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• Tightly-Coupled Systems
• Multicore processors

• Multilevel Cache

• Distributed Network Systems
• Interconnection Network

• Asymmetric communication

• Non-Uniform Memory Access Systems 
(NUMA)
• Partially symmetric 

Communication

Multiprocessor Systems
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Scheduling Transactions

Contention Management

Determines:
• when to start a transaction

• when to retry after abort

• how to avoid conflicts
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Efficiency Metrics

• Makespan
• Time to complete all transactions

• Abort per commit ratio
• Energy

• Communication cost
• Time and Energy

• Networked systems

• Load Balancing
• Time and Energy

• NUMA and networked systems
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Inspiration from Network Problems

Packet scheduling techniques
Helps to schedule transactions in multicores

Mobile object tracking in sensor networks
Helps to schedule transactions in networked systems

Oblivious routing in networks

Helps to load balance transaction schedules in NUMA
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Presentation Outline

 1. Tightly-Coupled Systems

2. Distributed Networked Systems

3. NUMA

4. Future Directions
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Scheduling in Tightly-Coupled Systems

One-shot scheduling problem
– M transactions, a single transaction per thread

– s shared resources

– Best bound proven to be achievable is O(s)
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• Problem Complexity: directly related to vertex 
coloring

• NP-Hard to approximate an optimal vertex 
coloring

• Can we do better under the limitations of 
coloring reduction? 
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Inspiration
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Packet routing and job-shop scheduling 

in O(congestion+dilation) steps (1994)
F. T. Leighton , Bruce M. Maggs , Satish B. Rao

Congestion (C) = max edge utilization

Dilation (N) = max path length



• A M × N window W 
– M threads with a sequence of N transactions per thread
– collection of N one-shot transaction sets

Execution Window Model
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Packet = thread

Path Length (N) = sequence of thread’s transactions

Congestion (C)= conflicts of thread’s transactions 

Analogy:

O(C + N log(MN))

Makespan



Intuition

Random delays help conflicting transactions shift inside the window 
Initially each thread is low priority
After random delay expires a thread becomes high priority
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How it works: Frames
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1 2 3 N

M

N

q1 ϵ [0, α1 -1], 
α1 = C1 / log(MN)

C=maxi Ci, 1 ≤ i ≤ M

F11 F3N

Thread 1

Thread 2

Thread 3

Thread M

F1NF12

Makespan = (C / log(MN) + Number of frames) × Frame Size

= (C / log(MN) + N) × Frame Size

First frame of Thread 1 where T11 executes

Second frame of Thread 1 where T12 executes

Frame size = O(log(MN)) 

=O (C + N log(MN))



Challenges

• Unit length Transactions

• C: may not be known

– Try to guess it for each transaction

– Use random priorities within frame

• N: what window size is good?

– Dynamically try different window sizes

DISC 2010 - 24th International 
Symposium on Distributed Computing
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Distributed Transactional Memory

• Transactions run on network nodes 

• They ask for shared objects distributed over the network 
for either read or write

• They appear to execute atomically

• The reads and writes on shared objects are supported 
through three operations:
 Publish

 Lookup

 Move
15
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Owner node

Suppose the object ξ is at node     and     is a requesting 
node

ξ

Requesting node

Suppose transactions are immobile and the objects are mobile
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Read-only copy
Main copy

Lookup operation  

ξ
ξ

Replicates the object to the requesting node
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Read-only copy
Main copy

Lookup operation    

ξ
ξ

Replicates the object to the requesting nodes

Read-only copy
ξ
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Main copy
Invalidated

Move operation  

ξ
ξ

Relocates the object explicitly to the requesting node
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Invalidated

Move operation  

ξ

Relocates the object explicitly to the requesting node

Main copy
ξ

Invalidated
ξ



Related Work

Protocol Stretch Network Kind Runs on

Arrow
[DISC’98]

O(SST)=O(D) General Spanning tree

Relay
[OPODIS’0
9]

O(SST)=O(D) General Spanning tree

Combine
[SSS’10]

O(SOT)=O(D) General Overlay tree

Ballistic
[DISC’05]

O(log D) Constant-
doubling 
dimension

Hierarchical directory 
with independent sets

Spiral
[IPDPS’12]

O(log2 n log D) General Hierarchical directory
with sparse covers

 D is the diameter of the network kind
 S* is the stretch of the tree used



Inspiration
Concurrent online tracking of mobile users (1991)

Awerbuch, B., Peleg, D.

