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With the evolution of distributed ledger technology (DLT), several blockchains that provide enhanced privacy guarantees and

features, including Corda, Hyperledger Fabric, and Canton, are being increasingly adopted. These distributed ledgers only

provide partial consistency, meaning that participants can observe the same ledger differently, i.e., observe some transactions

but not others, providing higher levels of privacy to the end-user.

Choosing privacy instead of transparency leads to delicate trade-offs that are difficult to manage during runtime, ham-

pering the development of applications that depend on reasoning about shared state, e.g., asset transfers across blockchains.

We propose using the concept of blockchain view (view) – an abstraction of the state a participant can access at a certain

point to address this problem. Views allow us to systematically reason about either state partitions within the same DLT

or an integrated view spanning across several DLTs. We introduce BUNGEE (Blockchain UNifier view GEnErator), the first

DLT view generator, to allow capturing snapshots, constructing views from these snapshots, and merging views according

to a set of rules specified by the view stakeholders. Creating views and operating views allows new applications built on top

of dependable blockchain interoperability, such as stakeholder-centric snapshots for audits, cross-chain analysis, blockchain

migration, and combined on-chain-off-chain analytics.
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1 INTRODUCTION

Blockchains1 provide trustworthy and transparent services, leveraging a network of mutually untrusting
participants. A highly desirable property of DLTs is consistency [1]: the guarantee that all honest parties share
a common prefix of the blockchain, i.e., they see the same transactions registered in the ledger. Based on this
property, each ledger holds a single source of truth for all its participants: consistency is the foundation of the
decentralized trust that DLTs offer.2 The view concept has its roots in database schema integration and, more
recently, in business process view integration [2]. To account for the multitude of business process views, busi-

ness view process integration (BVPI) studies the consolidation of different views regarding a business process
[2, 3]. Business view process integration (BPVI) addresses the challenges of processes that involve several
participants with different incentives, alleviating them by merging models that represent a different view of the
same model.

Despite the importance of consistency, some permissioned DLTs offer only partial consistency, providing a
trade-off between transparency and privacy. Partial consistency is a weaker notion of consistency that implies
that honest parties can read only subsets of the same global transaction graph, i.e., of the ledger. For every
transaction ID a set of parties share, they also agree on the contents and dependencies of such transaction [4].
Partial consistent blockchains are very useful in enterprise-grade applications, where privacy and accountability
are paramount and necessary to enforce [5]. Organizations working with DLTs that provide partial consistency
have been putting resources in place to enable interoperability with other blockchains, following the growing
trend in the space to accommodate DLTs offering different properties and features [6, 7].

A problem naturally emerges from a multichain ecosystem. Since participants might have different views of
a chain, see different data partitions.3

A solution to address interoperability across blockchains is to trust a centralized third party [9], such as a
cryptocurrency exchange. However, we have seen that such platforms have been consistently attacked and even
defrauded its users (see the FTX crash [10], and many more [11, 12]). Trusting a decentralized protocol could be
the way forward. However, many decentralized protocols useful for interoperability have few privacy-protecting
mechanisms [7, 13] and are still immature and insecure [14]. However, there are alternatives to conventional
decentralized bridge designs. A promising one is systems based on zero-knowledge proofs [15, 16]. Despite
having potential to be reasonable long-term solutions, these are two shortcomings: (1) the technology is very
recent, and thus it is immature and not hard-tested (e.g., zk-rollup technology [17]) and (2) it requires significant
engineering effort, to the point of even creating a new blockchain from scratch (see ZCash, Monero [18]).

We then search for a balanced approach that includes support for both centralized and decentralized proto-
cols. A view offers a stakeholder-centric, generalizable, self-describing commitment to the state of a blockchain,
allowing for representing states from different blockchains in a standardized way. Blockchain views are created,
processed, and shared by consortium participants that are legally identified and have contractual obligations to
follow a protocol, namely blockchain gateways [19, 20]. Gateways are trusted systems that run an interoperability
protocol [21] and can use blockchain views as proof of state for asset and data transfers. Despite being trusted and
therefore suitable for enterprises, several decentralization features in gateways promote accountability among
consortium members. In this context, building and analyzing views is important to understand each stakeholder’s
view of each DLT accurately as a tool for dependable interoperability across heterogeneous systems.

1We use the terms DLT and blockchain interchangeably. A DLT subsumes a blockchain, i.e., a blockchain is a DLT.
2A similar assumption could be extended to business processes, where a single model can capture simple processes. However, different

representations of the same process are possible as soon as its complexity increases.
3Note that it is different from the traditional database field, where different views exist and are processed according to a different number

of methods [8]. In particular, we are interested in the problem of managing views of a decentralized system, where access control and data

management (who can see what) are decentralized. This has implications for governance and privacy, as no single authority manages the

view creation, processing, and sharing processes. Furthermore, operations in the decentralized database must generate and share proof that

such an operation is valid.
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Problem Definition and Research Questions

Let us consider a blockchain consortium c made up of n nodes and v different views. The research problem we
propose to solve is to find a view v ′ that is agreed by a subset of n, includes a subset of v , and respects a privacy
policy defined in c . To answer this problem, we divide it into several research questions (RQs):

— RQ 1. How to provide a data format for views that balance the characteristics of centralized and decentralized

systems?

Multiple DLT data formats result from their architecture, consensus, and identity models. Formalizing the
blockchain view and related concepts is necessary to clarify data representation across chains. Motiva-

tion: the absence of standards in the interoperability area is a well-known concern [22–24]. Providing a
standardized data format would enable the industry and academia to converge to more efficient design
patterns, enhancing organizational and legal interoperability.

— RQ 2. How to guarantee privacy-preserving properties in blockchain interoperability?

This contribution addresses that need by creating views that allow one to see a stakeholder’s perspective
over the entire ledger. However, how do we obtain a holistic view of a DLT providing partial consistency,
i.e., combined perspectives of all participants, according to privacy restrictions? We ensure that the view’s
creation, merging, and processing come with privacy, integrity, and accountability guarantees. Motivation:
Recent research highlights the need and inexistence of privacy-preserving mechanisms in the cross-chain
setting as a priority for next-generation interoperable systems [25–27]. Providing privacy-preserving ca-
pabilities for cross-chain solutions would enable a new range of users, including enterprises, governments,
and organizations that transact sensitive data.

By answering these research questions, we expect to analyze, model, design, and provide implementation
guidelines for systems generating views, making it easier to reason about systems interacting with several
blockchains, hence delivering the following contributions:

Contributions

— We define the concept of blockchain view. We present a formalization of concepts surrounding the view,
rooted in the state abstraction and causality relationships between transactions, states, and views. This
formalization is the foundation to specify systems handling views, and also for practical implementations.

— We specify the first view integrator, Blockchain UNifier view GEnErator (BUNGEE). BUNGEE is a
flexible, modular middleware that sits between the data and the semantic layers of a blockchain, allowing
data to be abstracted into different data models and formats. To the best of our knowledge, this is the first
time views are used to take stakeholder-specific snapshots of the ledger, allowing for several applications.

