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Abstract—WebRTC enables browsers to exchange data directly
but the number of possible concurrent connections to a single
source is limited. We overcome the limitation by organizing
participants in a fat-tree overlay: when the maximum number
of connections of a tree node is reached, the new participants
connect to the node’s children. Our design quickly scales when a
large number of participants join in a short amount of time, by
relying on a novel scheme that only requires local information to
route connection messages: the destination is derived from the
hash value of the combined identifiers of the message’s source
and of the node that is holding the message. The scheme provides
deterministic routing of a sequence of connection messages from
a single source and probabilistic balancing of newer connections
among the leaves. We show that this design puts at least 83%
of nodes at the same depth as a deterministic algorithm, can
connect a thousand browser windows in 21-55 seconds in a local
network, and can be deployed for volunteer computing to tap
into 320 cores in less than 30 seconds on a local network to
increase the total throughput on the Collatz application by two
orders of magnitude compared to a single core.

I. INTRODUCTION

Web browsers provide a fast execution environment [21],
[19], are already installed on most devices today, and are
progressively adding support for WebRTC [4], which enables
direct connections for exchanging data. However, current
browser implementations limit the number of concurrent We-
bRTC connections to a single source to 256 [1]. In practice,
this number is even more limited: the overhead of maintaining
connections becomes significant beyond 70 concurrent con-
nections in some libraries.1 This limits the total number of
participants.

We increased the total number of participants by using a
fat-tree overlay. In a fat-tree [31], processors are located on
the leaves and internal nodes relay data for all their children;
each new layer in the tree increases the number of possible
connections exponentially. The main benefit in the context of
the Web is to remove the need to relay data on dedicated
servers by employing intermediate nodes in a fat-tree as relays.

Existing work on fat-trees [31], [38], [18], [13] has not so
far provided solutions for quick scaling. The key issues are to
quickly distribute the newer participants among the existing

1Such as the electron-webrtc [2] library for Node.js.

leaves and quickly route, through the fat-tree, the multiple
messages generated by WebRTC to open a new connection.
To address both, we propose a novel routing scheme, which
we call Genet 2, that only requires local information to route
connection messages: this eliminates the latency that would
otherwise be incurred by waiting for the status from other
parts of the tree. The destination for messages is derived
from the hash value of the combined identifiers of the source
and the current routing node, providing two properties. First,
the scheme deterministically routes multiple messages sent
by a new participant to the same leaf node. Second, the
scheme ensures probabilistic balancing of newer connections
between all the children to keep the tree balanced. This
design is especially suited to the context of compute-intensive
applications that leverage volunteers’ devices because users
tend to add local devices first before asking for help from
others; the devices in the first layer of the tree will therefore
also benefit from the largest available bandwidth.

To show the probabilistic balancing scheme is useful, we
measured the depth of nodes and found that at least 83% of
nodes have the same depth as they would have in a determin-
istic scheme; this percentage grows to 92.5% as the tree grows
larger and is independent of the failure level of nodes if they
reconnect through the root after a disconnection. To show the
design can quickly scale, we measured the time required for all
participants to become connected within a fat-tree overlay fully
implemented and tested in Pando [29], a tool for personal vol-
unteer computing [28] that targets shorter-running tasks than
is typical for well-known and larger-scale volunteer computing
projects [5]. We succeeded in connecting a thousand browser
windows in 22-55 seconds on a local network and could
fully deploy the Collatz application on 320 cores, reaching
maximum throughput in less than 30 seconds. Both results
show that the design is quite useful for quick deployments on
local networks, such as those in a university department or
a large organization. Additional preliminary measurements of
connectivity probability and latency for WebRTC on Internet
deployments show that further refinements of the design in

2Clonal colony of plants in which all individuals share the same genetic
material. We expect the design, if it is successful, to eventually form a dynamic
forest of overlays on the Web.
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an Internet setting shall include tolerance to failures of initial
connections, perhaps by initiating multiple connections upon
joining, and tolerate initial connection latencies of up to 9-16
seconds.

Compared to previous work on fat-trees, we are the first
to (1) propose a deterministic routing scheme for connection
messages to quickly grow a fat-tree overlay when a large
number of participants join in a short amount of time, (2)
implement such a design with WebRTC to overcome the limit
on the number of connections, and (3) apply the idea to
dispatch work and retrieve results in a volunteer computing
tool, using participants for data distribution rather than a
dedicated server.

