
Practical Hardening of Crash-Tolerant Systems

Miguel Correia
IST-UTL / INESC-ID

Lisbon, Portugal

Daniel Gómez Ferro
Yahoo! Research

Barcelona, Spain

Flavio P. Junqueira
Yahoo! Research

Barcelona, Spain

Marco Serafini
Yahoo! Research

Barcelona, Spain

miguel.p.correia@ist.utl.pt, {danielgf, fpj, serafini}@yahoo-inc.com

Abstract

Recent failures of production systems have highlighted
the importance of tolerating faults beyond crashes. The
industry has so far addressed this problem by harden-
ing crash-tolerant systems with ad hoc error detection
checks, potentially overlooking critical fault scenarios.
We propose a generic and principled hardening tech-
nique for Arbitrary State Corruption (ASC) faults, which
specifically model the effects of realistic data corruptions
on distributed processes. Hardening does not require the
use of trusted components or the replication of the pro-
cess over multiple physical servers. We implemented a
wrapper library to transparently harden distributed pro-
cesses. To exercise our library and evaluate our tech-
nique, we obtained ASC-tolerant versions of Paxos, of
a subset of the ZooKeeper API, and of an eventually
consistent storage by implementing crash-tolerant pro-
tocols and automatically hardening them using our li-
brary. Our evaluation shows that the throughput of our
ASC-hardened state machine replication outperforms its
Byzantine-tolerant counterpart by up to 70%.

1 Introduction

Distributed systems in production require dependability
mechanisms to avoid extended periods of unavailabil-
ity, violations of data integrity, and other undesirable
consequences of faults. Coordination systems, such as
ZooKeeper [24], and storage systems, such as GFS [18]
and Bigtable [11], all include mechanisms to prevent
faults from disrupting their operation. These systems
are all designed to tolerate crashes, since crashes are ob-
servable and are common in production environments.
Crash-tolerance assumes that processes fail in a silent
manner and never send incorrect messages. This assump-
tion, however, may be violated in presence of undetected
corruptions of the internal state of a faulty process. The
impact or even the sheer occurrence of such data cor-

ruptions can be very hard to ascertain because they are
not properly detected by the system. One infamous fail-
ure occurred in the Amazon S3 storage service in July
2008 [2]. It required taking the whole system down for
an incremental restart and resulted in an 8-hour outage.
Post-mortem failure diagnosis concluded that:

A handful of messages had a single bit corrupted
such that the message was still intelligible, but the
system state information was incorrect. We used
MD5 checksums throughout the system (but not)
for this particular internal state information. (...)
When the corruption occurred, we did not detect
it and it spread throughout the system causing the
symptoms described above [2].

Other failures have been traced back, or hint to, cor-
ruptions of the internal state of a process; for example,
replicas diverging in the Chubby lock service [10], data
loss in Ma.gnolia [31], and data corruption in S3 [3].
Publicly known failures are often related to services ex-
posed to external users. The scale of the problem possi-
bly goes far beyond these known cases, since companies
often keep data corruption incidents confidential.

Practical distributed systems often use CRCs, MD5
hashes, or other error detection codes to detect data cor-
ruptions. Due to the lack of viable principled approaches,
however, developers often find it difficult to reason about
appropriate placements of checks into their code. Ad hoc
error detection might not cover important fault scenarios,
making the system susceptible to severe outages.

In this paper, we propose a principled hardening ap-
proach that specifically targets realistic faults in dis-
tributed systems. We surveyed faults that have been
observed in post-mortem analysis of production data-
center systems or through fault injection campaigns. We
then focused on the ones that can be tolerated through
distributed fault tolerance techniques, which comprise
many of the faults we surveyed. We observed that these
faults manifest at the process level as state corruptions

or control-flow corruptions, rather than as “adversarial”
process behavior. Our fault injection experiments on
Paxos confirm this observation.

Based on the above observations, we propose a new
fault model for Arbitrary State Corruption (ASC) faults,
modeling the effect of realistic faults at the level of a
process of a distributed system. ASC admits that faults
change the state of a faulty process to an arbitrary value
and modify the execution flow of the process code. ASC
faults can occur an unbounded number of times.

We then propose a hardening technique that guar-
antees error isolation: an ASC-faulty process does not
propagate erroneous state to other processes through er-
roneous messages. Either the faulty process itself detects
the error and crashes, or the recipient detects a faulty
message and drops it. The designer of a distributed pro-
tocol can thus focus on the tolerance of crashes and mes-
sage omissions, which are simpler to handle, and is re-
lieved from the burden of applying error detection checks
and reasoning about guarantees when introducing them.
The hardened version of a process is still a single pro-
cess, which does not need to be replicated over multiple
physical machines. Hardening is achieved by adding re-
dundancy to the state and the computation of the original
process, as well as to the messages it sends. No trusted
component is assumed: the hardening state and compu-
tation can also be corrupted.

We automated our hardening technique by designing
a library, called PASC, that wraps processes and trans-
parently hardens them. Our hardening algorithm only
assumes that processes communicate with each other
through message-passing. Using PASC, we obtained
ASC-tolerant versions of protocols with different con-
sistency, fault tolerance, and scalability properties, sim-
ply by hardening the processes of corresponding crash-
tolerant protocols, with only minor modifications. We
implemented the Paxos protocol [28], a subset of the
ZooKeeper API on top of Paxos, and a scalable even-
tually consistent storage, with acceptable performance
overhead (around 17% less throughput for ZooKeeper).

A safer but more expensive alternative to our approach
is tolerating Byzantine faults, where faulty processes can
turn into adversaries and make any theoretically possible
action to harm other correct processes. Byzantine-fault
tolerance (BFT) protocols implement strongly consistent
state machine replication (SMR). Beyond data corrup-
tions, BFT tolerates software bugs, intrusions and other
malicious process behavior under the assumption that a
quorum of correct replicas is always available. This can
be achieved by using diverse replicas [17], but develop-
ment costs and the difficulty of achieving independence
of failures in practice [26] prevent the use of design di-
versity in many cases. Despite the good performance of
existing BFT algorithms [9, 27, 39, 43], and the exis-

tence of prototypes of complex systems using BFT [1],
the industry has not adopted BFT as a viable solution to
dependable systems, to the best of our knowledge.

ASC-hardening differs from BFT in a number of key
aspects. First, it considers security orthogonal to fault
tolerance, which is what most practical systems do, and
focuses on the latter. Second, it does not need replica-
tion to prevent error propagation. Existing approaches
preventing error propagation when processes fail in a
Byzantine manner use variants of SMR, resulting in
higher costs [23]; furthermore, many distributed sys-
tems do not need replication of all their processes, or
use replication with weaker consistency than strongly
consistent SMR. The third key difference is that any
process of a distributed system can be ASC-hardened,
including clients of client-server and multi-tier archi-
tectures; this is an important property in practical dis-
tributed systems [22], but achieving it with a Byzantine
fault model can be very complex [33]. Finally, ASC-
hardening is significantly more efficient than BFT. Our
micro-benchmarks show that ASC-tolerant Paxos deliv-
ers up to 70% higher throughput than the BFT protocol
of Castro and Liskov [9].

In this paper we make five main contributions:

• A new process-level fault model, ASC, representing
realistic data corruptions;
• A sound technique to harden crash-tolerant pro-

cesses against ASC faults;
• A library, PASC, that enables developers to auto-

matically harden crash-tolerant protocols;
• An evaluation of ASC-hardened versions of Paxos,

of a subset of the ZooKeeper API, and of an even-
tually consistent store;
• A validation of the ASC model and of the coverage

of PASC by injecting code and state corruptions in
our Paxos implementation.

2 Realistic faults

Understanding failure behavior of computer systems has
been the topic of decades of research, which traditionally
focused on monolithic mainframe systems (see for exam-
ple the work by Jim Gray on the Tandem system [19]).
We surveyed recent failures of distributed production
systems, which are often built using commodity and low-
end servers. We also included results of large-scale stud-
ies on faults in such systems. We did not consider secu-
rity issues because, in most production system, they are
not handled using fault tolerance techniques.