— We specify BUNGEE’s algorithms to create, merge, and process a view, providing a comprehensive discus-
sion of decentralization, efficiency, and privacy trade-offs.

Paper Outline

This document is organized as follows: Section 2 introduces the background necessary to comprehend this paper.
In Section 3 we formalize the blockchain view and related concepts. Next, Section 4 presents BUNGEE. After that,
we present a discussion in Section 5. Next, we present the related work, in Section 6. Finally, we conclude the
paper, in Section 7.

2 PRELIMINARIES

This section presents the background necessary to understand the paper, along with motivational use cases.

Blockchains Providing Partial Consistency. Blockchains providing partial consistency create partitions over the
global state according to some criteria. Private blockchains require their participants to be authenticated and
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Fig. 1. Two different participant views over the same DLT. Tx stands for a transaction. A green or red labeled transaction is
available (read access) to Participant P1 or Participant P2, respectively. Transaction Tx1 is available for both participants.

only expose their content to trusted parties (although those parties do not necessarily trust each other). In pri-
vate blockchains, different views are common and desirable for privacy reasons [5]. Parties may want to share
information with a selected group.

For example, Hyperledger Fabric (Fabric), a private blockchain framework, provides a feature called private
data collections. Private data allows sets of participants to hide part of the state they hold, only sharing a
hash of that private data as proof of existence [28, 29]. This feature effectively implements partial consistency
in Fabric, allowing for the existence of different views. In Corda [30], transactions are ordered as a set of
(potentially) disconnected directed acyclic graphs – parties can access certain subgraphs, i.e., Corda provides
partial consistency. Other examples exist, such as Quorum [31], IOTA [32], and Digital Asset’s Canton [33].
Figure 1 shows a visualization of the concept.

Blockchain Interoperability. The emergence of many blockchains raised the debate about the need for inter-
operability [7, 13]. Interoperability can be defined as the ability of multiple parties to work together by shar-
ing/exchanging information [34].

The first use case for interoperability is cross-chain state creation, management, and visualization. While some
preparatory work has been done [14], it is hard to visualize and reason about private data partitions (different
views), not only in the cross-chain setting but also in a single blockchain setting. Blockchain platforms could
leverage views to improve view analysis for auditors, cybersecurity experts, and developers. Auditors and cyber-
security professionals can facilitate audits [35] because different data partitions can be analyzed from a specific
angle. Developers can gain insight into their applications and processes. Representing on-chain data through a
DLT view in multiple chains allows for a visualization of the cross-chain state, making it easier to manage and
reason. A specific application could be having one view across multiple Cosmos zones, Polkadot parachains, or
Layer 2 solutions (Polygon, Arbitrum, and others, for instance) [36].

The second use case is decentralized application migration. Migration of blockchain-based applications is
necessary and increasingly common [13, 37, 38]. Migration allows enterprises to experiment with other DLT
infrastructures without the risk of vendor lock-in. The key idea behind application migration is to capture the
DLT state relevant to that application (data and functionality) and move it to a different DLT infrastructure.
With several views on participants’ concerns operating on the source blockchain, one might need to consolidate
their diverse views into an integrated view that serves as the foundation of the migration. The integrated view
comprises a holistic view of the application’s state at the source DLT. This view can then be transferred to
the target infrastructure and its functionality (i.e., smart contract migration). We leave the treatment of this
interesting problem and its details (for example, how to manage user keys) for future work.

Finally, the third use case is to allow asset transfers between chains [20]. Transferring assets between
public DLTs and centralized systems (or private DLTs) is hard because it relies on strong trust assumptions or
transparency. An asset transfer is typically implemented by locking an asset in the source chain and unlocking it
in the target chain. However, if one of the chains is private (or centralized), such a state is not visible (by design)
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[39]. Therefore, decentralized transfers across these types of system rely on proofs (or, rather, a notarization)
of the current state of each chain concerning the representation of an asset [40]. Blockchain gateways that
perform asset transfers need to translate the state of assets “to some DLT-neutral standard that other gateways
can interpret and then hand over to the networks they are acting on behalf of” [41] - the DLT-neutral standard is
the view.

Thus, blockchain views can be the bridge that allows decentralized blockchain interoperability across hetero-
geneous systems by representing such notarization on a public forum [42, 43], with a standardized data format,
independent of any specific blockchain implementation. A related use case to this would be to build a cross-chain
wallet that, giving a private key, outputs all tokens in all blockchains associated with that wallet. This could be
particularly useful for people with LUNA tokens spread across several blockchains, especially after the value of
the coin plummeted [44].

3 BLOCKCHAIN VIEWS

This section introduces a running example that applies view integration to the supply chain industry. After that,
we formalize concepts related to the view, such as the access point, blockchain view, and view generator.

3.1 Running Example

We present a typical use case on private blockchains, supply chain [45], that benefits from representing the
various internal views to an external observer.

A supply chain transfers value between parties, from the raw product (physical or intellectual) to its finalized
version. Managing a supply chain is complex because it includes many nontrusting participants (e.g., enterprises
and regulators), and implies keeping an audit trail of all operations. As many markets are open and fluid, compa-
nies do not take the time to build trust and instead rely on a paper trail that logs the state of an object in the supply
chain. This paper trail is necessary for auditability and can typically be tampered with, which leads to the suitabil-
ity of blockchain to address these problems by monitoring the execution of the collaborative process. Blockchain
smart contracts can ensure that the execution of the process complies with defined business rules [46, 47].

Audits inspect the trail of transactions referring to a product’s lifecycle. Therefore, different perspectives
might need to be analyzed. A challenge naturally emerges: balancing the necessary transparency for audits while
maintaining privacy about the transactions across other business partner groups is not trivial. By selectively
sharing a common domain, parties can have more efficient processes while performing data-sensitive operations
within the same supply chain. A domain is a state shared by parties enrolled in a private relationship.

Let us consider a group of five organizations on a Hyperledger Fabric blockchain that produces, transport, and
trade:

— A Supplier, producing goods.
— A Shipper, moving goods between parties.
— A Distributor, moving goods abroad. Buys goods from Suppliers and sells them to Wholesalers.
— A Wholesaler, acquiring goods from the Distributor.
— A Retailer, acquiring goods from shippers and wholesalers.

The Distributor may prefer to make private transactions with the Supplier and the Shipper to keep confiden-
tiality towards the Wholesaler and Retailer (hiding their profit margins). On the contrary, the Distributor may
want a different relationship with the Wholesaler. It charges them a lower price than it does with the Retailer (as it
sells assets in bulk). The Wholesaler may want to share the same data with the Retailer and the Shipper (because
the Wholesaler may charge the Retailers a higher price than the Shipper). We call these private relationships
domains. The combination of all domains represents the whole ledger.