In the rest of this paper, we first explain the design of the
fat-tree overlay in more detail (Section II). We then explain
how we adapted Pando to use our fat-tree overlay to improve
its scalability (Section III). We continue with an evaluation
of the resulting implementation (Section IV). We then review
similar work (Section V) and summarize the contributions of
the paper (Section VI).

II. DESIGN

Our fat-tree overlay organizes participants in a tree to
increase the number of concurrent connections that can be
made to a single origin, while bounding the number of
concurrently active WebRTC connections each participant
maintains. To establish a WebRTC connection, participants
exchange signals, or possible connection endpoints, with one
another to determine how to connect through the Network-
Address Translation (NAT) schemes used by routers. The ICE
signalling protocol [6] used by WebRTC uses a trickle mode
in which signals are sent as they are discovered. This reduces
the latency to open the connection compared to waiting for all
endpoints to be identified. The trickle mode generates multiple
messages that need to be routed through the tree to exactly
the same destination node. Moreover, to minimize the latency
and make the tree grow quickly, the depth of nodes should
be minimized by making the number of children in sibling
sub-trees similar.

Our solution solves both problems while requiring only
information available locally in each node. Each node main-
tains a list of at most ChildrenLimit children, a deployment
parameter with a default of 10. Children are added in that list
in the order in which they connect and keep the same index
until they either disconnect or crash. As illustrated in Figure 1,
when a new participant joins the tree, the candidate first opens
a WebSocket channel to the Relay Server and creates a random
identifier id (Step 1). It then sends multiple join requests that
each contain its identifier (origin) and one of the WebRTC ICE
signals to the Root (Master) node (Step 2). From there, each
node has two choices. In the first case, if it has less children
than ChildrenLimit, it assigns the candidate to one of its
children and attempts to open a WebRTC connection using the
candidate’s signals. During the opening, it will generate signals
of its own that are sent as replies to the candidate through the
Relay Server (Step 3). Signals are exchanged by both parties

until a direct WebRTC connection is established, after which
the WebSocket connection of the candidate is terminated (Step
4). In the second case (not illustrated), the node delegates the
requests to one of its children. If the WebRTC connection
to the child is not yet open, the requests are held until the
connection is established and then forwarded.

Each node makes routing decisions for delegation by taking
the origin identifier, xored with the node’s identifier id, the
hash of the result is taken, and then the numerical index of
the child in the children list is computed by taking the modulo
ChildrenLimit:

childIndex = hash(originId ∧ nodeId)%ChildrenLimit
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Fig. 1: Genet’s WebRTC bootstrap with the joining sequence
marked with numbered diamonds.

The xor of the originId and nodeId is not strictly necessary,
a concatenation of the bits of both identifiers could work also.
The advantage of the xor function is to provide a result with
the same number of bits as the identifiers, which may be
useful when all operations need to be performed in fixed-width
registers.

This routing scheme has three interesting properties. First,
routing is deterministic: requests from the same origin are
routed to the same child at every step of the tree. Second, the
choice of a good hash function ensures probabilistic balancing
of newer connections between the children. Third, by using
only information locally available in each node, the routing
decisions are quick to make because they don’t need global
information about the tree, which enables a quick scaling of
the tree on startup.

In some cases, nodes may fail and suddenly disconnect
during execution. In those cases, their children, once they have
detected the failure, will in turn disconnect their own children
(if they have some) and all disconnected nodes will try to
reconnect to the root. In other cases, the WebRTC connection
may fail to successfully open. Then, the parent node will
remove the potential candidate after a configurable timeout,
with a default value of 60 seconds.



When deploying the scheme on a local network, it is
possible to combine in the same process the Root node and the
Relay server. On a wide-area network however, it is important
that the Relay Server has a publicly-facing IP address to enable
direct WebSocket connections.

Our implementation performs a routing optimization to
accelerate the exchange of messages: to reply to signals, a
node opens a direct WebSocket connection to the Relay server.
Then if a candidate receives the first reply-signal before having
submitted all its own signals, the candidate will use the origin
of the reply as a destination for all subsequent signals. This
optimization therefore skips some of the routing steps for the
late signals. It is however not necessary, another variation that
minimizes the number of WebSocket connections to the Relay
Server by routing all replies through the Root would also work.
We have made our JavaScript implementations of both the
Genet algorithm [26] and the relay server [25] available as
reusable libraries for Node.js and the browser.