We selected representative reports that are publicly
available; it is not our intention to provide an exhaus-
tive or comprehensive survey of all failure events in pro-
duction systems. This discussion, however, is sufficient

N. Failure description Class of faults Crash ASC Byz.
1 Bugs in several database management systems with different designs shown to corrupt data in

study [17]
Software development
faults

no yes †

2 Google App Engine unavailable due to a bug in the GFS Master: a malformed file handle caused
successive crashes and recoveries (July 9 2009) (http://groups.google.com/group/google-
appengine/msg/ba95ded980c8c179)

Software development
faults

no maybe †

3 Paxos replica state corruption due to an illegal memory access made by errant code included in
the codebase [10]

Software development
faults

no maybe †

4 Two Yahoo! client applications had bugs caused by developers that misinterpreted the seman-
tics of the ZooKeeper API [40]

Software development
faults

no

5 Administrators configured Nagios to monitor ZooKeeper by pinging certain TCP ports;
each ping created a thread that was not closed, leading to too many threads
(https://issues.apache.org/jira/browse/ZOOKEEPER-880)

Operation faults no

6 DNS misconfiguration caused machine names to clash, preventing a ZooKeeper instance run-
ning at Yahoo! from continuing to work (July 2009) [40]

Operation faults no

7 Incorrect NIC configurations caused frequent leader elections and system instability in a
ZooKeeper instance running at Yahoo! [40]

Operation faults no

8 Google App Engine datastore unavailability due to instability in the cluster, which overloaded
the Bigtable repository keeping the locations of chunks; timeouts started to expire and all re-
quests started to fail (May 25 2010)

Operation faults no

(http://groups.google.com/group/google-appengine-downtime-notify/msg/e9414ee6493da6fb)
9 Facebook offline for 2.5 hours due to automatic error correction mechanism that over-

loaded a database with queries (September 23 2010) (http://www.facebook.com/notes/facebook-
engineering/more-details-on-todays-outage/431441338919)

Operation or Software
development faults

no

10 Paxos replica inconsistency despite consistent execution logs, probably caused by a hardware
memory error corrupting the replica state [10]

Hardware fault no yes

11 Uncorrectable corruption of data in ECC DRAMs shown to happen in large-scale study [38] Hardware faults no yes
12 Amazon S3: A new but defective load balancer corrupts some relayed messages until it is taken

offline, after 36 hours (June 20-22, 2008)
Hardware faults no yes

(https://forums.aws.amazon.com/thread.jspa?threadID=22709)
13 Amazon S3 unavailability due to corruption of a single bit in a few messages, which propa-

gated errors to multiple servers; this generated a high volume of gossiping of the system state,
bringing request processing close to a halt (July 20, 2008)

Hardware faults no yes

(http://status.aws.amazon.com/s3-20080720.html)
14 Sun servers fail randomly due data corruption in memory caches caused by cosmic rays [44] Hardware faults no yes
15 Ma.gnolia looses half terabyte of its customers’ data due to file system corruption (Jan. 09)

(http://getsatisfaction.com/magnolia/topics/ ma gnolia data recovery status)
Hardware faults no yes

16 Sidekick unavailability, apparently due to disk failure; the data took several days to be recon-
structed (October 2009) (http://latimesblogs.latimes.com/technology/2009/10/microsoft-says-
lost-sidekick-data-will-be-restored-to-users.html)

Hardware faults no yes

17 Undetected data corruptions in disks, often due to buggy firmware, shown to happen in large-
scale study [5]

Hardware faults no yes

18 SSD devices found to lose data due to incorrect firmware (2009) Hardware faults no yes
(http://www.dailytech.com/Update+Intel+Confirms+SSD+Data+Corruption+Issue+Suspends
+Shipments+Pending+Firmware+Update/article15827.htm)

19 IOMMU chipset of some AMD boards undetectably corrupts data due to a bug, which is only
activated in some specific hardware/software configurations

Hardware faults no yes

(https://bugzilla.kernel.org/show bug.cgi?id=7768)
20 Google services partially unavailable for approximately 1 hour due to fire in a datacenter (2010) Hardware faults yes ?

(http://mobilelocalsocial.com/2010/google-data-center-fire-returns-world-wide-404-errors/)
21 Los Angeles International Airport law enforcement database unavailable due to a

faulty NIC that caused a packet storm and took the entire LAN offline (August 2007)
(http://www.crn.com/news/networking/201801022/nic-card-soup-gives-lax-a-tummy-
ache.htm)

Hardware faults yes ?

Table 1: Recent failure events and large-scale dependability studies. In several cases there was a cascade of faults, so
the class refers to the root cause. The three columns on the right indicate the ability of distributed crash, ASC and
Byzantine fault-tolerant systems to tolerate the faults that caused the events († these faults are tolerated only if replicas
fail independently, e.g. through design diversity; ? only using multiple networks/locations).

to illustrate that real failures can be quite complex, with
process faults that are more severe than just crashes.

Failure reports. Table 1 loosely organizes failure events
and studies in classes. In some cases the assignment to a
class is speculative due to lack of detailed information.

Software development faults, or bugs, are a pervasive
class of faults (rows 1-4 in the table). Even in well-
tested software, bugs whose activation depends on in-
tricate combinations of states and inputs and/or heavy
loads are usually present [4] and can lead to data corrup-

tion in databases (rows 1, 3) or cause effects like cyclic
crashes and recoveries (row 2). Bugs cannot be tolerated
using commonly available distributed fault-tolerant tech-
niques. In principle, some development faults (row 1)
may be tolerated using BFT if processes are replicated
and each replica contains different software, so the bug
does not affect all of them [17]. However the use of di-
versified design is often not feasible.

Some of the faults of Table 1 cannot be tolerated even
with BFT. For example, operation faults are human errors

made during system configuration and at runtime. Row 5
shows a case in which a monitoring tool was configured
in a way that was not predicted by the software devel-
opers, leading to the consumption of threads, eventually
causing abnormal operation. Several other examples are
shown in rows 6-9. These faults are hard to tolerate auto-
matically regardless of the fault model adopted because
they can easily result in correlated failures (“complex
human-machine interactions (...) remain a challenge”
[4]). Client-side software development faults (row 4) or
bugs in the implementation of trusted fault tolerance li-
braries (row 9) are also not tolerated by BFT.

Despite these inherent limitations, there is a large frac-
tion of faults that can be handled using distributed fault
tolerance. Hardware faults are known to cause corrup-
tion of data in RAM (rows 10-13), memory caches (row
14), and hard disks (rows 15-17). Some hardware faults
are actually caused by development faults in hardware
components or, more often, in hardware-related soft-
ware such as firmware or drivers. It is well known that
firmware can cause data corruptions in hard disks; such
corruptions can only be detected using additional checks
at the operating system or application level (row 17).
Other classes of block storage devices, like solid-state
drives (SSD), may also corrupt data (row 18). Most cur-
rent servers use Single Error Correction, Double Error
Detection (SECDED) ECC DRAMs, but a recent large-
scale study has found that their error rates are orders of
magnitude higher than previously reported and that sev-
eral uncorrectable errors are detected (row 16). It is not
possible to know how often undetected memory errors
violate data integrity without being reported; some ana-
lytical model indicates that such errors may be not un-
common [14]. The study reports a correlation between
CPU load and rate of detected memory errors, indicat-
ing that data corruptions may also occur in the data path
to and from memory. For example, motherboard devel-
opment faults have been found to cause undetected data
corruptions (row 19).

Data-center wide failures due to environmental rea-
sons such as fires (row 20) have also caused massive out-
ages. Network failures are known to corrupt the content
of messages, but sometimes may make large networks
unavailable (row 21).

After reviewing these failure reports, we conducted a
closer analysis of realistic faults whose effects can be tol-
erated using BFT without design diversity, as for exam-
ple hardware errors. Our goal was understanding how
these faults can be observed by processes of a distributed
system. There are three main observations we could
draw from this analysis.