• A distributed directory scheme to minimize cost 
of moving objects
• Total communication cost is proportional to the distances of 

positions of moving objects

• Uses a hierarchical clustering of the network
• sparse partitions
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Hierarchical clusteringSpiral Approach:

Network graph
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Hierarchical clusteringSpiral Approach:

Alternative 
representation as a 
hierarchy tree with 
leader nodes
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At the lowest level (level 0) every node is a cluster

Directories at each level cluster, downward pointer if object locality known
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Owner node

root

A Publish operation  

 Assume that     is the creator of    which invokes the Publish operation 

 Nodes know their parent in the hierarchy

ξ

ξ
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root

Send request to the leader  
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root

Continue up phase  

Sets downward pointer while going up
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root

Continue up phase  

Sets downward pointer while going up
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root

Root node found, stop up phase   
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root

A successful Publish operation

Predecessor node
ξ
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Requesting node
Predecessor node

root

Supporting a Move operation  

 Initially, nodes point downward to object owner (predecessor node) due 
to Publish operation

 Nodes know their parent in the hierarchy

ξ
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Send request to leader node of the cluster upward in 
hierarchy

root
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Continue up phase until downward pointer found

root

Sets downward path while going up
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Continue up phase

root

Sets downward path while going up
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Continue up phase

root

Sets downward path while going up
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Downward pointer found, start down phase

root

Discards path while going down
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Continue down phase

root

Discards path while going down
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Continue down phase

root

Discards path while going down



40

Predecessor reached, object is moved from node    to node  

root

Lookup is similar without change in the directory structure 
and only a read-only copy of the object is sent
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Distributed Queue

root

u

u

tailhead
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Distributed Queue

root

u

u

tailhead

v

v
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root

uv w

Distributed Queue

u

tailhead

v w
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root

uv w

Distributed Queue 

tailhead

v w
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root

uv w

Distributed Queue 

tailhead

w
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Spiral avoids deadlocks

Label all the parents in each level and visit them in the 
order of the labels.

2 1

A

object

parent(A)
B

3Level k

Level k-1

Level k+1

From root

parent(B)

5 24 4

Parent set B Parent set A



Spiral Hierarchy

• (O(log n), O(log n))-sparse cover hierarchy constructed 
from O(log n) levels of hierarchical partitions

 Level 0,  each node belongs to exactly one cluster

 Level h, all the nodes belong to one cluster with root r

 Level 0 < i < h, each node belongs to exactly O(log n) clusters 
which are labeled different
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Spiral Hierarchy

• How to find a predecessor node?
 Via spiral paths for each leaf node u 

by visiting parent leaders of all the clusters 

that contain u from level 0 to the 

root level

The hierarchy guarantees:

(1) For any two nodes u,v, their 

spiral paths p(u) and p(v) meet at          

level min{h, log(dist(u,v))+2}

(2) length(pi(u)) is at most O(2i log2n) 48

root

u
p(u)

v
p(v)p(w)

w



Downward Paths
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root

u

p(u)

root

uv

p(v)

root

uv

p(w)

Deformation of spiral paths after moves



Analysis: lookup Stretch
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v w

vi

x Level k

Level i

O(2k log2n)

O(2i log2n)

O(2k log n)

2i

If there is no Move, a Lookup r 
from w finds downward path to v 
in level log(dist(u,v))+2 

= O(i)

When there are Moves, it can be 
shown that r finds downward 
path to v in level k = O(i + log 
log2n)

p(w)

p(v)

C(r)/C*(r) = O(2k log2n)+O(2k log n)+O(2i log2n) / 2i-1

= O(log4n)

Canonical path

spiral path



Analysis: move Stretch
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Level Assume a sequential execution R of l+1 
Move requests, where r0 is an initial 
Publish request.