III. APPLICATION TO PERSONAL VOLUNTEER COMPUTING

We implemented a scalable version of Pando [29], a tool that
leverages personal devices’ browsers for executing computa-
tions in parallel, based on our JavaScript implementation [26]
of the Genet fat-tree overlay. When a new browser window,
executing on the device, successfully connects, it first joins as
a leaf in the fat-tree and computes results, therefore acting as
a processor. When additional browser windows join beyond
the ChildrenLimit of the root, the extras connect to the
current leaves. The leaves then stop computing and instead
start relaying data and results, becoming coordinators. The
process repeats at every level of the tree with new devices
joining. We have successfully tested a thousand participants
(Section IV) but the design should allow potentially millions
of devices to connect in a single overlay, the limiting factors
being the bandwidth available on the root node and the number
of concurrent connections supported by the Relay Server,
which determine the joining rate.

The implementation of Pando using the Genet overlay fol-
lows a recursive structure. Fundamentally, Pando implements a
streaming map abstraction: it applies the same function on all
inputs it receives from a stream and outputs the results in order.
The original implementation of Pando uses the StreamLender
abstraction to coordinate the distribution of values between
a dynamic number of children. To handle potential failures,
StreamLender keeps values in memory until a result has
been provided. In case of a child’s failure, StreamLender will
automatically re-submit the memorized values to remaining
children. Our scalable implementation re-uses the Stream-
Lender abstraction on intermediary nodes of the fat-tree, as
illustrated in Figure 2, enabling failures to be handled in the
parent of a failing node. Intermediary nodes may also fail.
In that case, the parent node will handle the failure by re-
submitting the values in a different sub-tree.

As in the original implementation, The StreamLender ab-
straction and the streaming model used by Pando, are demand-
driven and will provide values as quickly as they are asked,
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Fig. 2: Scalable Pando, based on the Genet’s fat-tree overlay.

enabling faster processors to process more values. However,
the WebRTC channel library we use eagerly reads all available
values, regardless of the speed at which they are processed on
the receiving side. We therefore regulate the flow by using
the Limiter module: it lets a limited number of values flow
through, after which newer values are sent only after results
have been returned. The limit is dynamically adjusted by
periodic reports on the number of children in the sub-tree
provided by our implementation to adjust the flow to a growing
or shrinking fat-tree.

Using the previous design, the fat-tree overlay enables larger
total throughput for Pando while providing a quick speed of
deployment.

IV. EVALUATION

In the next sections, we evaluate the behaviour of the
design, both in simulation over a large number of experiments,
and in real-world deployments, over a smaller number of
experiments. We also mesure the benefits provided by the
fat-tree overlay when deployed as part of a real throughput-
oriented application in personal volunteer computing.



A. Depth with Probabilistic Balancing

We first study the impact of choosing a probabilistic bal-
ancing scheme on the depth of the fat-tree under various levels
of failure, because the depth has a direct impact on the latency
of communication between the root and the leaf nodes.

1) How deep is the fat-tree?: N nodes in a perfectly bal-
anced tree are at depth less or equal to dlog(N)e. Because they
are distributed randomly in our fat-tree, a certain percentage
of nodes are deeper. To quantify the percentage of nodes that
may be affected, we simulated the construction of the tree with
nodes with random identifiers that join one after the other,
assuming all nodes do not crash. We then counted the number
of nodes in the extra levels, and repeated the experiment a
thousand times.

Over a thousand experiments, we observed no nodes two
levels deeper, which while possible in theory is in practice ex-
tremely unlikely. The proportion of nodes at depth log(N)+1
varied between experiments. The results are shown in Figure 3,
as a cumulative distribution function for various sizes of trees,
to provide both intuitions about the average behaviour and
the maximum cases. Our results show that in a majority of
experiments (≥700), 8% or less nodes are on the extra level
of the tree, regardless of the number of nodes in the tree.
They also show that in all cases, 17% or less of nodes were
in the extra level. Moreover, the larger the tree, the closer all
experiments get to around 7.5% of nodes in the extra level.
Therefore, in all experiments, ≈ 83% of nodes are located no
deeper than they would have been if the tree had been fully
balanced.
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Fig. 3: Number of experiments with X% or less of nodes at
depth log(N) + 1 over 1000 repetitions and no failures.