Domains hold a subset of the ledger that is only accessible by authorized parties. By sectioning the shared
ledger, different views on the same blockchain are possible, depending on a stakeholder’s participation in a
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Table 1. Participant Views on the Supply-chain Blockchain Regarding an Asset
with ID = 1

Participant\Domain d1 d2 d3

Supplier
ID: 1
Price: 1

ID: 1
Price: hidden

ID: 1
Price: hidden

v1

Shipper
ID: 1
Price: 1

ID: 1
Price: 2

ID: 1
Price: hidden

v2

Distributor
ID: 1
Price: 1

ID: 1
Price: hidden

ID: 1
Price: 3

v3

Wholesaler
ID: 1
Price: hidden

ID: 1
Price: 2

ID: 1
Price: 3

v4

Retailer
ID: 1
Price: hidden

ID: 1
Price: 2

ID: 1
Price: hidden

v5

Fig. 2. Different domains on the blockchain supporting the supply chain scenario. For instance, the Supplier has access to
domain 1, while the Shipper accesses domains 1 and 2. Access to different domains leads to the creation of different views.

given domain, as shown in Table 1. In this table, the asset ID is one across all domains. However, its price differs
across domains, translating into different views. For instance, the Supplier has access to the asset’s price on
d1, but only access to its price’s hash on d2 and d3 (i.e., does not have access to the price on d2 and d3. This
three-dimensional tuple access-deny-deny corresponds to v1. Retailers’ view, v5 can see the asset’s price only in
d2. The three existing domains (see Figure 2, translate into three different price values for the same item – five
participants originate five different views.

Now, assume that we identify each asset tracked in a supply chain by an ID and a price. For the same asset
(and thus the same state on the blockchain, as it is uniquely identifiable by its ID), the Distributor-Supplier-
Shipper (Domain 1, d1) has the same view of the price, but the Wholesaler-Retailer-Shipper (Domain 2, d2) and
Distributor-Wholesaler (Domain 3,d3) and have different views. As every stakeholder has a different combination
of the domains that are accessible, the DLT infrastructure yields five different views.

Distrib. Ledger Technol., Vol. 3, No. 1, Article 7. Publication date: March 2024.
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Let us now imagine that an auditor wants to inspect the Distributor’s operations regarding an asset. The
auditor would retrieve blockchain snapshots in light of each participant’s view. After that, the auditor can analyze
each view from the perspective of each participant. If a general picture is needed, all views can be merged into
an integrated one and jointly analyzed. Since there are different viewpoints, there are different prices for the
same object, and different merge procedures are possible. This is not a trivial aspect to deal with, since views can
originate from multiple decentralized systems, and therefore, aspects such as governance, access control, and
privacy-preserving mechanisms are not easily managed by a centralized party.

In particular, the different views are translated into an integrated view that refers only to a consolidated
price as a summary of the prices of the different views. The processing and the merging of the views are the
consortium’s responsibility for managing the blockchain, and thus, several options are possible. We will address
this point later in this paper.

3.2 Formalizing Views

This section formally defines the terms necessary for blockchain view integration. We provide the conceptual
framework to build programs that can merge blockchain views. The first concept of our framework is the ledger.
A ledger is a simple key-value database with two functionalities: read and store. It supports a state machine
that implements a DLT. We define the ledger as follows:

Definition 1 (Ledger). A ledger L is a tuple (D,A) such that:

—D is a database, specifically a key-value store. Each entry in the database is a key-value tuple, i.e., d ∈ D :
(k,v), where k stands for key and v for value.
D has two functions: read and writes (storing). read returns the value associated with a key, the empty
set ∅ (if there is no value for that key) or an error ⊥ (if the user does not have access permissions), i.e.,
read → {v, ∅,⊥}. The store primitive saves the (k,v) pair in the database, indexed by k , returning 1 if
the operation was successful and 0 otherwise, i.e., store : k ×v → {0, 1}.
The read and store primitives support the representation of simple UTXO blockchains (e.g., Bitcoin) [48]
or more complex ones, an account model (e.g., Ethereum) [49], or others by combining the operations
mentioned above (e.g., Hyperledger Fabric [50]).

—A is an access control list that specifies access rights to read entries from the database. Each entry in
the list has the form (p,k). Each entry indicates that the participant p can read the state with key k . A
participant p can access a key k when the primitive access(A,p,k) returns 1, or 0 otherwise.

The simple functionality of the notion of ledger given in Definition 1 allows us to represent Bitcoin [51] as
follows: the database (collection of all states) is a list of UTXO entries (states). A UTXO has a unique identifier,
the transaction hash, and the state key (we present a simplified version of UTXO). Its value is in the form (input,

output, metadata). The input corresponds to a reference to the previous transaction and a key to unlock the
previous output to the current input. The output consists of a cryptographic lock and time. Metadata is any other
relevant information for a transaction using that UTXO (for example, the timestamp and the fees). Hyperledger
Fabric’s state is more straightforward to map since it is a key-value store.

We define the entities that can read or write in the ledger by participants:

Definition 2 (Participant). A participant p ∈ ϒ is an entity (K id
k

,K id
P

), capable of reading and writing to a ledger
L, where:

—K id
k

is a private key. The private key is used as the signing key.

—K id
P

is a public key. The public key is used as the verification key.

Participants interact with the ledger via nodes. Nodes are software systems that participate in ledger consensus
by aggregating and executing transactions and sending them to other nodes. We introduce the concept of Access

Point to formalize the relationship between participants and nodes as follows:
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Table 2. Ledger l Projections onto all the
Participants from the Use Case Depicted in

Section 3.1

dπl,pn
d1 d2 d3

p1 = Supplier s1 s2 s3

p2 = Shipper s1 s2 s3

p3 = Distributor s1 s2 s3

p4 = Wholesaler s1 s2 s3

p5 = Retailer s1 s2 s3

p6 = Retailer s1 s2 s3

The projection function is a simple read of the

database. A state si in the green background is a state

that a participant can access, whereas a state si is a

state that is not accessible to a given participant.

Definition 3 (Access Point (AP)). An AP ω maps a set of nodes n connected to ledger L to a set of participants
pn , i.e.,ω(n) −→ pn ⊆ ϒL . Conversely,ω−1 returns the node set np that a participant can access, i.e.,ω−1(υ) → np .

An access point tells us which participants can access the ledger through a specific node. Nodes can access a
DLT through the primitive obtainDLT. The result of obtainDLT(np ) = Lv , whereLv is a virtual ledger. A virtual
ledger only allows the participants to read and write in the ledger according to their permissions (namely, the
defined access control list). In more detail, a virtual ledger:

Definition 4 (Virtual ledgers). A virtual ledger Lv is a projection of a ledger L(D,A) in the form (L,Fπ ) such
that:

—L is the ledger that provides the database where projections are made.
— FΠ , a set of projection functions {Fπ1 ,Fπ2 , . . . ,Fπn

} that returns a subset dπ of the database D from L,
i.e., Fπ ∈ FΠ : LD ×LA ×p → {∅,dπ }, according to the entries in the access control list of the participant
defined byA (or ∅, if the participant is not authorized to access the ledger). This corresponds to “what the
participant can see”.