Observation 1: State corruptions cause most failures.
The tolerable failures of Table 1 are caused by corrup-
tions of the state of some process rather than arbitrary,

or even adversarial, process behaviors. This is consis-
tent with recent studies that have investigated in detail the
effect of systematic injection of a very large number of
code corruptions in a popular Linux distribution [20] and
a group membership service [7]. Both studies report that
randomly corrupted instructions may corrupt part of the
process state or divert the control-flow of the process. Gu
et al. [20] report that “detailed tracing of crash dumps in-
dicates that random error injections can corrupt several
instructions in a sequence”. This is because the proces-
sor (an Intel CPU) may interpret the instruction stream
as a sequence of random instructions if it starts reading
it from an incorrect location. The same can occur in case
of a faulty jump to a location that is not the beginning
of a valid instruction. However, these faults are not dan-
gerous, as discussed by the authors: “As a result, the sys-
tem executes an invalid sequence of instructions, which is
very likely to cause quick (i.e., short latency) crash”. The
paper also includes examples of the injected code corrup-
tions, in which a crash always occurs immediately after
the corrupted instructions are executed due to invalid ar-
guments or references. The cases of error propagation
across processes discussed by Basile et al. [7] are also
caused by direct state corruptions or by single corrupted
instructions that corrupt the state.

Observation 2: Control-flow faults are dangerous.
According to the aforementioned fault injection exper-
iments on the Linux code, code corruptions inverting the
outcome of branch operations are the most most likely to
generate incorrect outputs [20]. The danger of control-
flow faults has long been known in highly dependable
systems and has lead to the development of a range
of techniques for control-flow checking (see for exam-
ple [32]). Therefore, such faults need to be considered as
possible sources of non-crash process faults.

Observation 3: Reported failures are due to tran-
sient faults. The relevant failures reported in Table 1
do not seem to be caused by permanent faults being
repeatedly activated. Indeed, many faults of Table 1
are explicitly categorized as soft, or transient, errors,
something that was already observed by Gray [19].
Hardware-level fault injection campaigns indicate that
permanent process faults are likely to manifest as quick
crashes [29]. Some memory modules have scrubbing
facilities for detecting potential permanent faults proac-
tively [38]. If detected but uncorrectable memory errors
in DRAM modules are not discarded by the operating
system or application, they might cause non-crash pro-
cess faults [30]. However, it is common practice to shut
down the server and replace the faulty memory module
in these cases [38]. Disk subsystems commonly em-
ploy specific techniques to recover from some permanent
faults such as bad sectors.

3 The Arbitrary State Corruption model

We now introduce our Arbitrary State Corruption (ASC)
model, which formalizes realistic faults based on the
three observations we made in the previous section. First,
the fault model should represent state corruptions, in-
cluding those caused by error propagation. Second, it
should also model control-flow faults leading to incorrect
jumps to some correct operations of the same faulty pro-
cess. Third, it should consider transient errors that could
sporadically appear over time, without assuming that the
root cause of the problem is diagnosed. The ASC model
includes crashes, which represent a trivial case for hard-
ening. We will focus our discussion on faults that cannot
be modeled as simple crashes.

The corruption of even a single variable can propa-
gate to multiple other variables, depending on the way
the process state is organized. A similar argument
arises when considering control flow faults, whose anal-
ysis may require deriving complex application-specific
control-flow graphs based on the low-level execution
blocks of the code [32].

While sophisticated analyses can be conducted if the
low-level details of the distributed system implementa-
tion are known, we want our hardening technique to be
applicable to generic distributed systems with minimal
knowledge. We only assume that processes communi-
cate via unreliable message passing and hold a local, ini-
tially correct state. Every time a process receives a mes-
sage, it calls the corresponding event handler, which can
modify the local state and produce one or more output
messages. We also want the hardening algorithm to be
independent of its low-level implementation.
ASC fault model. The ASC fault model simplifies the
matter by taking a conservative approach. It considers all
data that is locally accessed by a process as its state, and
it assumes that a fault may arbitrarily change the values
of any number of variables. Faults can also make the
control flow jump to any instruction of the process.

Formally, the model abstracts each process π of a dis-
tributed system as a set of guarded commands of the form
〈G(min),B(S,min)〉, where S is the process state, min an
input message, G(min) is a boolean activation condition
and B(S,min) is an event handler. Event handlers mod-
ify the state and produce a list of output messages. Pro-
cesses are deterministic: any input message activates at
most one event handler.

Definition 1 (ASC fault) An ASC fault occurring at a
process π either causes π to crash or assigns an arbi-
trary value to any variable of its process state S, possibly
modifying the control flow of π and causing it to execute
from an arbitrary process instruction.

ASC faults can occur multiple times and at any time,

but not arbitrarily often: at most one fault can occur dur-
ing the execution of a single event handler. In our use
cases, event handling occurs in the order of a few mil-
liseconds at most, a conservative bound given the fault
frequencies reported in the literature (e.g. [38]).

Data integrity. The model assumes a data integrity prop-
erty that corresponds, in the ASC model, to the crypto-
graphic assumptions limiting the strength of an adversary
in the Byzantine fault model.

Data integrity is protected by replicating each variable
of S with a variable of a replica state R. The follow-
ing (slightly simplified) definition refers to corruptions
of variables in S; the same property also holds if vari-
ables in R are corrupted.

Definition 2 (Fault diversity) Immediately after a fault
modifies the value of a variable v of a state S, the value
of v in S is different from the value of v in the replica state
R until either (i) v is modified by an assignment, or (ii)
the replica of v is assigned to a new value obtained by
reading v.

Fault diversity makes it possible to detect data corrup-
tions by comparing replica variables; however, it does
not mandate that the two variables will remain different
forever, making detection challenging. The above defi-
nition admits two cases in which a corrupted variable v
takes the same value as its replica. For example, assume
that the current correct value of v and its replica is 0, but
an ASC fault assigns v the erroneous value 5. The two
replicas are different immediately after the fault. The
event handler in execution may use the incorrect value
of v to determine the value of other variables, and then
re-initialize v to 0, making the corruption undetectable
again. Such execution is admitted by our definition of
fault diversity. If the comparison is executed after v is re-
initialized, the corruption is not detected and error prop-
agation can occur, so the execution time of this check
is key. Hardening must minimize the number of checks
while providing error isolation guarantees.

4 ASC hardening

This section presents our ASC hardening technique. An
overview of the steps executed by a fully ASC-hardened
process is given in Algorithm 1; a more formal and de-
tailed pseudocode can be found in the accompanying
technical report [13]. Instead of directly discussing Al-
gorithm 1, we introduce checks incrementally starting
from a simple protocol example. We discuss failure
scenarios to guide the derivation of our ASC-hardening
technique. Due to space limitation, we cannot exhaus-
tively consider all fault scenarios; we refer to our techni-
cal report for a complete correctness proof [13].

We target systems where processes communicate by
sending message through unreliable channels, which can
duplicate messages, drop them, and send them to the
wrong recipients. Message corruptions respect fault di-
versity if message fields are replicated.

ASC hardening guarantees the following property.

Property 1 (Error isolation) Let m be a message sent
by a faulty hardened process, and assume that some of
the variables whose value is included in m has an in-
correct value when the message is sent. If a correct
hardened process receives m, then it discards m without
modifying its local state. If a faulty hardened process re-
ceives m and modifies its local state according to m, then
it crashes before sending any output message.

The correct value of a variable is defined inductively
for every received message m: either m is dropped and
its receipt has no local effect, or m is processed by up-
dating all required variables without faults. Error isola-
tion prevents both direct error propagation, from faulty
processes to correct processes, and indirect error prop-
agation, caused by faulty processes that send incorrect
messages in response to another incorrect message.

Error isolation guarantees that, after a fault, a process
with a corrupted state will only expose a benign behav-
ior. In many cases the process eventually crashes as a
consequence of executing some internal check; however,
a fault may corrupt values at any time, even in the “last
mile” before the message is actually sent. These faults
are harmless because all incorrect messages a faulty pro-
cess will send after a state corruption will be discarded
by their recipients.

At a high level, hardening guarantees error isolation
by ensuring that, when an output message is sent, the
value of any corrupted variable in S does not match with
the value of its replica in R. A sender forms the content
of the messages using variables in S, and its verification
code using the corresponding replicas in R. This use of
message verification enables the receiver to discard not
only messages corrupted by the network, but also mes-
sages built using corrupted sender state.