2) Do failures make it deeper?: In practice, a certain
number of nodes will fail and force their children to reconnect.
To quantify the impact, we construct a tree as in the previous
experiment but then disconnect a certain percentage of nodes,
then let all nodes reconnect through the root. We then count the
number of nodes at deeper levels than log(N). We performed

a thousand experiments for trees of size 10, 100, 1000, and
10000 under various probabilities of failure (F ) from 0 to 1.

Over a thousand experiments, we observed no nodes at
depth log(N) + 2. In all cases, the failures did not affect the
percentage of nodes at depth log(N)+ 1. Results with a 25%
probability of failure are shown in Figure 4; the results are the
same for other levels of probability. Failures therefore do not
change the distribution of nodes through the tree.

2/19/2019 index-failure.html
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Impact of failure probability on depth (N=100)
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Fig. 4: Number of experiments with X% or less of nodes at
depth log(N)+1 over 1000 repetitions and a failure probability
of 0.25 for nodes to fail.

Our probabilistic balancing scheme therefore achieves
equivalent depth as a deterministic algorithm for at least 83%
of nodes, in the presence of failures or not. For larger trees, of
a thousand nodes or more, this percentage increases to 92.5%:
scale therefore increases the effectiveness of the scheme (up
to a limit).

B. Bootstrap Latency When Scaling

How quickly does the Genet fat-tree scale in practice? We
first measure the latency in establishing a WebRTC connection
as a baseline and then measure the added overhead of our
scheme to connect all nodes, as a function of the size of the fat-
tree, with fat-trees of size 10 to a 1000 nodes. We performed
these measurements on Grid5000 [11] because it is represen-
tative of deployments on a local area network, such as those
of a university or a large organization, the infrastructure was
accessible to us, it facilitates the replication of experiments,
and it can easily scale the number of participating nodes.

For our experiments, we used Grid5000 nodes from the
Grenoble site, that has two models of nodes. The first model
(dahu) are based on the Dell PowerEdge C6420 that uses Intel
Xeon Gold 6130 CPUs (Skylake, 2.10GHz, 2 CPUs/node, 16
cores/CPU), have 192GB of memory and are connected by
10 and 100 Gbps network links. The second model (yeti) is
based on the the Dell PowerEdge R940 with also with Intel
Xeon Gold 6130 CPUs (Skylake, 2.10GHz, 4 CPUs/node, 16
cores/CPU), have 768GB of memory and are also connected
by 10 and 100 GBps network links. The exact distribution
of nodes for experiments is chosen randomly between the



two models, based on availability (because other experiments
concurrently run at the same time on other machines), in our
case it was almost always the dahu nodes that were used,
with an occasional yeti node in the mix. All our throughput
experiments were also made with these nodes.

1) How long does it take to establish a single WebRTC
connection?: While individual nodes on Grid5000 enjoy a
sub-millisecond latency, the ping between nodes is typically
between 0.1 and 0.2 ms, establishing a WebRTC connection
is significantly slower. As explained in Section II, each par-
ticipant in a connection first starts listing potential connec-
tion end-points that can enable Network-Address Translation,
also contacting STUN servers in the process. For example,
the Google STUN server we use (stun.l.google.com)
has an average ping latency of 35ms. The endpoints need
to be exchanged between participants through a relay and
finally, multiple connections are tried from both sides until
one is found to work. Between nodes on a local network,
the connection can be established earlier because some of
the endpoints will use the local IP address and therefore
a connection on the local area network can be established
before the other endpoints discovered by the STUN server are
received. Nonetheless, the messages exchanged with the relay
server significantly adds to the delay.

In our tests, the relay server was running on the local
network and connected 20 browser windows on 10 Grid5000
nodes forming a fully connected clique, each window opening
a connection to every other window. All connection attempts
succeeded. For all connections, we measured the latency
between creating the connection and a confirmation message
sent through the connection, which corresponds to the time it
takes before data starts flowing through the connection. We
used webrtc-connection-testing [27] version 4.0.0,
an open source tool we built for this task. The results are
shown in Figure 5. We observed connection latencies less than
1000ms, with 95.5% of connections taking less than 500ms.
Of the 363 connections that took less than 500ms, 41 took less
than 100ms, 112 took between 100ms and 200ms, 132 took
between 200ms and 300ms, and 78 took between 400ms and
500ms (not shown on the figure).

