, 24, 29, 4]
leveraging workload properties such as commuta-
tivity [19, 31] or alternative programming mod-
els [20] and schedulers [23]. Other systems such
as TxCache [28] have explored transactional shared
memory. Combination a transactional runtime
with distributed shared memory has enjoyed con-
siderable recent research attention [12, 13, 14, 9].
Cluster-STM [3] shows that aggregating communi-
cation yields excellent scalability. Dash and Dem-
sky’s transactional DSM [5, 6] shows that prefetch-
ing and caching help mitigate the latency of dis-
tributed shared memory. Teraflux [20] aims to com-
bine dataflow and task-based execution with trans-
actional memory [8]. Shapiro et al. propose a variant
of conflict-free replicated data types called commu-
tative replicated data types, where all concurrent op-
erations on that type commute [31]. Similarly, Con-
way et al. have added support for a limited form of
aggregation to their BLOOM dialect of the Datalog
logic programming language [4]. The combination
of TM with a task-based programming model is ex-
plored in [8].

6 Conclusion

The class of workloads that can benefit from DSTM
are performance-critical applications that require
more memory or processing power than is available
on a single computer, which benefit from the ab-
straction of mutable shared state, but which exer-
cise that abstraction on conflicting data very rarely
at runtime. Current workloads from the TM and
DSTM literature meet only one of those criteria:
the potential to reduce complexity with atomic op-
erations over shared mutable state. Different work-
loads are required that are suitable for this kind of
distributed execution, and our experience has been
that workloads with the proper balance are very few
and far between.
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