
Transactional Memory Schedulers
for Diverse Distributed Computing

Environments

Costas Busch
Louisiana State University

(Joint work with Gokarna Sharma)

WTTM 2013 1

• Tightly-Coupled Systems
• Multicore processors

• Multilevel Cache

• Distributed Network Systems
• Interconnection Network

• Asymmetric communication

• Non-Uniform Memory Access Systems
(NUMA)
• Partially symmetric

Communication

Multiprocessor Systems

2

Scheduling Transactions

Contention Management

Determines:
• when to start a transaction

• when to retry after abort

• how to avoid conflicts

3

Efficiency Metrics

• Makespan
• Time to complete all transactions

• Abort per commit ratio
• Energy

• Communication cost
• Time and Energy

• Networked systems

• Load Balancing
• Time and Energy

• NUMA and networked systems
4

Inspiration from Network Problems

Packet scheduling techniques
Helps to schedule transactions in multicores

Mobile object tracking in sensor networks
Helps to schedule transactions in networked systems

Oblivious routing in networks

Helps to load balance transaction schedules in NUMA

5

Presentation Outline

 1. Tightly-Coupled Systems

2. Distributed Networked Systems

3. NUMA

4. Future Directions

6

Scheduling in Tightly-Coupled Systems

One-shot scheduling problem
– M transactions, a single transaction per thread

– s shared resources

– Best bound proven to be achievable is O(s)

7

1

2

3

M

Transactions

Threads

Transactions

Makespan

• Problem Complexity: directly related to vertex
coloring

• NP-Hard to approximate an optimal vertex
coloring

• Can we do better under the limitations of
coloring reduction?

8

transaction

transaction

shared resource

Inspiration

9

Packet routing and job-shop scheduling

in O(congestion+dilation) steps (1994)
F. T. Leighton , Bruce M. Maggs , Satish B. Rao

Congestion (C) = max edge utilization

Dilation (N) = max path length

• A M × N window W
– M threads with a sequence of N transactions per thread
– collection of N one-shot transaction sets

Execution Window Model

10

1 2 3 N

N

M

1

2

3

M

Transactions

.

.

.

. . .

Threads

Packet = thread

Path Length (N) = sequence of thread’s transactions

Congestion (C)= conflicts of thread’s transactions

Analogy:

O(C + N log(MN))

Makespan

Intuition

Random delays help conflicting transactions shift inside the window
Initially each thread is low priority
After random delay expires a thread becomes high priority

11

N

N’

Random interval

1 2 3 N

M

1 2 3 N

N

M

. . .

How it works: Frames

12

1 2 3 N

M

N

q1 ϵ [0, α1 -1],
α1 = C1 / log(MN)

C=maxi Ci, 1 ≤ i ≤ M

F11 F3N

Thread 1

Thread 2

Thread 3

Thread M

F1NF12

Makespan = (C / log(MN) + Number of frames) × Frame Size

= (C / log(MN) + N) × Frame Size

First frame of Thread 1 where T11 executes

Second frame of Thread 1 where T12 executes

Frame size = O(log(MN))

=O (C + N log(MN))

Challenges

• Unit length Transactions

• C: may not be known

– Try to guess it for each transaction

– Use random priorities within frame

• N: what window size is good?

– Dynamically try different window sizes

DISC 2010 - 24th International
Symposium on Distributed Computing

13

Presentation Outline

1. Tightly-Coupled Systems

 2. Distributed Networked Systems

3. NUMA

4. Future Directions

14

Distributed Transactional Memory

• Transactions run on network nodes

• They ask for shared objects distributed over the network
for either read or write

• They appear to execute atomically

• The reads and writes on shared objects are supported
through three operations:
 Publish

 Lookup

 Move
15

16

Owner node

Suppose the object ξ is at node and is a requesting
node

ξ

Requesting node

Suppose transactions are immobile and the objects are mobile

17

Read-only copy
Main copy

Lookup operation

ξ
ξ

Replicates the object to the requesting node

18

Read-only copy
Main copy

Lookup operation

ξ
ξ

Replicates the object to the requesting nodes

Read-only copy
ξ

19

Main copy
Invalidated

Move operation

ξ
ξ

Relocates the object explicitly to the requesting node

20

Invalidated

Move operation

ξ

Relocates the object explicitly to the requesting node

Main copy
ξ

Invalidated
ξ

Related Work

Protocol Stretch Network Kind Runs on

Arrow
[DISC’98]