4/24/2019 latencies-grid5000-local-server.html
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Fig. 5: WebRTC connection latency distribution over 380
successful connections between nodes on the Grid5000’s
Grenoble site using a local server.

Therefore, even if Grid5000 nodes have sub-millisecond
ping latencies, establishing a WebRTC connection is slow and
typically takes three to four orders of magnitude longer, up
to 1000ms. As the implementation of WebRTC is part of the
implementation of the browser, any overlay design executing
in JavaScript is subjected to this constraint and will be fully
deployed at the speed at which the slowest connections are
established.

2) How long does it take to connect all nodes in a fat-
tree?: Fully deploying a fat-tree, in which nodes are organized
in multiple layers, shall therefore take at least time that is
proportional to the depth of the tree and the time it takes to
establish the slowest connections. In this section and the next,
we show it is the case in practice with a full implementation
in a working tool that we use for actual applications.

We used Pando version 0.17.9 [24] for our tests, which
implements the design of Section III. The fat-tree is used to
distribute inputs to processors and retrieve back results. We
used a fat-tree of degree 10, which means that each node has
at most 10 children and each layer of the tree will have a
multiple of 10 participants in it. We used a test application
that waits for 1 second then returns the square of the input
value for a number of reasons. This removes the impact of
potential differences of CPUs speeds, making it easier to
determine when all processors are connected and producing
results because the overall throughput, in values per seconds, is
equal to the number of participating processors (on the leaves
of the fat-tree). In turn, this means our measurements really
represent the coordination overhead of the entire system. And
finally, the time it takes to reach the full throughput represents
the bootstrapping latency.

We deployed the fat-tree on 10 different Grid5000 nodes
on the Grenoble’s site by progressively increasing the number
of browser windows executing on each node, with 1, 5, 10,
25, 50, and 100 windows. We repeated each experiment five
times. Each node was connected with a one second delay after
the previous, e.g. the first node opens its browser windows
after a 1-second delay, the second with a 2-seconds delay,
etc. up to 10 seconds for the last node. While opening a
large number of browser windows at the same time (each
executing in their own operating system process) from the
same node worked fine, launching browsers at the same time
from multiple nodes led to connection errors, which prompted
the addition of an artificial delay between Grid5000 nodes.
The rate of connection for 10 browser windows is therefore 1
browser window per second for 10 seconds, while the rate of
connection for 1000 browser windows is 100 browser windows
per second for 10 seconds.

As the fat-tree is deploying, periodic status updates are sent
from the leaves to the root node to report on the current state
of the fat-tree. We used an interval of 3 seconds between
reports, therefore the state of the fat-tree may be known at
the earliest 3 seconds after having changed. This means the
latency that we report in the next figures represent an upper
bound on the actual latency to connect the nodes. We measured
the time it takes until all browser windows were counted as



children in the tree. We then also measured the throughput
of squared values at the output of Pando, also by sampling
at intervals of 3 seconds. We measured the time it takes until
the throughput corresponds to the number of leaves in the fat-
tree, as reported by the previous reporting mechanism. The
throughput measurements are independent from the reporting
strategy, and the latency measured really represents the time
observed by a user of Pando until full throughput is achieved.
Both results are shown in Figure 6.
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Fig. 6: Latency to connect all participants in the fat-tree on
the Grid5000’s Grenoble site over 5 experiments.

For 10 browser windows, it typically takes about 15 seconds
to connect them all in the first layer of the fat-tree. This is
about 5 seconds longer than the 10 seconds required to open
all browser windows; the additional delay can be explained by
a 1-2 second delay before Pando’s server is ready after start-
up, the maximum latency of 1000ms to establish the slowest
connections, as reported in the previous experiment, and the
reporting interval, i.e. we learned of that last connection 5
reports after Pando was started. The maximum throughput is
first observed one sample later, at 18 seconds, as shown by the
’Output Latency’ curve. As the size of the tree increases, so
does its depth and therefore the latency to fully connect the fat-
tree. At 100, 250, and 500 browser windows its takes about 18
seconds to fully connect the children, while at 1000 browser
windows it takes 24 seconds. The latency to reach maximum
throughput follows accordingly by one or two samples, 21
seconds for 50 and 100 browser windows, 24 seconds for 250
and 500 browser windows, and 28 seconds for 1000 browser
windows. The variation between experiments also grows larger
as the size of the tree grows, we measured a latency of up to 54
seconds both for connecting children and reaching maximum
throughput in a single experiment. We can therefore conclude
that it typically takes 30 seconds to connect all nodes in
our WebRTC fat-tree and sometimes up to a minute on the
Grid5000 testbed.