Hardening is not trusted: ASC faults can corrupt any
hardening variable introduced in Algorithm 1, as for ex-
ample the replica state R, and let the control flow start
from any instruction of the hardened process code.

For illustration purposes, we consider the example of a
client of a distributed data store. Algorithm 2 illustrates
one event handler of the client. It reads a value r from
the store, modifies a state variable v, and writes back v.

Simple checks. There are two straightforward ways to
harden a protocol: message integrity and state integrity
checks. Message integrity checks use message codes
(e.g., CRC codes) against network corruptions and the

boolean activation condition to verify that the correct
event handler is being executed. Every time a message is
received containing, for example, a value read from the
store, it is verified using the message code and discarded
if needed. State integrity checks replicate the process
state either using a full copy or using codes. Let us call
S the original state and R the replica state. Every time a
variable is read from S, these checks compare its value
with the one stored in R. If a mismatch occurs, a process
can preserve integrity in this case by crashing.

The limit of these checks is that they assume that a
newly updated variable can only get corrupted after be-
ing replicated. Consider for example a fault corrupting
the variable new during the execution of the event han-
dler. Even if new is replicated, there is no redundant in-
formation protecting this newly computed value yet. The
incorrect value propagates both internally, by overwrit-
ing both S and R, and externally to the data store. The
simple checks are not sufficient to prevent this problem.
Hardening against faulty computation. Our ASC-
hardening technique addresses the previous problem by
executing the event handler twice. The first execution
accesses S, the second R. This prevents error propaga-
tion of incorrect values between the two states. If the
state prior to receiving the READ-REP message of Al-
gorithm 2 is correct, at most one of the two executions
may be impacted by a fault, so one of the two states will
be correct.

The client builds the WRITE output message using the
value of v in S and its message code using the replica
of v in R. The receiver of a message, the store process
in the example, detects incorrect values contained in the
message by verifying its code.
Checking the checkers. Our hardening technique does
not assume the existence of trusted components such as
trusted voters. Checks can also fail, as we discuss with
the following example. We have previously assumed that
the state before receiving the READ-REP message is cor-
rect. Consider now the alternative case where a previous
fault had already corrupted v and its replica, resulting in
a latent error. For example, assume that v and its replica
had a correct value 0, but previous faults gave them the
incorrect values 7 and 8, respectively. When the message
is received, the state integrity check typically detects the
corruption. However, a fault might invert or skip the
outcome of the check, making the value of v appear as
correct and letting both executions of the event handler
produce the same incorrect output.

Our ASC-hardening addresses this problem by check-
ing state integrity during both executions of the event
handler. If at least one execution of the event handler is
correct, it either computes correct new values using cor-
rect inputs or crashes. Instead of modifying S directly,
the first execution of the event handler now uses copy-

Algorithm 1: Overview of a hardened event handler.

Message integrity check;1

First execution of the event handler, using state S –2

during the execution, check state integrity of
variables the first time they are read, store
modifications to S in a copy-on-write buffer N, and
store the identifiers of the modified variables in U ;
First at-least-once gate;3

First at-most-once gate;4

Second execution of the event handler, using replica5

state R – during the execution, check state integrity
of variables the first time they are read, and store the
identifiers of modified variables in U ′;
Second at-most-once gate;6

Second at-least-once gate;7

For each variable with identifier in U , apply changes8

from N to S and check that the identifier is in U ′,
crashing otherwise;
Check that U =U ′ and crash otherwise;9

First and second at-least-once checks;10

Message integrity check;11

Algorithm 2: Example event handler pre-hardening.

upon receive 〈READ-REP, r〉 from the store process12

// v, new are state variables

if v > 5 then new← r+ v+5;13

else new← r+ v;14

v← new;15

send 〈WRITE, v〉 to the store;16

on-write access to S, storing incremental changes in a
buffer N. In the example, a copy of v is added to N to
store its new value. The second execution of the event
handler can thus access the original value of S for its
state integrity check. The incremental changes of N are
made persistent in S after the second execution has com-
pleted. The sets of variable identifiers U and U ′ are used
to prevent incorrect state updates in line 8. Our ASC-
hardening also verifies message integrity twice.

Handling control-flow faults. We now discuss how to
guarantee correctness in spite of control-flow faults. A
fault might result in the incomplete execution of an event
handler: for example, after updating the value of the vari-
able new, the client might not update v, sending the old
value of v to the store. Executing the handler multiple
times is also incorrect. For example, the client might add
r to v twice and send this incorrect value to the store.

Algorithm 1 handles these faults using what we call
control-flow gates and checks. For each control flow
gate, hardening introduces a different pair of control-
flow variables, c and its replica c′, and uses a distinct

label L. Initially, c and c′ are set to a value different from
L. The fact that a control flow variable is set to L marks
the fact that the process has reached a given point in the
execution flow of the hardened event handler. Control
flow variables are replicated to prevent faults from incor-
rectly setting both of them to L. For simplicity, in the
following discussion we use the same names for all con-
trol flow variables and labels.

An at-most-once gate G is a sequence of three high-
level instructions. First, if G .c 6= G .c′ or G .c = L then
the process crashes. Else, G .c is set to L and G .c′ is set
to L. Note that the full gate cannot be executed twice,
even in presence of a fault. These gates are used to pre-
vent situations where instructions of an event handler are
executed twice, for example adding r to v twice. The
hardened process uses two separate instances of at-most-
once gates, at lines 4 and 6 of Algorithm 1.

An at-least-once gate G ′ is a sequence of two assign-
ments of G ′.c and G ′.c′ to L, respectively. An at-least
once check verifies that the corresponding gate has been
reached by checking that G ′.c = G ′.c′ = L and crashing
otherwise. There are two separated instances of at-least-
once gates in Algorithm 1, at lines 3 and 7. The checks
for both gates are at line 10.

We have discussed that the following condition must
hold when output messages are sent after the hardened
event handler has completed its execution: if the value
of a variable in S is incorrect, then it does not match
with its replica in R. For variables in S or R whose cur-
rent value has been last modified by a fault, the condition
holds by definition of fault diversity. Therefore, we focus
on showing that the condition holds for variables deter-
mined by instructions; in this case, fault diversity might
not be sufficient.

Consider the case where some variable of S is modi-
fied by an instruction. Variables in S are modified only
in line 8. Let t8 be the last time when an instruction of
line 8 is executed. If no fault occurs before t8, then both
executions of the even handler in lines 2 and 5 complete
correctly before t8. Variables could be corrupted by exe-
cuting instructions of the event handler after t8 if a fault
occurs. However, one of the at-most-one gates would
lead to a crash.

If no fault occurs after t8, the at-least once checks
of line 10 either crashes the process or guarantees that
lines 3 and 7 are executed before t8. Let t3 and t7 be the
last time when the two gates are executed, respectively.

If no fault occurs after t3 or before t7, then the second
execution of the event handler is executed correctly once.
The at-most-once gates ensure that this second execution
is not repeated. After the second execution is completed,
the updates of all variables of R are correct, and the cor-
rect identifiers of these updated variables are in U ′. Any
variable of S that is supposed to be updated but has an

incorrect value can thus be detected as faulty by compar-
ing it with its correctly updated replica in R. The checks
on U and U ′ of line 9 ensure that only the right variables
of S are updated.

The last case is the one where, if no fault occurs before
t3 or after t7, the first execution of the event handler up-
dates N and U correctly. By definition of t3, no fault can
occur after t3 and lead to executing instructions of line 2
again. After t7, the state S is updated in line 8. If some
value of N is corrupted by a fault after being correctly
updated, this can be detected due to fault diversity. The
checks on U and U ′ of lines 8 and 9 guarantee that the
right updates are executed.

5 The PASC library and use cases

The PASC library automates the hardening of distributed
protocols. It is a runtime execution environment inside
which user-defined protocols are executed. The user is
required to provide PASC with a specification of the pro-
tocol state S, the event handlers, and the messages used
by the protocol. Each of these components corresponds
to an interface that must be implemented by user-defined
classes. The library is currently implemented in Java.1

The implementation of message-passing primitives is
external to hardened processes, and thus to PASC, so the
user has no restriction of how to implement them. During
initialization, the user must create a new PASC runtime
object and pass it references to all the user-defined pro-
tocol classes. The protocol is actually run by passing ev-
ery received message to a method of the runtime, which
selects the correct event handler and returns output mes-
sages. The runtime takes care of transparently running
the hardened event handler.