O(SST)=O(D) General Spanning tree

Relay
[OPODIS’0
9]

O(SST)=O(D) General Spanning tree

Combine
[SSS’10]

O(SOT)=O(D) General Overlay tree

Ballistic
[DISC’05]

O(log D) Constant-
doubling
dimension

Hierarchical directory
with independent sets

Spiral
[IPDPS’12]

O(log2 n log D) General Hierarchical directory
with sparse covers

 D is the diameter of the network kind
 S* is the stretch of the tree used

Inspiration
Concurrent online tracking of mobile users (1991)

Awerbuch, B., Peleg, D.

• A distributed directory scheme to minimize cost
of moving objects
• Total communication cost is proportional to the distances of

positions of moving objects

• Uses a hierarchical clustering of the network
• sparse partitions

22

23

Hierarchical clusteringSpiral Approach:

Network graph

24

Hierarchical clusteringSpiral Approach:

Alternative
representation as a
hierarchy tree with
leader nodes

25

At the lowest level (level 0) every node is a cluster

Directories at each level cluster, downward pointer if object locality known

26

Owner node

root

A Publish operation

 Assume that is the creator of which invokes the Publish operation

 Nodes know their parent in the hierarchy

ξ

ξ

27

root

Send request to the leader

28

root

Continue up phase

Sets downward pointer while going up

29

root

Continue up phase

Sets downward pointer while going up

30

root

Root node found, stop up phase

31

root

A successful Publish operation

Predecessor node
ξ

32

Requesting node
Predecessor node

root

Supporting a Move operation

 Initially, nodes point downward to object owner (predecessor node) due
to Publish operation

 Nodes know their parent in the hierarchy

ξ

33

Send request to leader node of the cluster upward in
hierarchy

root

34

Continue up phase until downward pointer found

root

Sets downward path while going up

35

Continue up phase

root

Sets downward path while going up

36

Continue up phase

root

Sets downward path while going up

37

Downward pointer found, start down phase

root

Discards path while going down

38

Continue down phase

root

Discards path while going down

39

Continue down phase

root

Discards path while going down

40

Predecessor reached, object is moved from node to node

root

Lookup is similar without change in the directory structure
and only a read-only copy of the object is sent

41

Distributed Queue

root

u

u

tailhead

42

Distributed Queue

root

u

u

tailhead

v

v

43

root

uv w

Distributed Queue

u

tailhead

v w

44

root

uv w

Distributed Queue

tailhead

v w

45

root

uv w

Distributed Queue

tailhead

w

46

Spiral avoids deadlocks

Label all the parents in each level and visit them in the
order of the labels.

2 1

A

object

parent(A)
B

3Level k

Level k-1

Level k+1

From root

parent(B)

5 24 4

Parent set B Parent set A

Spiral Hierarchy

• (O(log n), O(log n))-sparse cover hierarchy constructed
from O(log n) levels of hierarchical partitions

 Level 0, each node belongs to exactly one cluster

 Level h, all the nodes belong to one cluster with root r

 Level 0 < i < h, each node belongs to exactly O(log n) clusters
which are labeled different

47

Cluster

Overlaps

Cluster

Diameter

stretch

Spiral Hierarchy

• How to find a predecessor node?
 Via spiral paths for each leaf node u

by visiting parent leaders of all the clusters

that contain u from level 0 to the

root level

The hierarchy guarantees:

(1) For any two nodes u,v, their

spiral paths p(u) and p(v) meet at

level min{h, log(dist(u,v))+2}

(2) length(pi(u)) is at most O(2i log2n) 48

root

u
p(u)

v
p(v)p(w)

w

Downward Paths

49

root

u

p(u)

root

uv

p(v)

root

uv

p(w)

Deformation of spiral paths after moves

Analysis: lookup Stretch

50

v w

vi

x Level k

Level i

O(2k log2n)

O(2i log2n)

O(2k log n)

2i

If there is no Move, a Lookup r
from w finds downward path to v
in level log(dist(u,v))+2

= O(i)

When there are Moves, it can be
shown that r finds downward
path to v in level k = O(i + log
log2n)

p(w)

p(v)

C(r)/C*(r) = O(2k log2n)+O(2k log n)+O(2i log2n) / 2i-1

= O(log4n)

Canonical path

spiral path

Analysis: move Stretch

51

Level Assume a sequential execution R of l+1
Move requests, where r0 is an initial
Publish request.