C. Throughput Ramp-up in the Collatz Application

Now that we have established a typical latency of 30
seconds to reach maximum throughput, does the fat-tree, when
used with Pando, behave in the same way when the leaf
nodes are actually performing computations, as described in

Section III? We answer that question by taking one rep-
resentative application of volunteer computing, the Collatz
Conjecture [3], which has also been implemented [5] using
the BOINC [9] infrastructure. This is essentially a number-
crunching application, with really small inputs requiring a
significant amount of computations, most of the time being
spent manipulating big integers that do not fit into registers.
We implemented the application in JavaScript with an off-
the-shelf Big Number library. For the purpose of measuring
the scaling behaviour, the single core performance is not
critical, a faster implementation shall increase our throughput
measurements by a constant factor, which would be obtained
by better using the CPU, while not affecting much the scaling
behaviour, which is instead due to the coordination performed
by the fat-tree.

Studying the throughput scaling behaviour on actual appli-
cations is complicated by the fact that all tasks do not take
the same amount of time. The throughput at the output of
Pando can vary both because nodes join or because tasks are
temporarily faster or slower. Moreover, as our fat-tree design
probabilistically balances the tree, the actual number of leaves
that are processing inputs varies between experiments. It is
therefore harder to determine when all connected nodes have
started contributing to computations. We therefore first mea-
sured the average throughput with a given number of nodes,
and let the deployment compute for at least three minutes.
We then took the average throughput measured after all the
nodes were connected and counted the number of participating
processors (leaves). We measured for 10 Grid5000 nodes, with
1, 16, and 32 browser windows per node, the last being the
maximum number of cores available on the machines of the
Grenoble site. The results are shown in Figure 7.
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Fig. 7: Average throughput on the Collatz application on
Grid5000 as the number of cores used increases.

As the number of browser windows increases, so does the
average throughput, showing a clear benefit to scaling the
number of participating cores. However, the results are not
quite linear. This is actually not due to the fat-tree design but
contention for CPU resources on the same machine. We did
a quick second experiment with 10 browser windows on a
single machine and we obtained ≈ 480BigNums

(s∗node) rather than
the ≈ 560BigNums

(s∗node) we obtained with 10 browser windows on



10 nodes.
We then used the previous average throughput as a target to

determine the time it takes before all cores are actually con-
tributing results, when deployed with the fat-tree overlay. We
therefore measured the time it takes until the output throughput
reaches the average throughput measured previously, adjusted
for the actual number of participating processors (leaf nodes
in the fat-tree). We used the same methodology as in Sec-
tion IV-B2. The results are shown in Figure 8.
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Fig. 8: Latency to reach maximum throughput on the Collatz
application on Grid5000 as the number of cores increases.

The results are consistent with the previous results, even
slightly better probably because of the uncertainty added by
the 3 seconds sampling interval. In this case again, reaching
maximum throughput typically takes 15 seconds with 10 nodes
(≈ 10 cores), 18 seconds with 160 nodes (≈ 110 cores), and
21 seconds with 320 nodes (≈ 220 cores).

D. WebRTC Connection Probability and Establishment La-
tency on the Internet

The previous results show that our WebRTC fat-tree design
is effective in quickly deploying a large number of nodes on
a local area network and provided a methodology for system-
atically studying their performance for volunteer computing
applications, both of which had never been done before. In
this section we provide some additional intuitions about how
a deployment that targets the Internet should be adapted and
show how the tools we built for the previous experiments can
be used in that setting to motivate future works.

The previous results already show that the latency in es-
tablishing WebRTC connections is a significant factor in the
overall latency of deploying a fat-tree, because even on a fast
local network, a connection can take up to 1000 ms to be
established. We tested two additional settings, one in which
the relay server for exchanging the connection endpoints is
located outside the local network and a second in which the
participants are distributed across the planet.