Particular care is needed when defining the protocol
state, a class whose fields are the state variables. PASC
transparently builds a replica R of the protocol state S.
PASC needs to track accesses to variables in order to
implement copy-on-write updates, execute state integrity
checks, and build the sets U and U ′. We use the names
get-v and set-v for the methods accessing the variable
v, where v is a unique label identifying the variable. A
“variable” can be any subset of the protocol state. Dur-
ing initialization, PASC encapsulates the state class into
a dynamically generated class that intercepts all calls to
getters and setters. PASC requires that event handlers use
only getters and setters of the state class for reading from
and writing to state variables. Checking variables before
reading them is a major source of performance overhead,
which grows with the size of the variables. The user can
reduce this overhead by defining many fine-grained get-
ters instead of few coarse-grained ones. For example, a

1The library is open source, see https://github.com/yahoo/pasc

getter returning an array is more expensive to call than
one returning only a single element of the array.

Messages are transparently replicated and verified, but
the user needs to specify how the message replica is
stored in the message, and how to verify messages. By
default, replica messages are CRC32 codes. We used
TCP for message passing.

Use case: Paxos state machine replication. We used
PASC to implement an ASC-tolerant version of the
Paxos SMR protocol, a common fault-tolerant protocol
implemented by many practical system (e.g. [10]).

The Paxos protocol uses a leader to propose an ex-
ecution order of requests. It tolerates the presence of
multiple concurrent leaders, but only ensures progress in
normal periods with only one leader. The critical path
of requests in normal periods is as follows. The leader
collects and orders requests from the clients, sending a
sequence of operations to all other processes. If a pro-
cess accepts the order proposed by the leader, it sends an
acknowledgement to all other processes. A process ex-
ecutes requests in the sequence indicated by the leader
only after receiving acknowledgements from a majority
of processes. Clients deliver the first reply they receive.

Paxos tolerates crashes but not data corruptions. The
corruption of a single variable of a single process can
lead to the unrecoverable loss of the history of executed
operations. For example, if the current ballot number a
replica stores gets corrupted, then the recovery of a new
leader may complete in a state that is inconsistent with
the previously committed state. The new leader can then
incorrectly overwrite committed state.

In the ASC-tolerant version of Paxos, both client and
replica processes are hardened with PASC. The same
number of replicas as for crash-tolerance is sufficient:
at least 2 f + 1 to tolerate f faulty replicas. Like in
Zookeeper, the replication protocol itself detects if the
current leader is faulty and uses a leader selection algo-
rithm only to elect a new leader.

PASC Paxos guarantees error isolation for the mes-
sages exchanged by the consensus layer. This ensures
that correct processes execute operations in a consistent
order, and that faulty replicas do not process incorrect
messages before sending apparently correct messages.
Achieving full ASC tolerance, however, requires also
handling corruptions to the state of the state machine, not
only of consensus. Handling faulty state machines boils
down to two simple changes of PASC Paxos compared to
the original Paxos. Clients cannot deliver the first reply
they receive from any replica; instead, they must wait for
a quorum of f +1 consistent replies to make sure that at
least one reply comes from a correct process. Given the
presence of 2 f + 1 replicas, a quorum of correct repli-
cas is available. Furthermore, processes periodically take
checkpoints of the state machine to enable garbage col-

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 20 40 60 80 100 120 140 160

La
te

nc
y

in
 m

s

Throughput in Kops/s

PBFT
PASC Echo

Unprot. Echo

(a) Request and reply size: 0kB

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

in
 m

s

Throughput in Kops/s

PBFT
PASC Echo

Unprot. Echo

(b) Request and reply size: 1kB

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

La
te

nc
y

in
 m

s

Throughput in Kops/s

PBFT
PASC Echo

Unprot. Echo

(c) Request and reply size: 4kB

Figure 1: Micro-benchmarks of hardening: Latency-throughput curves.

lection of the operation log. These checkpoints can be
undetectably corrupted, so they need to be validated by
other processes. This is done by simply exchanging a
digest of the state and waiting for f + 1 confirmations
of the digest. There are known techniques to efficiently
compute incremental digests of states, as for example the
Merkle trees proposed in [9]. With these changes, the
replicated state machine does not need to run inside the
PASC runtime.

Use case: Eventually consistent storage. ASC harden-
ing can be used as a building block to implement ASC-
tolerant state machine replication, but it is not restricted
to it. Our second use case shows that it is possible
to harden fault-tolerant algorithms with different consis-
tency guarantees.

We designed a simple key-value store, called Sim-
pleKV, which replicates data with relaxed consistency
to scale throughput and latency. It implements a single-
writer multiple-readers register, a fundamental abstrac-
tion in distributed computing. Clients have write ac-
cess to their own key and read access to all keys, which
are replicated by multiple distributed data stores. Each
replica holds a copy of all keys. Clients write requests
to f + 1 stores for persistence before returning, where
f is the number of faulty stores that must be tolerated.
SimpleKV does not need to write to a majority quo-
rum of stores; this ensures scalability of write operations.
Clients add a client-local timestamp to write requests. A
store overwrites the local value of a key only if it receives
a write with a higher timestamp than any other write pre-
viously observed for that key. Read operations are served
by a single store, which ensures scalability.

SimpleKV guarantees eventual consistency [45]: in
periods when no client invokes write operations, all data
stores eventually hold the same latest value for all keys.
Whenever a data store applies a write to its local state,
it forwards the new value in the background to the other
data stores, following the process ID order.

6 Evaluation

6.1 Performance of PASC

The ASC-tolerant use case protocols show the flexibil-
ity of our hardening approach. However, ASC-hardening
must also be feasible from a performance viewpoint. In
this section, we show that this is the case. We compare
the performance of our use cases with and without ASC
hardening. PASC has an option to turn off hardening,
running just the original processes.

Our evaluation setup consists of servers equipped with
a quad-core 2.5 GHz CPU, 16 GB of RAM, and a Linux
with kernel 2.6.18. We use a Gigabit network. All proto-
cols are configured to tolerate one fault, so f = 1. Proto-
col clients are run on dedicated machines, different from
the ones used for replicas and data stores. Each client
sends a new request as soon as its previous request is
completed. All measurements are started after the clients
have issued a few thousands of requests and the system
has reached steady-state performance. We disable multi-
cast for all protocols because the network does not sup-
port it. All plots show averages over five runs; we ob-
served negligible variance. We control throughput by in-
creasing or reducing the number of clients.

Hardening micro-benchmarks. ASC hardening guar-
antees error isolation without using state machine
replication (SMR). This simplifies the hardening of
many practical distributed systems, where processes are
loosely coupled. In our eventually consistent SimpleKV
store, for example, ASC hardening is sufficient to prevent
the propagation of incorrect data and messages; SMR is
not needed for fault tolerance.

Hardening with Byzantine faults is much more expen-
sive. Existing work hardens scalable crash-tolerant sys-
tems against f Byzantine faults using variants of SMR
and replicating each process (host) on 3 f + 1 different
servers (guards) [23]. This leads to higher replication
costs and increases complexity.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

La
te

nc
y

in
 m

s

Throughput in Kops/s

PBFT 1
PBFT 100

PASC Paxos 1
PASC Paxos 100

Unprot. Paxos 1
Unprot. Paxos 100

(a) Request and reply size: 0kB

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

La
te

nc
y

in
 m

s

Throughput in Kops/s

PBFT 1
PBFT 100

PASC Paxos 1
PASC Paxos 100

Unprot. Paxos 1
Unprot. Paxos 100

(b) Request and reply size: 1kB

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2 4 6 8 10 12 14 16 18

La
te

nc
y

in
 m

s

Throughput in Kops/s

PBFT 1
PBFT 100

PASC Paxos 1
PASC Paxos 100

Unprot. Paxos 1
Unprot. Paxos 100

(c) Request and reply size: 4kB

Figure 2: Micro-benchmarks of state machine replication: Latency-throughput curves.