C*(R) ≥ max1≤k≤h (Sk-1) 2k-1

C(R) ≥
k=1

ℎ (Sk−1) O(2k log2n)

C(R)/C*(R) =
k=1

ℎ (Sk−1) O(2k log2n) / max1≤k≤h (Sk-1) 2k-1

= O(log2n. h) max1≤k≤h (Sk-1) 2k-1 / max1≤k≤h (Sk-1) 2k-1

= O(log2n. log D)

h

.

.

.

k

.

.

.

2

1

0

request
x

r0

.

.

.

r0

.

.

.

r0

r0

r0

r1

.

.

r1

r1

r1

u v y w

r2

r2

r2

.

.

r2

r2

r2

rl-1

rl-1

rl-1

r2

.

.

rl

.

.

.

rl

rl

rl

. . .

Thus,

Presentation Outline

1. Tightly-Coupled Systems

2. Distributed Networked Systems

 3. NUMA

4. Future Directions

52

1u

1v

2u
2v

3u

3v

General routing: choose paths from
sources to destinations

Routing in DTM: source node of the predecessor request in
the total order is the destination of a successor request

Edge congestion

edge
C

maximum number of
paths that use any edge

Node congestion

node
C

maximum number of
paths that use any node

Length of chosen path
Length of shortest path

u
v

Stretch =

5.1
8

12
stretch

shortest path

chosen path

Inspiration: Oblivious Routing

Each request path choice is independent
of other request path choices

Problem Statement

• Given a d-dimensional mesh and a finite set of
operations R ={r0,r1,…,rl} on an object ξ

• Design a DTM algorithm that:

– Minimizes congestion C = maxe |{i : 𝑝𝑖 ϶ e}| on any
edge e

– Minimizes total communication cost A(R) = 𝑖=1
𝑙 |𝑝𝑖|

for all the operations

Limitation: Congestion and stretch cannot be minimized
simultaneously in arbitrary networks

Multibend DTM

• Focus on Mesh Neworks (general solution
impossible)

• For 2-dimensional mesh, MultiBend has both stretch
and (edge) congestion O(log n)

• For d-dimensional mesh, MultiBend has
stretch O(d log n) and

congestion O(d2 log n)

Type-1 Mesh Decomposition

2-dimensional mesh

Type-1 Mesh Decomposition

Type-1 Mesh Decomposition

Type-2 Mesh Decomposition

Type-2 Mesh Decomposition

Decomposition for 23x23 2-dimensional mesh

(i+1,2) (i+1,1) (i,2) (i,1)

Hierarchy levels

MultiBend Hierarchy

• Find a predecessor node via multi-bend paths for each
leaf node u

root

u
p(u) p(v)

v

Load Balancing

• Through a leader election procedure

– Every time we access the leader of a sub-mesh,
we replace it with another leader chosen
uniformly at random among its nodes

• The update cost is low in comparison to the
cost of serving requests

Analysis on (Edge) Congestion

• A sub-path uses edge e with probability 2/ml

• P’: set of paths from M1 to M2 or vice-versa

• C’(e): Congestion caused by P’ on e

• E[C’(e)] ≤ 2|P’|/ml

• B ≥ |P’|/out(M1)

• out(M1) ≤ 4ml

• C* ≥ B

==> E[C’(e)] ≤ 8C*

M2

M1e

ml

Assume M1 is a type-1
submesh

Presentation Outline

1. Tightly-Coupled Systems

2. Distributed Networked Systems

3. NUMA

 4. Future Directions

68

Future Directions

• Distributed Networked systems
Multiple objects

minimize time and communication cost

Fault tolerance

Dynamic networks

• NUMA
Study other network architectures

69