We show the results of the first experiment in Figure 9 when
establishing connections between browser windows executing
on Grid5000, but relying on a remote server located in Paris,
France3, for relaying signalling messages. The ping latency

3Running on Amazon Cloud.

from Grenoble to that server takes 40ms on average and
ranges from 13ms to 150ms, about 130-1500 times higher than
between nodes within Grid5000. All connections succeeded
also in this case. We observed similar results as for the
experiment with a local server but with greater variability, with
some connections taking between 1000ms and up to 16s to
be established. Among the fastest established connections, 16
took less than 100ms, 123 took between 100ms and 200ms, 82
took between 200ms and 300ms, 31 took between 300ms and
400ms, 29 took between 400ms and 500ms, 36 took 500ms to
600ms, and 17 took 600ms to 700ms (not shown in the figure),
and together account for 89% of all latency results. Compared
to using a local server, 22.6% less connections take less than
500ms and almost three times more take between 500ms and
1000ms. Connections therefore have additional latency as well
as greater variability, as would be expected from messages
routed on the Internet.
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Fig. 9: WebRTC connection latency distribution over 380
successful connections between nodes on the Grid5000’s
Grenoble site using a remote server.

For the second experiment, we asked 20 participants ran-
domly selected among Mechanical Turk [7] workers to open
a web page that tested their WebRTC connectivity to other
participants and the experimenter. Out of the 21 participants,
including the experimenter, 17 chose to voluntarily disclose
their location using the geolocation API of their browser. The
world-wide distribution of participants is shown in Figure 10.
Between all participants that were connected to the relay server
at the same time, 398 WebRTC connection attempts were
made, out of which 194 succeeded, for a success ratio of
48.7%. This shows, unsurprisingly, that random connections
between participants do not always succeed. However, contrary
to our initial expectations, almost half of the connections
succeeded.

The latency in establishing connections, as shown in Fig-
ure 11, has more variation compared with the local and remote
server experiments on Grid5000. Except for one result, all
other connections took at least 500ms to be established and
most results are well-distributed between 500ms and 8500ms.
Compared to Figure 5 and Figure 9, it is therefore more typical
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Fig. 10: Geographical location of participants that accepted
to share their location.

for a participant to take several seconds to be connected.4
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Fig. 11: WebRTC connection latency distribution over 194
successful connections between world-wide participants.

Supposing our results generalize, which shall be validated
in larger settings, this means that choosing a random Internet
participant for connection shall lead to a successful connection
almost half the time. However, this also highlights the need
for mechanisms to tolerate failures of initial connections. One
possible solution would be to first test for connectivity before
deploying the fat-tree, which unfortunately would lead to a
higher connection latency. A second possible solution would
be to attempt multiple random connections when a participant
joins. In effect, bootstrapping the fat-tree this way would lead
to a mesh network, which could then, for example, be made
to converge to a more efficient topology if necessary.

V. RELATED WORK

Fat-tree topologies have originally been proposed to provide
high-bandwidth communication between nodes in computing

4This experiment used the previous 3.0.2 version of the
webrtc-connection-testing tool [27], which can introduce an
additional connection delay because participants that are already connected
receive notifications of newer participants only every 5 seconds. This was
fixed in version 4.0.0 (which was used in the previous experiments) to send
notifications as soon as participants are connected. Because we could not
assemble again the same set of participants to repeat the Internet deployment
of the original paper submission, we present the original results. While the
average latency could possibly be lower, we would expect to still observe an
increased variability of the latencies and values of at least a few seconds.

clusters while minimizing the cost of switching hardware [31].
Fat-trees derive their name from the increasing bandwidth
requirements on edges closer to the root because they relay
traffic for all children in the underlying sub-tree. Fat-trees
were later also adopted explicitly or implicitly in overlay
networks, in which nodes connected using Internet protocols
are organized in logical networks for efficient communication,
to provide, for example, multicast communication [43], [13].

Extensive work on tree overlays for multicast applications
has been done since the 90s [43], in which the same data is
disseminated from a single source to tens and up to millions
of participants. Typical applications of volunteer computing
have different data transfer patterns because each participant
receives a different sub-set of data. BOINC submits the same
computation to a small number of participants (at least three)
until a majority agrees [41], while the current version of
Pando [29] does not use redundancy because the code is
executed on trusted devices. In addition, in both cases, each
participant will return different results to the root.