Figure 1 compares the performance of hardening a sin-
gle process. We use micro-bechmarks, where the hard-
ened process receives a request and sends a reply, with-
out making any computation. We consider request and
reply sizes of 0, 1 and 4 kilobytes. For the Byzantine
model, we provide the performance of Castro’s imple-
mentation of the PBFT protocol [9] as a reference value
since no implementation of the SMR protocol of [23] is
publicly available. Networking is the main bottleneck in
the 0 kB and 4 kB cases due to high number of messages
and message size, respectively. The overhead of PASC
is negligible in these cases. The cost of message veri-
fication is more evident in the 1 kB case. In all cases,
executing a full BFT SMR protocol is substantially more
expensive: PASC improves throughput by about 2.5x.

SMR micro-benchmarks. For state machine replica-
tion, we compare our ASC-hardened implementation of
the Paxos protocol and Castro’s implementation of the
PBFT protocol, which can be seen as the enhancement
of Paxos for the Byzantine fault model: it also uses a
leader to order requests and only executes requests when
they have been agreed upon (at least tentatively). Paxos
requires 2 f + 1 replicas to tolerate f faults, regardless
of hardening; PBFT needs 3 f + 1 replicas, although it
can be extended to use 3 f +1 replicas for agreement and
2 f +1 for execution [47].

We stress the system by considering all-writes work-
loads where the system must agree on each request. All
protocol implementations use batching with congestion
window, a technique introduced by PBFT. The leader
batches incoming requests as long as agreement on a pre-
vious batch of requests is ongoing. We extended this
mechanism by letting the leader start agreement on a
batch anyway if the number of requests in the current
batch reaches a certain threshold. We show results for
maximum batch sizes 1 (no batching) and 100 since
larger batch sizes did not significantly improve perfor-
mance. We execute the same micro-benchmarks as the
previous experiments. For reference, a typical average

request size for ZooKeeper is around 1 kB [25].
The latency-throughput curves of the different proto-

cols are reported in Figure 2. Using batching results in
a net throughput improvement and it does not impact la-
tency significantly. Adding CRCs to messages is com-
mon in crash-tolerant protocols, so we evaluated its im-
pact on the throughput of Paxos and found that it is neg-
ligible. PASC Paxos outperforms PBFT in maximum
throughput between 70% and 10%, depending on the size
of the message. Paxos outperforms PASC Paxos signif-
icantly only with larger messages: message verification
becomes more costly, storing messages requires trans-
ferring more data due to our use of copy-on-write, and
larger areas of memory need to be checked.

The minimal latency when a single client submits re-
quests sequentially is reported in Figure 3. The latency
of the three protocols is similar and very low. This is
because PBFT uses tentative executions to send replies
with the same analytical latency as Paxos [9]. Unlike
PBFT, our Paxos implementation processes messages us-
ing a pipeline of different stages, which results in slightly
higher latency.

Figure 4 reports the steady-state JVM user memory us-
age. The occupation grows with the loads of the system
so we consider runs with peak throughput. Both in case
of Paxos and PASC Paxos, the occupation grows rapidly
between 0 kB and 1 kB, and remains almost flat for 4
kB. While the replication of the protocol state does result
in higher memory occupation, the absolute overhead is
small. The relative difference between the two protocols
remains around 43-58% regardless of the message size.
The state machine is not encapsulated inside PASC and
its state is not replicated, so the memory overhead would
not grow if we would consider running a state machine
on top of PASC Paxos.

ZooKeeper. Micro-benchmarks are good for stress-
testing state machine replication protocols. However,
these protocols are never run stand-alone. For a more re-
alistic assessment of the performance cost of these sys-

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1K 4K

La
te

nc
y

in
 m

s

Request size in bytes

PBFT
Unprot. Paxos

PASC Paxos

Figure 3: Single request latency

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

0 1K 4K

M
em

or
y

us
ag

e
in

 M
B

Request size in bytes

Unprot. Paxos
PASC Paxos

Figure 4: Memory occupation

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

La
te

nc
y

in
 m

s

Throughput in Kops/s

PASC ZooKeeper
Unprot. ZooKeeper

Figure 5: ZooKeeper benchmark

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80 90

La
te

nc
y

in
 m

s

Throughput in Kops/s

PASC sKV 1 server
PASC sKV 3 servers
PASC sKV 5 servers
PASC sKV 7 servers
Unprot. sKV 1 server

Unprot. sKV 3 servers
Unprot. sKV 5 servers
Unprot. sKV 7 servers

Figure 6: SimpleKV performance and scalability.

tems, we implemented a subset of the ZooKeeper API
on top of Paxos. ZooKeeper exposes a tree-like data
structure that is stored in memory. We chose the sub-
set of commands that can be implemented using vanilla
state machine replication: create, delete, exists, get data,
set data, get children. Handling ephemeral nodes and
sessions would have required handling timeouts, which
are non-deterministic. Watchers require clients to han-
dle replies while they may have other pending opera-
tions; this does not directly fit into the concept of well-
formed run. For our implementation we use the actual
data structure used internally by ZooKeeper to store its
state, which is called DataTree, and build glue code to
make it communicate with Paxos.

In order to test the system we created a custom
ZooKeeper benchmark. Clients issue requests choosing a
random command. Each command operates on a random
node of a data tree of depth up to 5. Each internal node
of the tree has up to 5 children. Figure 5 compares the
performance of our ZooKeeper implementation running
on Paxos and PASC Paxos. Both in terms of latency and
throughput, the overhead of using PASC is less signifi-
cant than in micro-benchmarks. The peak difference in
maximum throughput between the two versions is around
17%. Note that the ZooKeeper state is not replicated in
PASC Paxos, since ZooKeeper is a state machine.

SimpleKV. We run SimpleKV with an increasing num-
ber of data stores to study the scalability of the pro-

tocol with and without PASC. We use a 20/80 bench-
mark, where clients continuously issue operations that
are write in the 20% of the cases and reads in the remain-
ing 80%. The size of requests and replies is 1 kB. Fig-
ure 6 shows the latency-throughput curve resulting from
our experiments. Both the original SimpleKV protocol
and PASC SimpleKV scale almost linearly with the num-
ber of servers. A BFT-hardened version of SimpleKV
would have used most of the processes for replication,
using SMR groups, rather than for better performance.

6.2 Coverage of the ASC model

We now study how random faults affect the operation of
our Paxos implementation; the results support our claim
that the ASC model is a proper approach to capture the
key properties of these faults. We follow closely the
established approach of works like Gu et al. [20] and
Basile et al. [7]: injecting single bit flips. We increase
the likelihood of activating the injected faults by using
stack traces or targeting core classes, which are selected
by profiling the execution of Paxos. The core classes
are the top ten CPU- and memory-intensive classes (con-
sidering all their instances) in each of the following cat-
egories: Paxos classes, PASC-runtime classes, Java li-
brary classes, messaging classes (we used Netty), and
JVM-internal classes.

We inject faults at the Paxos leader because it is the
process with the highest likelihood of propagating errors.
After injecting faults, we wait approximately one minute
for its manifestation before interrupting the experiment.
We report results of our injections during the normal exe-
cution of the protocol, where a single leader is present in
the system. Some fault injections result in a leader crash
and trigger a subsequent recovery. We also reproduced
worst-case scenarios where the leader crashes and some
other replica has a corrupted state, and found no case of
error propagation using PASC.

We consider four types of injections, corrupting byte-
code, binary code, pointers and primitive values.

Bytecode injection: In each run, we select a random

Code corruptions State corruptions
bytecode binary code pointer value

unprot. hardened unprot. hardened unprot. hardened unprot. hardened
Undetected error propagation 0 0 3 0 66 0 27 0
Detection through hardening - 0 - 1 - 164 - 166
Crash or hang 956 1028 684 635 2165 2024 136 42
Total number of runs 1818 1818 1047 1047 4000 4000 1237 1237

Table 2: Results of fault injection experiments

method among core classes and flip one random bit on
its bytecode before this is loaded by the JVM. We disable
JVM bytecode verification at loading time.