Recall that the database or a subset is a collection of keys and their values. We can simplify its representation
by referring to the projection of the ledger l against the participant p (this is, the projection function Fπ that
is chosen projects the states of the virtual ledger that are accessible by p). The projection in the ledger L using
the projection function Fp outputs a set of states {s1, . . . , sn} that the participant p can access, i.e., dL,Fp

=

{s1, . . . , sn}. We use the notation s to represent the absence of a state in a projection. Consider the following
projections, illustrated by Table 2:

— dL,Fp1
= { s1, s2 , s3 } = s1

— dL,Fp2
= { s1, s2, s3 } = s1, s2

— dL,Fp3
= { s1, s2 , s3 } = s1, s3

— dL,Fp4
= { s1 , s2, s3 } = s2, s3

— dL,Fp5
= { s1 , s2, s3 } = s2

— dL,Fp6
= { s1 , s2, s3 } = s2

We can retrieve a projection dL,Fp
(or empty set) with the primitive obtainVirtualLedger. This primitive

receives as input a ledger L and a projection function Fp . Some projections are not unique (e.g., dL,Fp5
and

dL,Fp6
). The concept of projection is the basis for the DLT view, which we will define later in this section. Both
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ledgers and virtual ledgers are abstractions to access a state, represented by a key-value store. Participants issue
transactions to change the state. A transaction is defined as follows:

Definition 5 (Transaction). A transaction t is a tuple (tid , t ,payload,σK
p
s
(messaдe), St id , tarдet), where:

— tid is a unique increasing sequence identifier for a transaction. This identifier allows one to construct a
transaction ID, a unique identifier for a transaction. Transaction ti precedes tj , i.e., ti � tj if and only if
j > i .

— t is the transaction timestamp
— payload is the transaction payload. The payload can carry arbitrary information (smart contract parame-

ters, UTXO input value).
— a signature on the transaction σK

p
s
(messaдe), wheremessaдe � (tid , t , tarдet ,payload).

— St id , a set of input states given as input to the transaction with transaction ID sid .
— tarдet is the state ID to which the transaction refers.

A transaction takes as input a St id and outputs S ′
t id

. We define a primitive VerifyTx(.) that takes a set of
initial states, a transaction, and a set of output states and outputs one if and only if the state transition is valid
according to some algorithm ρ, i.e., VerifyTx(St id , tid , S

′
t id
, ρ = 1). Checking the validity of a transaction w.r.t. the

states it changes implies re-running the transaction on its run environment. Transactions produce state changes.
We define the state as:

Definition 6 (State). A state s is a tuple (sk , sk,v ,T ,πk ), where

— sk is a unique identifier (the state’s key).
— a transaction list T , referring to that state, i.e., ∀t ∈ T : t .tarдet = sk

— the value it holds sk,v . The value of a state can be calculated using the set of transactions ∀i,TS = {ti ⊂
T , s ∈ S : ti .tarдet = sk }, i.e., the transactions referring to that state, in the following manner:

sk,v =

{
∅ i = 0
apply(ti , sk,i−1) i ≤ |TS |

where apply is a function that executes the payload of the transaction ti on the state sk . The data is the
most recent state value, the result of the successive transformations (over the previous versions of the
same state). The function apply is blockchain-dependent.

— a proof of state validity πk = σK P
s
(sk , sk,v ,v), where sk,v is the value of state sk at version v , and σm is the

set of signatures of participants P ⊂ ϒ that creates the proof, over a payloadm.

A state has a unique reference (or key) sk and a version v such that when v is updated, it yields v ′ > v . We
denote the value pointed by that reference by sk,v . If we omit the version, we refer to sk as the latest value in
a certain state. Thus, for all k � k ′, sk and s ′

k
represent the latest value of different states. In practice, the value

of a state is the result of successively executing transactions over the same object. The value for sk,v or (sn)
can be calculated as follows, where transaction set {t1, . . . tk−1} ∈ TS are the transactions referring specifically
to sk :

sk,0
t1
−→ sk,1

t2
−→ . . .

tk−1
−−−→ sk,v

Each ledger database stores states in its key-value store. The state identifier, sk , is the key, while the tuple
(sk,v , t ,πk ) is the value. Each proof π ∈ Π is a string accounting for the validity of the item it describes (e.g.,
signature over transaction).4

4In Bitcoin, for instance, the proof of validity for a transaction is the issuer’s signature, along with a nonce whereby its hash begins with a

certain number of zeroes and is smaller than a certain threshold (valid transaction within a valid block). In Hyperledger Fabric, the proof is

a collection of signatures from the endorsing peer nodes that achieved consensus on the transaction’s validity.
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We define the cardinality of a state sn as |sn | as the number of transactions that compose it. If sn has a set
of transactions T = {t1, . . . , ti }, then |sn | = i . The state of a particular object can be reconstructed from the
execution of all the transactions that refer to it. The global state is then the set of all states, the set S. The set of
states visible by a certain participant (states that authorize the participant to read/write/update) is a view of the
blockchain.

Having introduced all the basilar concepts, we can define a DLT view:

Definition 7 (View). A viewV is a projection of a virtual ledgerL, in the form of (vk , ti , tf ,p,dπl,p
, S,Π), where

— its key vk , is a unique ID
— an initial time ti and a final time tf that restrict the states belonging to that view. A view may have no

restriction on the temporal interval, i.e., all states that a participant p accesses through dπl,p
are included

in the view.
— p ⊆ ϒ is the set of participants associated with the view. A participant upsilon can be associated with one

or more nodes, accessible by a blockchain access point ω.
— a projection function dπL,p used to build the view.
— S corresponds to the set of versioned states that the participant in the view has access to (via the projection

function).
— Π is a set of proofs accounting for the validity of a view (e.g., accumulator value for over states ordered by

the last update).

The consolidated view, or the global viewV , is the set of all participant views, i.e.,V = ∪i
i=0pi , that captures

the entire ledger L.

Definition 8 (View Cardinality). Let there be a DLT view vl,p belonging to a participant p. A view vl,p has
cardinality i when the number of states composing that view is i , i.e.,dπl,p

= {s1, . . . , si }. In other words, |vl,p | = i .

Definition 9 (DLT Domain). t is a tuple (d, sk , sk,v ,Fd , P ,value), where:

— d is the identifier of the domain
— sk is the state key to which that domain refers.
— sk,v is the state value corresponding to sk .
— projection function that generates the state value sk,v of domain d indexed by sk .
— P is the set of participants that can read the value v of state sk on a domain d .

Domains represent private relationships; they capture how many participants can share the same state. Do-
mains then capture if a state is accessible (value readable) or not by a set of participants. The same state’s key
can have different values on different domains (depending on the projection function generating the domain).
Two participants sharing the same domain does not mean having the same view.

Definition 10 (View Equivalence). Let there be a ledger L composed of a set of views {v1,v2, . . . ,vn} ∈ V ,
holding respectively the sets of states {S1, S2, . . . , Sn} ∈ S, i.e., there are the pairs {(v1, S1), (v2, S2), . . . (vn , Sn)}.
There is view equivalence, denoted by equivalent(vi ,vj ) if, for any pair of views vi ,vj ∈ V there is a bijection
φ : si → sj such that if both sets of states from the views are the same, their views are equivalent, i.e., φ(si ) =

sj =⇒ ∀s ∈ si , s , could replace all s ′ ∈ sj =⇒ vi ≡ vj .