C*(R) ≥ max1≤k≤h (Sk-1) 2k-1

C(R) ≥  
k=1

ℎ (Sk−1) O(2k log2n)

C(R)/C*(R) =  
k=1

ℎ (Sk−1) O(2k log2n) / max1≤k≤h (Sk-1) 2k-1

= O(log2n. h) max1≤k≤h (Sk-1) 2k-1 / max1≤k≤h (Sk-1) 2k-1

= O(log2n. log D) 

h

.

.

.

k

.

.

.

2

1

0

request 
x

r0

.

.

.

r0

.

.

.

r0

r0

r0

r1

.

.

r1

r1

r1

u v y w 

r2

r2

r2

.

.

r2

r2

r2

rl-1

rl-1

rl-1

r2

.

.

rl

.

.

.

rl

rl

rl

. . .

Thus,



Presentation Outline

1. Tightly-Coupled Systems

2. Distributed Networked Systems

 3. NUMA

4. Future Directions

52



1u

1v

2u
2v

3u

3v

General routing: choose paths from 
sources to destinations

Routing in DTM: source node of the predecessor request in 
the total order is the destination of a successor request



Edge congestion

edge
C

maximum number of 
paths that use any edge

Node congestion

node
C

maximum number of 
paths that use any node



Length of chosen path
Length of shortest path

u
v

Stretch =

5.1
8

12
stretch

shortest path

chosen path



Inspiration: Oblivious Routing

Each request path choice is independent 
of other request path choices



Problem Statement

• Given a d-dimensional mesh and a finite set of 
operations R ={r0,r1,…,rl} on an object ξ

• Design a DTM algorithm that:

– Minimizes congestion C = maxe |{i : 𝑝𝑖 ϶ e}| on any 
edge e

– Minimizes total communication cost A(R) =  𝑖=1
𝑙 |𝑝𝑖|

for all the operations

Limitation: Congestion and stretch cannot be minimized 
simultaneously in arbitrary networks



Multibend DTM

• Focus on Mesh Neworks (general solution 
impossible)

• For 2-dimensional mesh, MultiBend has both stretch 
and (edge) congestion O(log n)

• For d-dimensional mesh, MultiBend has 
stretch O(d log n) and 

congestion O(d2 log n) 



Type-1 Mesh Decomposition 

2-dimensional mesh



Type-1 Mesh Decomposition 



Type-1 Mesh Decomposition 



Type-2 Mesh Decomposition 



Type-2 Mesh Decomposition 



Decomposition for 23x23 2-dimensional mesh

(i+1,2)             (i+1,1)                      (i,2)                      (i,1)

Hierarchy levels



MultiBend Hierarchy

• Find a predecessor node via multi-bend paths for each 
leaf node u 

root

u
p(u) p(v)

v



Load Balancing

• Through a leader election procedure

– Every time we access the leader of a sub-mesh, 
we replace it with another leader chosen 
uniformly at random among its nodes

• The update cost is low in comparison to the 
cost of serving requests



Analysis on (Edge) Congestion

• A sub-path uses edge e with probability 2/ml

• P’: set of paths from M1 to M2 or vice-versa

• C’(e): Congestion caused by P’ on e

• E[C’(e)] ≤ 2|P’|/ml

• B ≥ |P’|/out(M1)

• out(M1) ≤ 4ml

• C* ≥ B

==> E[C’(e)] ≤ 8C*

M2

M1e

ml

Assume M1 is a type-1 
submesh
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Future Directions

• Distributed Networked systems
Multiple objects 

minimize time and communication cost

Fault tolerance

Dynamic networks

• NUMA
Study other network architectures
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