Binary injection: At a random time during the execu-
tion of the protocol, we take the stack trace. We then
inject bit flips around 1 to 10 random return addresses
selected among those found in the stack, at a random lo-
cation within a range of 400 bytes.

Pointer and value injection: At a random time dur-
ing the execution of the protocol, we corrupt one random
field of a random instance of a random core class. We
restrict to non-primitive values for pointer injections and
to primitive values for value injections.

Results. Table 2 summarizes the results of our fault in-
jection experiments. We partition runs into three classes,
based on the effect of the injected fault: runs where unde-
tected error propagation occurs; runs with no error prop-
agation where an internal error of the faulty process or an
incorrect message is detected through hardening; runs
where no error is propagated and no internal error or in-
correct message is detected through hardening, but the
faulty process crashes or hangs anyway; and runs where
the injected fault has no effect (not shown).

Our main conclusion is that hardening is both neces-
sary and sufficient to prevent undetected error propaga-
tions in our experiments: error propagation does occur,
but only without hardening. Most code injections result
in crashes if the error is activated. A few cases of poten-
tial error propagation due to code injection occur if pro-
cesses are not protected, but ASC-hardening is sufficient
to guarantee error isolation. State corruptions in pointers
and values are much more likely to generate error prop-
agation. These findings support our choice of modeling
all random data corruptions as ASC faults.

7 Related work

The rigorous design and proof of correctness of fault-
tolerant distributed algorithms require the formalization
of a system model. In the selection of such a model
there is always a tension between several facets: how
well it describes reality, the classes of problems it allows
solving, and the efficiency of the algorithms that assume

it [37]. Our ASC fault model represents a new tradeoff
for practical fault-tolerant systems. It was inspired by
Dijkstra’s seminal work on self-stabilization, where the
whole system state can transition to arbitrary values [15];
however, the goal of ASC hardening is isolating faulty
processes rather than converging to a correct global state.

Some theoretical work proposed transformations to
improve the fault tolerance of distributed algorithms
from crashes to Byzantine faults, mainly targeting crash-
tolerant agreement algorithms where processes commu-
nicate by broadcasting information over multiple com-
munication rounds [12], or synchronous systems [35].
NewTOP makes strong synchrony assumptions and may
not tolerate the failures of two replicas [34]. Baldoni
et al. use failure detection modules tailored to a round-
based consensus protocol in order to detect some faults
beyond crashes [6]. ASC hardening only makes very
basic assumptions about the structure of distributed pro-
cesses; it is not restricted to agreement protocols, it does
not depend on synchrony assumptions, and it does not
require designing protocol-specific checks. Nysiad is a
more generic hardening technique that relies on partial
synchrony only for progress; as discussed in our evalua-
tion, it hardens against Byzantine faults, but it uses a vari-
ant of state machine replication as building block [23].
Byzantine fault detection is a viable alternative to detect
integrity violations after they have occurred, but it does
not guarantee error isolation [21].

Hypervisor-based approaches run multiple replicas of
a process inside the same physical machine. Tradition-
ally, these approaches targeted crash or fail-stop models
that do not encompass ASC faults [8]. Furthermore, un-
like ASC hardening, they assume failure-independence
of local process replicas and a trusted hypervisor.

Techniques for error detection come at least from the
50s with Hamming’s work. Taylor et al. proposed adding
redundant data to data structures to detect corruptions
of their instances [41]. Detection of control-flow cor-
ruptions in software has also a long tradition. Tront et
al. proposed a simple technique to detect control-flow
corruptions that force software to jump to a different sub-
routine [42]. The technique uses a tag or signature to
check in which routine processing should be at the mo-

ment. Several variations of this idea have later appeared.
ASC hardening uses knowledge about the structure of

distributed programs to guarantee end-to-end error iso-
lation properties and execute very few checks. There
exist many other hardening techniques in the literature
that do not assume knowledge of the hardened program.
For generality, they trade higher performance overhead,
lack of end-to-end guarantees, or a less comprehensive
fault model. For example, SWIFT is a compiler-based
technique that targets a single event upset, where a sin-
gle bit is flipped once [36]. Unlike our hardening tech-
nique, SWIFT assumes that all memory errors are de-
tected by hardware error correcting codes. SWIFT exe-
cutes twice every binary instruction computing new val-
ues, and compares the two obtained values immediately
afterwards; this potentially results in high overhead, al-
though a performance comparison with unprotected code
is not given in [36]. ASC hardening executes full event
handlers twice too, but it does not execute comparisons
after every operation. Unlike ASC, SWIFT does not pro-
tect against faults corrupting values after the comparison
and before storing them in memory, so it does not fully
guarantee error isolation. Finally, SWIFT’s control flow
signatures detect a subset of the control flow errors cov-
ered by our technique.

An older low-level hardening technique is AN-coding,
where instructions generate encoded variables from en-
coded variables [16]. AN-codes protect the algorithm
against some subsets of hardware faults (e.g. operator
corruptions, but not exchanged operators). Software En-
coded Processes (SEP), proposed in [46], run on top of
an encoded interpreter, which uses AN-codes and other
coding techniques. The fault coverage of SEP is proba-
bilistic and depends of the number and distribution of the
bit flips. Being low-level, SEP leads to high overhead,
with slowdowns between 2.2x and 25x.

Yoo et al. use local checkpoints to harden protocols
against crashes [48]. ASC-hardening is orthogonal: it
contains error propagation with ASC faults but requires
explicit handling of crashes and message omissions.

8 Conclusion

We proposed ASC-hardening as a novel, sound approach
to systematically protect the integrity of distributed sys-
tems against realistic faults. Hardening prevents error
propagation across processes by converting state cor-
ruptions into process crashes and message omissions.
We have implemented a library, PASC, to transparently
harden processes and evaluated it using a few realistic
examples: state-machine replication, a key-value store
implementation, and a subset of the ZooKeeper coordi-
nation service. Our performance evaluation showed that
PASC enables excellent performance while inducing an

acceptable penalty; for our ZooKeeper benchmark, we
obtained over 50k ops/s and roughly a 17% throughput
drop compared to the unprotected version. Our fault in-
jection experiments also showed that PASC is able to
effectively prevent error propagation upon data corrup-
tions. Preventing error propagation is critical to avoid
massive outages in many production systems.

Acknowledgements

We would like to thank our shepherd Andreas Hae-
berlen, Jon Howell, and the anonymous reviewers for
the valuable feedback. This work has been partially sup-
ported by the SRT-15 project (ICT-257843), funded by
the European Community. Marco Serafini and Flavio
P. Junqueira also acknowledge support from the IN-
NCORPORA - Torres Quevedo Program from the Span-
ish Ministry of Science and Innovation, co-funded by
the European Social Fund. Miguel Correia was par-
tially supported by FCT through the Multi-annual PID-
DAC Program funds, project RC-Clouds and scholarship
SFRH/BSAB/992/2010.

References
[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CERMAK, G.,

CHAIKEN, R., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,
THEIMER, M., AND WATTENHOFER, R. P. Farsite: Federated,
available, and reliable storage for an incompletely trusted envi-
ronment. In Proc. of USENIX OSDI (2002), pp. 1–14.

[2] AMAZON. Amazon S3 availability event: July 20, 2008. http:
//status.aws.amazon.com/s3-20080720.html,
July 2008.

[3] AMAZON. S3 data corruption? https://forums.aws.
amazon.com/thread.jspa?threadID=22709, June
2008.

[4] AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND
LANDWEHR, C. Basic concepts and taxonomy of dependable
and secure computing. IEEE Transactions on Dependable and
Secure Computing 1, 1 (Jan-Mar 2004), 11–33.

[5] BAIRAVASUNDARAM, L. N., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., GOODSON, G. R., AND
SCHROEDER, B. An analysis of data corruption in the
storage stack. ACM Transactions on Storage 4, 3 (2008), 1–28.

[6] BALDONI, R., HELARY, J.-M., AND RAYNAL, M. From crash
fault-tolerance to arbitrary-fault tolerance: Towards a modular
approach. In Proc. of IEEE DSN (2000), pp. 273–282.