Following the example of Table 2,v1 andv6 are equivalent views because the states that are accessible to those
views are the same. However, those views are unequal, as the other parameters might change.

Definition 11 (View Transparency). Let there be a ledger L with a set of participants ϒ and a set of DLT
views {v1, . . . ,vn} =V . We define the transparency grade κ of a DLT view vv , denoted as κ(vv ), as the ratio of

Distrib. Ledger Technol., Vol. 3, No. 1, Article 7. Publication date: March 2024.



BUNGEE: Dependable Blockchain Views for Interoperability • 7:11

participants who can access the states encoded in that view. More formally,

κ(vv ) =

∑n
i�v ∀vi [equivalent(vn ,vj ) + 1]

|V|

This concept is useful to understand how many participants can access a certain set of states. Taking the
example from Table 2, κ(vl,Fp6

) = 2
6 because the view created by projecting the ledger l with dFp6

is equivalent

tov5 (summing with the view being compared). Therefore, two out of six participants can access the same set of
states (i.e., each participant has a different view, apart from p5 and p6).

4 BUNGEE, A MULTI-PURPOSE VIEW GENERATOR

In this section, we present BUNGEE. First, we present the system, key management processes, and adversary
models. After that, we present the snapshot process. Next, we present how views are built and then merged. The
section ends with discussion on the processes of creating snapshots and views, as well as merging views.

4.1 System Model

We consider an asynchronous distributed system, the DLT, that hosts a ledger L. Three types of participants
interact with the ledger: (i) participants ϒ: entities that transact on the network (can use read and write
operations) via the nodes that their AP exposes; (ii) nodesN , who hold the full state of the DLT, and contribute
to the consensus of the latter; and (iii) view generators G, programs that build views, via a node that has access
to the target participant of the view. This implies that a view generator trusts the node that is the access point
to the DLT. Each DLT is assumed to be able to preserve its safety and liveness abilities despite the possible
existence of malicious nodes. This implies that building and operating views based on networks that cannot
guarantee safety properties (e.g., DLT forks due to attack) are invalid.

Key management. Each participant p ∈ ϒ, node n ∈ N , and view generator G is identified by a pair of keys

(K
p
p , K

p

k
), (Kn

p , Kn
k

), and (KGp , KG
k

), respectively. The private key is the signing key, while the public key is the
verification key. The generated keys are independent of all other keys, implying that no adversary with limited
computational resources can distinguish a key from one selected randomly. We assume that keys are generated
and distributed in an authenticated channel, preserving integrity; digital signatures cannot be forged. We say that
an entity x signs a messagem with its private key with the following notation: signx (m). Verifying a messagem
with the public key from x can be done with a verify primitive, which outputs one if the message was correctly

signed bym, i.e., verify(m,x ,K
p
x ) = 1, and 0 otherwise.

4.2 Adversary Model

The DLT where view generators operate is trusted, meaning that most internal nodes are honest, and thus the
network is trusted. Given this assumption, there can be different adversary models for nodes, generators, and
view generators. Nodes can be honest by following the DLT protocol, establishing consensus with other honest
nodes, and reporting the actual status of the DLT to participants who request it. Nodes can, instead, be malicious,
i.e., Byzantine, being able to deviate from the protocol and falsely report the DLT status to participants (endan-
gering the creation of truthful views). Nodes can be malicious but cautious, meaning that they are only malicious
if there are no accountability checks that can penalize them (i.e., if they know that they cannot get caught).

View generators constitute a trusted group with the participant that is the target of the view because the
generator needs the participant’s credentials to access a (private) subset of the ledger. We then assume that each
participant runs its view generator. View generators can only build views for participants whose keys they do
not control if the ledger has no partition (i.e., it is public). Since participants might access DLT partitions from
different nodes, the trust group (participant, view generator) does not include a node or set of nodes, i.e., view
generators and DLT participants are independent of the nodes that sustain the DLT.
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Fig. 3. View generation process for participant p1, ledger L, using projection functions dπL,2021 (yellow rows) and dπL,2022

(white rows).

4.3 View Generation Process Overview

BUNGEE constructs views from a set of states from an underlying DLT called a snapshot. This is done by obtain-
ing a virtual ledger on behalf of a certain participant with a projection function. Then, each state accessible by
the participant is collected in the snapshotting phase. The states are processed, and a representation of the ledger
is built to which the participant has access. We can think of the snapshot as the capture of available transactions

from the perspective of the participant in a table (c.f Figure 3, step 1 ) upon having the necessary permissions

from the ledger ( 2 ). Right after that, in the view building phase, a view is built from the virtual ledger that

the view generator can access by temporarily limiting the states that one can see ( 3 ). Views can be stored in
a local database, providing relational semantics and rich queries. Views are assured to provide provenance, i.e.,
BUNGEE can trace each component constituting a view down to the transaction.

After that, the view merging phase (optional) comprises merging views into an integrated one (see Section 4.7).
For that, an extended state is created from the states present in each view that share the same key. Following
that step, a merging algorithm is applied to the extended state. Finally, each view generator signs the integrated
view, which can optionally be published in a public forum. The publication in a public forum can be decided by
the participants that generate views (social consensus).

Let us focus on the high-level snapshot generation and view generation processes, as exemplified in Figure 3.
In this example, we are building two viewsV1 andV2 (from participants p1 and p2, which capture states whose
projection functions are dπL,2022 and dπL,2021 , respectively. The semantics for the projection functions are simple:
dπL,2022 refers to transactions timestamped as of 2022, and dπL,2021 refers to transactions timestamped as of 2021.
In the figure, we focus on buildingV1 - the white rows. Thus, the transactions timestamped 2021 (in the yellow
rows) are not captured on viewV1. Transactions t1, t2 and t3 alter state s1, but t2 belongs to viewV2, so its not
included. Transaction t4 changes stores B as the value of s3, while transaction t5 sets s3 as C .

Once the three steps are completed, BUNGEE returns the views (the generated and the integrated views) to the
client application (for example, a blockchain migration application). For example, the client application might
use BUNGEE to retrieve snapshots that refer to a period relevant to an audit. Due to BUNGEE’s modularity,
adding support for different applications is facilitated. Next, we present each phase depicted in this overview in
finer detail.
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ALGORITHM 1: Snapshotting of ledger L through node n and participant p, via projection function Fp

Input: Access point AP , participant p, projection function Fp , snapshot identifier snapshotid

Output: Snapshot from participant p through node n, snapshot
1 snapshot.id← snapshotid

2 snapshot.v← 1

3 snapshot.sb← ∅

4 snapshot.ti ←⊥

5 snapshot.tf ←⊥

6 tit ←∞ � temporary variable to hold minimum state timestamp to date

7 tf t ← 0 � temporary variable to hold maximum state timestamp to date

8 n = ω−1(p) � choose any available node

9 L = obtainDLT(n) � depends on the DLT client implementation

10 dL,Fp
= obtainVirtualLedger(L,Fp ) � obtain projection of L according to p

11 foreach sk ∈ dL,Fp
do

12 sk,it ← ∅ � the timestamp of the first transaction applied to state sk
13 sk,l t ← ∅ � the timestamp of the last transaction applied to state sk
14 snapshot.sb[sk ].sk = sk
15 snapshot.sb[sk ].version = dL,Fp