To the best of our knowledge, we are the first to propose a
fat-tree overlay for scaling volunteer computing applications
that supports an infinite number of inputs and provides a
decentralized scheme for allocating nodes in the tree. AT-
LAS [10]’s tree of managers organized around work-stealing
is perhaps the oldest documented scheme that relies on a
tree for scalability but little details about the implementation
were provided and the actual implementation was tested with
only 8 machines. Javeline++ [35] relies on a tree structure
to implement a distributed work-stealing scheduler but the
scheme relied on tasks being finite and the position of a new
node in the tree is computed from the root. Bayanihan [40]
conceived a tree of servers that maps to the underlying network
topology when the bandwidth on the link to a single server is
insufficient, but to the best of our knowledge the scheme was
never implemented. Connection decisions in our scheme do
not require global information about the tree, yet they ensure
probabilistic balancing and guarantee the routing of multiple
connection messages to the same leaf node.

BOINC [9] currently supports hundreds of thousands of
participants but relies on a dedicated server with sufficient
resources and an interaction pattern that is tailored to long
running computations. Volunteers obtain the task to perform
and transmit the results in two different remote procedure
calls. Participant failures are detected with a soft limit on
the expected time to completion, which therefore requires an
estimate that is application dependent. Our design is tailored
to shorter running tasks and instead relies on the heartbeat
mechanism provided by WebRTC to detect the failure of a
participant. Moreover, by relying on WebRTC to scale up
the number of concurrent connections, we can support at
least a thousand participants with no investment in dedicated
hardware nor renting of hosted resources.

Compared to other published volunteer computing tools, we
are the first to have successfully tested with a thousand partic-
ipants and the first to use WebRTC to connect participants in a
fat-tree overlay. Most published volunteer computing tools [8],



[12], [14], [40], [17], [32], [37], [22], [30] were tested with less
than a hundred of participants. Some of the most recent have
been tested with more than a hundred participants [34], [23],
[33] and even up to 400 concurrent participants [15]. But the
largest internet deployments of custom tools [34], [23], [33]
have so far reached a hundred concurrent participants [33].

WebRTC [4] has been used in the design of other kinds
of overlay networks, including content delivery [39], real-
time collaboration [42], and virtual reality [20]. Kuhara and
al. [22] have proposed a service to share files for volunteer
computing but they tested their system on a single machine.
BrowserCloud.js [16], is the only other distributed computing
platform we are aware of that also uses WebRTC as an overlay.
Contrary to our design, it is organized around a distributed
hash table rather than a tree, and tasks are pushed from
the submitting peer to available workers rather than being
pulled by workers as they become free. The implementation
of browserCloud.js has been tested on 10-25 browsers on a
single machine, which provides little information about the
speed at which their overlay can scale in deployments on a
local network. Spray [36] is a peer sampling implementation
that also uses WebRTC and they also tested on the Grid5000
testbed, with up to 600 hundred concurrent browsers. However,
their experiments limit the rate at which participants join to
1 per 5 seconds. It therefore takes 50 minutes for the 600
browsers to join. In a similar setup, our fat-tree overlay deploys
on a thousand browsers in 20-55 seconds.

VI. CONCLUSION AND FUTURE WORK

We have presented the Genet Fat-Tree overlay, which en-
ables quick scaling by relying on a novel scheme that only
requires local information to route connection messages. The
routing scheme derives the destination of messages from the
hash value of the combined identifiers of the message’s source
and of the node that is holding the message. The scheme
provides deterministic routing of a sequence of connection
messages from a single source and probabilistic balancing
of newer connections among the leaves, which is especially
useful when implemented with WebRTC because opening a
new channel requires the exchange of multiple independent
signal messages between participants. We have shown that
the probabilistic balancing of the tree, induced by the routing
scheme, puts at least 83% of nodes at a similar depth than they
would have been with a deterministic balancing algorithm,
increasing to 92.5% on trees of a thousand nodes or more.
We have also shown that an implementation of the design
could connect a thousand browser windows in a local area
network in 22-55 seconds and enable the throughput on the
Collatz application to increase by two orders of magnitude,
coordinating over 220 computing cores out of 320 participating
cores. We have finally motivated future work to generalize the
design for a world-wide setting, by taking into account the
lower connection probability in a wide-area network and the
increased connection latency.

The Genet Fat-Tree overlay could be applied to other
problems than volunteer computing. The most promising one

seems to bootstrap other overlay networks built with WebRTC.
It could, for example, implement a peer sampling protocol,
such as Spray [36], and the initial bootstrap could be made fast
by having new nodes join multiple nodes in the tree, forming
a mesh that could then progressively converge to an efficient
topology. The quick scaling ability of the design we have
presented is therefore complementary to potential refinements
based on existing overlay designs.
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