[7] BASILE, C., LONG, W., KALBARCZYK, Z., AND IYER, R.
Group communication protocols under errors. In Proc. of IEEE
SRDS (2003), pp. 35–44.

[8] BRESSOUD, T. C., AND SCHNEIDER, F. B. Hypervisor-based
fault tolerance. ACM Transactions Computer Systems 14, 1
(February 1996), 80–107.

[9] CASTRO, M., AND LISKOV, B. Practical byzantine fault tol-
erance and proactive recovery. ACM Transactions on Computer
Systems 20, 4 (2002).

[10] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos
made live: An engineering perspective. In Proc. of ACM PODC
(2007), pp. 398–407.

[11] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. In Proc. of USENIX OSDI (2006), pp. 205–218.

[12] COAN, B. A. A compiler that increases the fault tolerance of
asynchronous protocols. IEEE Transactions on Computers 37,
12 (Dec. 1988), 1541–1553.

[13] CORREIA, M., FERRO, D. G., JUNQUEIRA, F., AND SERAFINI,
M. Models and algorithms for ASC hardening and a correctness
proof. Yl-2011-003, Yahoo! Labs, 2011.

[14] DELL, T. J. A white paper on the benefits of Chipkill - correct
ECC for PC server main memory. Tech. rep., IBM Microelec-
tronics Division, 1997.

[15] DIJKSTRA, E. W. Self-stabilizing systems in spite of distributed
control. Communications of ACM 17 (November 1974), 643–
644.

[16] FIORIN, P. Vital coded microprocessor principles and applica-
tion for various transit systems. In IFAC/IFIP/IFORS Symposium
(1989), pp. 79–84.

[17] GASHI, I., POPOV, P. T., AND STRIGINI, L. Fault tolerance via
diversity for off-the-shelf products: A study with SQL database
servers. IEEE Transactions on Dependable and Secure Comput-
ing 4, 4 (2007), 280–294.

[18] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In Proc. of ACM SOSP (2003), pp. 29–43.

[19] GRAY, J. Why do computers stop and what can be done about it?
In Proc. of IEEE SRDS (1986), pp. 3–12.

[20] GU, W., KALBARCZYK, Z., IYER, R. K., AND YANG, Z. Char-
acterization of Linux kernel behavior under errors. In Proc. of
IEEE DSN-DCCS (2003), pp. 459–468.

[21] HAEBERLEN, A., KOUZNETSOV, P., AND DRUSCHEL, P. Peer-
review: Practical accountability for distributed systems. In Proc.
of ACM SOSP (2007), pp. 175–188.

[22] HAMILTON, J. Observations on errors, corrections, and
trust of dependent systems. http://perspectives.
mvdirona.com/2012/02/26/ObservationsOn
ErrorsCorrectionsTrustOfDependentSystems.
aspx, Mar. 2012.

[23] HO, C., VAN RENESSE, R., BICKFORD, M., AND DOLEV, D.
Nysiad: Practical protocol transformation to tolerate Byzantine
failures. In Proc. of USENIX NSDI (2007), pp. 175–188.

[24] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
ZooKeeper: Wait-free coordination for internet-scale systems. In
Proc. of USENIX ATC (2010).

[25] JUNQUEIRA, F., REED, B., AND SERAFINI, M. Zab: High-
performance broadcast for primary-backup systems. In Proc. of
IEEE DSN (2011), pp. 245–256.

[26] KNIGHT, J. C., AND LEVESON, N. G. An experimental evalua-
tion of the assumption of independence in multiversion program-
ming. IEEE Transactions on Software Engineering 12, 1 (1986),
96–109.

[27] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND
WONG, E. Zyzzyva: Speculative Byzantine fault tolerance. In
Proc. of ACM SOSP (2007), pp. 45–58.

[28] LAMPORT, L. The part-time parliament. ACM Transactions
Computer Systems 16, 2 (May 1998), 133–169.

[29] LI, M.-L., RAMACHANDRAN, P., SAHOO, S. K., ADVE, S. V.,
ADVE, V. S., AND ZHOU, Y. Understanding the propagation
of hard errors to software and implications for resilient system
design. In Proc. of ACM ASPLOS (2008), pp. 265–276.

[30] LI, X., HUANG, M. C., SHEN, K., AND CHU, L. A realistic
evaluation of memory hardware errors and software system sus-
ceptibility. In Proc. of USENIX ATC (2010), pp. 6–16.

[31] MA.GNOLIA. Ma.gnolia data recovery status. http:
//getsatisfaction.com/magnolia/topics/ma\
_gnolia_data_recovery_status, February 2009.

[32] MAHMOOD, A., AND MCCLUSKEY, E. J. Concurrent error de-
tection using watchdog processors-a survey. IEEE Transaction
on Computers 37, 2 (February 1988), 160–174.

[33] MERIDETH, M., IYENGAR, A., MIKALSEN, T., TAI, S., ROU-
VELLOU, I., AND NARASIMHAN, P. Thema: Byzantine-fault-
tolerant middleware for web-service applications. In Proc. of
SRDS (2005), pp. 131–140.

[34] MPOELENG, D., EZHILCHELVAN, P., AND SPEIRS, N. From
crash tolerance to authenticated Byzantine tolerance: A struc-
tured approach, the cost and benefits. Proc. of IEEE DSN (2003),
227–236.

[35] NEIGER, G., AND TOUEG, S. Automatically increasing the
fault-tolerance of distributed systems. In Proc. of ACM PODC
(1988), pp. 248–262.

[36] REIS, G., CHANG, J., VACHHARAJANI, N., RANGAN, R., AND
AUGUST, D. SWIFT: Software implemented fault tolerance. In
Proc. of IEEE/ACM CGO (2005), pp. 243–254.

[37] SCHNEIDER, F. B. What good are models and what models are
good? Distributed systems (2nd Ed.) (1993), 17–26.

[38] SCHROEDER, B., PINHEIRO, E., AND WEBER, W.-D. DRAM
errors in the wild: A large-scale field study. In Proc. of ACM
SIGMETRICS (2009), pp. 193–204.

[39] SERAFINI, M., BOKOR, P., DOBRE, D., MAJUNTKE, M., AND
SURI, N. Scrooge: Reducing the costs of fast Byzantine replica-
tion in presence of unresponsive replicas. In Proc. of IEEE DSN
(2010), pp. 353–362.

[40] SONG, Y. J., JUNQUEIRA, F., AND REED, B. BFT for the skep-
tics. In Proc. of BFTW3 (2009).

[41] TAYLOR, D. J., MORGAN, D. E., AND BLACK, J. P. Re-
dundancy in data structures: Improving software fault tolerance.
IEEE Transactions on Software Engineering 6, 6 (1980), 585–
594.

[42] TRONT, J. G., ARMSTRONG, J. R., AND OAK, J. V. Software
techniques for detecting single-event upsets in satellite comput-
ers. IEEE Transactions on Nuclear Science 32, 6 (Dec. 1985),
4225–4228.

[43] VERONESE, G. S., CORREIA, M., BESSANI, A. N., C., L.,
AND VERISSIMO, P. Efficient Byzantine fault tolerance. IEEE
Transactions on Computers. To appear.

[44] VIJAYKRISHNAN, N. Soft errors: Is the concern for soft-errors
overblown? In Proc. of IEEE ITC (2005), pp. 2–12.

[45] VOGELS, W. Eventually consistent. Communications of the ACM
52, 1 (2009), 40–44.

[46] WAPPLER, U., AND FETZER, C. Software encoded processing:
Building dependable systems with commodity hardware. In Proc.
of SAFECOMP (2007), pp. 356–369.

[47] YIN, J., MARTIN, J.-P., VENKATARAMANI, A., ALVISI, L.,
AND DAHLIN, M. Separating agreement from execution for
Byzantine fault tolerant services. In Proc. of ACM SOSP (2003),
pp. 253–267.

[48] YOO, S., KILLIAN, C., KELLY, T., CHO, H. K., AND PLITE,
S. Composable reliability for asynchronous systems: Treating
failures as slow processes. In Proc. of USENIX ATC (2012).