[sk ].T .lenдth

16 snapshot.sb[sk ].latestValue = dL,Fp
[sk ].sk,v

17 snapshot.sb[sk ].T = dL,Fp
[sk ].T � save list of transactions referring to each state key

18 sk,it = dL,Fp
[sk ].T [0] � transaction list is ordered chronologically

19 sk,l t = dL,Fp
[sk ].T .lenдth

20 if sk,it < tit then

21 tit = sk,it � update the auxiliary first timestamp

22 end if

23 if sk,l t > tf t then

24 tf t = sk,l t � update the auxiliary last timestamp

25 end if

26 end foreach

27 snapshot.ti = tit

28 snapshot.tf = tf t

29 return snapshot

4.4 Snapshot

A snapshot is a set of states that a certain stakeholder can access, plus proof of the validity of that state. We view
each state as a versioned (key, value) store. A snapshot has a snapshot identifier id , a version v , a participant p,
a set of states bins, sb, an initial time ti that refers to the timestamp of the first transaction of any of the states
belonging to sb, a final time tf that refers to the timestamp of the last transaction of any of the states belonging
to sb, i.e.,snapshot � {id,v, sb, ti , tf }. Each state bin is indexed by a state id sk , the latest value to that key, sk,−→v ,
a version v that refers to the number of transactions applied on the state key sk to produce the latest value
sk,−→v and a list of transactions T referring to that state (as in Definition 7). Versioning snapshots allows one to
efficiently build snapshots from older snapshots (i.e., building snapshots from incremental changes from older
snapshots).

Algorithm 1 depicts the snapshotting process. The snapshot phase occurs when the BUNGEE client requests
the beginning of the view integration process to a node n on behalf of the participant p (line 8). After that,
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ALGORITHM 2: Constructing a viewV of ledger L with snapshot snapshot, from the perspective of participant p.

Input: Snapshot snapshot, view id id , initial time ti , final time tf
Output: ViewV

1 V .k ← id

2 V .ti ← ti
3 V .tf ← tf
4 V .dπl,p ← snapshot.Fp

5 V .p ← snapshot.p

6 V .Π ←⊥

7 V .Sk,v ←⊥

8 if ti < snapshot.tf OR tf > snapshot.ti then

9 return; � there are no intersecting states that we want to capture, on the snapshot

10 end if

11 � each sb = {sk , sk,−→v , v}

12 foreach sk ∈ snapshot.sb do

13 foreach t ∈ sk do

14 if t .timestamp < ti OR t .timestamp > t . f then

15 snapshot.sb[sk ] ← snapshot.sb[sk ].T \ t � removes transaction that is not within the specified time

frame
16 end if

17 end foreach

18 V .Sk,v ← snapshot.sb[sk ]

19 end foreach

20 V .Π ← siдnG(V)

21 returnV

the node connects to the DLT. Upon a successful connection, n retrieves the ledger (line 9). Obtaining a list
of states from a ledger requires checking all transactions that performed state updates. For each transaction, a
BUNGEE has to check its target. BUNGEE creates a new state if there is no state key with a target equal to the
current transaction. The version of the new state is one. Then, BUNGEE runs the transaction’s payload against
the current state value (empty at initialization). Otherwise, if the transaction target refers to an existing state
key, run the transaction payload against the state’s current value, yielding the new value and incrementing the
version by one. This process outputs a list of states. According to the participant’s perspective, the process is
abstracted by the ledger’s projection (according to the participant’s perspective) that the algorithm uses (line 11).
The snapshot maps each state to a state bin. For each state, we collect its key (line 15), version (line 16), latest
value (line 17), the auxiliary first timestamp (line 18), and auxiliary latest timestamp (line 19). After that, the first
and last timestamps are updated (lines 28 and 29), and, at last, the algorithm returns a snapshot.

4.5 View Building

This section explains how views are built. A view generator can generate a set of views depending on the input
p. The following steps occur for each view to be built: first, the view generator generates a snapshot. After that,
the snapshot is limited to a time interval and signed by the view generator.

Algorithm 2 shows the process of building a view from a snapshot. First, the view generator temporarily limits
each included state, proceeding to abort if no states are within its boundaries (line 8). If there are, each state in
the snapshot is included if it belongs to the temporal limit (line 18) and removed otherwise (line 15). Finally, the
view generator signs the view (line 20) and returns it to the client application (line 21).
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ALGORITHM 3: Merging a set of views V = V1,V2, . . . ,Vn , where each view was built referring to participant

p1,p2, . . .pn respectively by a set of view generators G = G1,G2, . . . ,Gn

Input: Views to be mergedV = V1,V2, . . . ,Vn , merging algorithmM

Output: Integrated view I

1 S ← [] � state list SV1, ...,Vn
(S for simplicity) where each index (representing a state key) maps to tuple of values

from referring to that key, from each view to be merged

2 I.ti ← ∅

3 I.tf ← ∅

4 I.dπl,p ←
⋃n

i=0Vn .dπl,p

5 I.p ←
⋃n

i=0Vn .p

6 I.Π ←⊥

7 I.Sk,v ←⊥

8 foreach v ∈ V do

9 foreach s ∈ v .Sk,v do

10 if s ∈ S then

11 S[
−→
s .k] = S[

−→
s .k] ∪ −−→sk,v � if state exists, add value referring to that state, from current view

12 S[
−→
s .k].version← S[

−→
s .k].version + 1

13 end if

14 else

15 S[
−→
s .k] = −−→sk,v � otherwise, initialize state key list

16 S[
−→
s .k].version← 0

17 S[
−→
s .k].metadata ← {MERGE − IN IT }

18 end if

19 end foreach

20 end foreach

21 I.Sk,v = callalgorithmM(S) � OPTIONAL. Computes the state list of the integrated view according toM (see for

example algorithm 4)

22 I.dπl,p ← I.dπl,p ∪ {M} � add reference to the merging algorithm

23 I.ti = min{I.Sk,v .ti } � initial timestamp correspond to the initial timestamp of the processed states

24 I.tf = min{I.Sk,v .tf }

25 I.Π ← siдnG(I) � signed collectively by G

26 return I

4.6 Merging Views

In this section, we describe how to merge views in a privacy-preserving way. The merging of views creates an
integrated view I from a set V of input views. The idea is to compare the state keys indexed by every view
and their value according to a merging algorithm M that is given as input. This merging algorithm controls
how the merge is performed, and therefore, a user can set up policies that comply with the privacy needs (of all
participants).

Algorithm 3 shows the procedure for merging views. The algorithm receives the views to be merged and
returns an integrated (or consolidated) view as input. We initialize an auxiliary list SV1, ...,Vn

(on line 1) that
holds all the values (coming from different views) for each state key. We propose a construct called an extended
state. An extended state is a state where each state key maps to a set of values. Additionally, an extended state
has ametadata field holding a list of operations applied to that extended state.
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Definition 12. An Extended State −→s is a tuple −→sk ,
−−→sk,v , t ,πk ,metadata,version), where

— −→sk is a unique identifier (the state’s key);

— −−→sk,v is a list of values;
— a transaction list T ;
— a proof of state validity πk ;
— metadata, which holds a list of operations that have been applied to the extended state;
— version, a monotonically increasing integer. The counter increases when an update is done to the extended

state (the number of elements in the metadata field is the same as the version).

Thus, each index of the set of extended states S will index all different values for each key for all the views to
be merged, i.e.,

SV1, ...,Vn
=
{
∀si ∈ S : ∃ki ∈ si : ki =⇒

(
sV1(ki ,v )

, . . . , sVn (ki ,v )

)}
After we initialize the list of extended states, in Algorithm 3, we initialize the integrated view properties: its

initial timestamp (line 2), final timestamp (line 3), projection functions (taken as the union of the projection
functions of all the views, on line 4), participants (the participants from each view, on line 5), a set of proofs
(line 6) and a set of states (line 7). The set of states to be assigned as the set of states of the integrated view is
a function of the processed auxiliary set of states S. After all, we check each state key to merge each view. If

the tested state is already on the auxiliary state set (line 10), then we add its value −−→sk,v as a value for the current
extended state key (line 11). This outputs a list of values (between one and the number of views to be merged)
for each extended state key. Otherwise, we set a new extended state, adding the current state value (as the first
value for that key, on line 15).

On line 21, we apply an optional view processing phase by giving our list of states S to an arbitrary algorithm
that needs to respect a simple interface and functionality (later defined). After that, we add algorithmM as a
projection function for I for future traceability and auditing. Next, we adjust the initial and final timestamps
(lines 23 and 24) because the merging algorithm might have changed the time boundaries of the included states
(for example, the state corresponding to the lowest timestamp might have been removed). All view generators
must sign I (line 25) to promote accountability. Signing the integrated view can be distributed using a multi-
signature algorithm (for example, BLS Multi-Signatures [52]).

Each merging phase has an optional application of a merging algorithmM, which dictates how the merge
is carried out (otherwise, all states are included without further processing). We define a simple interface for
merging algorithms: a merging algorithm receives a set of extended states as input and outputs a set of extended
states. The functionality of the merging functions should be: (1) apply arbitrary operations on the set of extended
states, (2) add a reference to the current merging algorithm to themetadata field of each extended state key that
is altered, (3) increase the version of each extended state key that is altered. Each merging algorithm should be
public and well-known to the parties involved.

Examples of merging algorithms are:

— Pruning: removes the values coming from a particular view.
Algorithm 4 prunes the values belonging to a particular view from a set of extended states. Note that times
do not need to be updated because they are recalculated in steps 23 and 24 of Algorithm 3. Applications
include removing sensitive information in the context of existing regulations and laws.

4.7 Example: Merging Two Views

In this section, we graphically show an example of a merge view, by applying Algorithm 3 (merge view) and
MERGE-ALL. Informally, MERGE-ALL works by keeping the values from both views included in the final view (a
rather simple merge algorithm). Let us consider two viewsV1 andV2 (create from the table of Figure 3), and its
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Fig. 4. Merging of viewsV1 andV2 into a consolidated viewVI according to merging algorithm MERGE-ALL.

ALGORITHM 4: Merging algorithm example – PRUNE (byV1)

Input: The set of states to be processed S

Output: A processed set of states S′

1 S′ ← ∅ �

2 foreach s ∈ S do

3 if sk [0] then

4 S′[sk ] = S
′[sk ] \ s[0] � if there exists a value for viewV1, then remove that value from the state list

5 S′[sk ].metadata ← PRUNE-VIEW-1

6 S′[sk ].version← S
′[sk ].version + 1

7 end if

8 end foreach

9 return S′

merging into a consolidated viewVI , c.f. Figure 4. ViewV1 andV2 differ on the value for s1, A and C, respectively.
The integrated view will hold an extended state with (1) a timestamp including both views, (2) references to the
participants generating each view, (3) the joint projection function, (4) a set of proofs, and (5) a set of extended
states. For s1, we have included the different values from the different views.
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5 DISCUSSION

In this section, we discuss BUNGEE. The proliferation of blockchain interoperability solutions is increasing
interest in exploring cross-chain logic and the need to model and analyze it [53]. Our proposal constitutes the
foundation to make sense of that diversity by allowing us to systematically create and integrate views from
different blockchains. In this section, we discuss the studied research questions, with considerations on the
integrity, accountability, and privacy of views.

5.1 RQ 1: Providing a Data Format for Views

Views can be generated from different sources, as long as they are accompanied by a valid proof. The existence
of proofs on states is a proof of creation by the entities that created or executed the transactions referring to
that state. For example, a signed transaction hash qualifies as proof of a transaction that makes part of the state
proof (as many proofs as signed transactions referring to a certain state). On the other hand, views are also
signed by the view generator that either generates, merges views, applies a merging algorithm or notarizes
the view as true. This set of proofs allows independent parties to validate the truthfulness of the view (by
verifying each state) and hold view generators accountable. In a permissioned environment, an auditor can
confirm that the views are valid and complete. The metadata fields on each extended state and the views allow
one to understand who, when, and how a view generator changes a certain view. However, more accountability
measures can be implemented. In particular, if a view is only shared across the view generators that endorsed it,
there might be limited exposure and, therefore, limited transparency. To enhance transparency, our key insight
is to store a view in a public forum such as the InterPlanetary File System [54] (a distributed peer-to-peer file
system maintained by a network of public nodes) or a public blockchain, similar to some related work [42, 43].
If a view is deemed false, automatic view conflict detection and resolution can occur.

For the network to enforce the integrity of views, we need two conditions to hold. First, each group of nodes
that accesses a subset of a ledger (and thus creates a view) must have at least two elements. Second, there is at
least one honest element for every group. Thus, an honest view generator connected to an honest node holds
the knowledge of the view v , and publishes it. If a malicious node broadcasts a false view v ′, an honest node
can dispute it. Disputes can be calculated by calculating the difference between views and checking the proofs
constituting each view. In particular, if an instance of BUNGEE, on behalf of participant A, holds the knowledge
of a pair of different viewsv,v ′ referring to the same participant at the same time frame, then one of the views is
false. Thus, the creator of one of the views is malicious. An honest view generator can reconstruct the disputed
view and compare it to the view publicized by the malicious participant.

It is unlikely that all participants are colluding to change the perception of the inner state because, in principle,
participants have different interests; however, there might be several situations in which the whole network gains
if it colludes (i.e., blockchain with financial information). The ledger is unreliable if all internal nodes collude
because the safety properties cannot be guaranteed. We hypothesize that using a view similarity metric could be
a good tool to assess the quality of the view merging process. In other words, one could systematically compare
how the final integrated view is different from each view that composes it.

5.2 RQ 2: Privacy-preserving Integrated Views

In this paper, we have introduced how to create, merge, and process views. However, a challenge remains un-
solved: how to share views in a decentralized way? How does one manage the lifecycle of a view, including its
creation, endorsement, and dispute? Although the work of Abebe et al. [43] sheds some light on this, how can
one verify that a view is false? The solution offered by Abebe et al. includes parties voting on an invalid view, but
this does not solve the problem per se because if the source blockchain is private, there is no canonical answer.
Suppose that at least one view from the integrated view comes from a private blockchain; the signatures of the
view guarantee that a certain participant has voted on the validity of that view. This could introduce problems if
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all participants collude to show a false view. However, assuming that at least one view generator is honest, the
view generator could initiate a dispute with the suspect of a false view.

A view generator could use fraud proofs [55] to create disputes about the validity of views, allowing an efficient
and decentralized view management protocol. Application clients can then use the proof field from views, states,
and transactions to validate a certain fact on a ledger. However, when BUNGEE merges views, completeness
may not be guaranteed because the merged view depends on each input view, and processing might be applied
(including pruning), possibly leading to information being excluded. A case to apply pruning might be when
sensitive data is recorded in a ledger and later removed from the processing stage or even to remove “obsolete”
data from the blockchain and therefore contribute to efficient bootstrapping of light clients [56]. An interesting
detail is that each view only includes the state and respective proofs in timeframe tk . However, to ensure that it
is possible to validate the view, a pointer to the validity of the latest state before tk should be available.

Our integration process follows a semantic approach to information based on a conceptual standard data
model that we define as a view. Thus, for each practical implementation of BUNGEE, there needs to be a mapping
between the data model of the underlying blockchain and the view concept. All views being uniform, we can
not only represent data in all blockchains, but we can merge views belonging to different blockchains. The
applicability is to build a complete picture of the activity of a participant in each network, but it can also be
used to disclose information according to an access control policy [57]. While selective access control to views
has been explored, there is space to explore decentralized identity access control mechanisms to provide fine-
grain access over views, leveraging the need to unify the different notions of identity that emerge from different
blockchains.

The reader might inquire how BUNGEE would ensure the privacy that partial consistent blockchains attempt
to enforce when views are unified and then shared. To address this problem, we envision two solutions: first,
merging views requires tacit consent from all parties sharing the input views. If there is sensitive data, the
data can be removed before the view is created, or later removed in the snapshotting phase. This is essentially
encoded by the projection function Fp used to obtain the virtual ledger. The second solution is to encrypt the
data (or hash the data) [57], so the resulting view contains obfuscated information or a notarization proof [58],
respectively. However, the scientific community agrees that storing sensitive data on-chain, even if encrypted,
is a bad security practice due to the threat of cryptographic algorithms being broken in the future [59–62]. Zero-
knowledge proofs can also be explored as a vehicle to prove facts on a ledger by disclosing limited information
about such facts [63]. We leave those interesting research paths for future work.

5.3 Considerations on Privacy

Privacy is of the utmost importance when dealing with views. There is intra-group privacy (within participants
sharing the same domain, and view equivalence) and intra-blockchain privacy (where two disjoint groups of
participants might have different view cardinality and view transparency). Likewise, we can consider the privacy
of a merged view against the environment (participants from other systems that are interested in reading the
created views).

Consider two groups of participants, α and β that share a disjoint set of domainsdα anddβ within a blockchain.
These participant groups will at least not have access to the states a and b, for the first and second groups,
respectively. The higher the view transparency within a domain, the more shared states exist, and therefore, the
easier a merge operation becomes (namely because if everyone knows the states within a view, there is no need
to run preprocessing over those states - only when sharing with the exterior). The states group α cannot access
from group β are then given by c = dα \ dβ . Upon a merge, states dα ∩ dβ can be freely processed without intra-
blockchain privacy concerns (i.e., both groups have access to those states) - so it is a matter of the appointed
view generator to apply a commonly-agreed algorithm over those states, for public exposure.

Regarding sharing the unified view with the exterior, the consortium agrees on a common procedure to
enhance privacy (e.g., pruning sensitive information that only should be shared within the consortium).
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5.4 Future Work

There is ongoing work on the implementation of BUNGEE in a flagship interoperability project called Hyper-
ledger Cacti, in the scope of standardizing asset transfers, within the IETF.5 We would also like to empirically
validate our work by providing an implementation of BUNGEE that can provide support for building blockchain
migrator applications.

Another future work venue deals with the evolution of blockchains, and consequently the evolution of views.
Our solution diverges from the classical definition of a view in databases [2] since the data shown is not up-
to-date, nor easily updatable. We propose designing algorithms to update a view, perhaps similarly to how Git
manages updates to versioned files [64]. An API that inspects and creates updates to views can be used by
applications to efficiently use up-to-date data. Finally, we find potential in studying zero-knowledge proofs to
enhance view privacy.

6 RELATED WORK

In this section, we present the related work.

Partial Consistency. Graf et al. propose the concept of partial consistency [4]. An implementation of this prin-
ciple is given by blockchains with state partitions such as channels. Although blockchains that provide this
property have existed for several years, e.g., Quorum [31], IOTA [32], Corda [30], Hyperledger Fabric, Hyper-
ledger Besu [65], and Ripple [66], to the best of our knowledge, this is the first formalization of the concept.
Some solutions build partial consistency realizations on top of blockchains [67], such Canton [33], but are not
formalized, and thus privacy properties of such channels are not clear. Our concept of view brings another way
to reason about blockchain sharding [68], where each validator that is part of a shard runs a view generator and
can communicate the state of the shard to different blockchains. Sharding is a technique to improve throughput,
typically in public blockchains. A sharding scheme offloads the transaction processing to several groups of nodes
called shards [68]. A shard is thus a de-facto logical view that guarantees the integrity and correctness of states
regarding the participants that can access those states. Like a shard, a view is a logical separation of the ledger
according to each participant.

Decentralized privacy-preserving computation. Some work surveys [69, 70] privacy-preserving techniques for
blockchain interoperability, which we emphasize the latest survey [25], that supports the need for blockchain
views. Several surveys claim that most implementations focus on privacy-preserving techniques for permis-
sionless homogeneous blockchains, while we focus on both permissionless and permissioned heterogeneous
blockchains.

Indirectly related work includes the work from Kosba et al. [71], who propose a privacy-preserving decen-
tralized smart contract system. The Enigma network [88] (uses multi-party computation technology to enforce
smart contract privacy). Others use trusted hardware to enforce privacy [72], or zero-knowledge proofs [73, 74].
Contrarily to these works, BUNGEE focuses on delivering privacy for merged views, while the related work
focuses on ensuring privacy in a single domain.

Generating views. Katsis and Papakonstantinou [75] has summarized view-based data integration techniques.
Our approach follows a Global and Local as View [76] because views are created from a subset of the global
state, but then can be merged and processed. We call the reader’s attention to the survey on view integration
techniques, mostly used in the database and business process management research areas [8]. Abebe et al. [43]
have proposed the concept of external view, a construct to prove the internal state of permissioned blockchains.
However, this concept only applies to private blockchains. We extend and generalize the concept of view so that

5https://datatracker.ietf.org/group/satp/about/
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it can be used for both public and private blockchains, and thus for heterogeneous interoperability purposes (by
allowing the integration and merging of views).

Some proposals in industry and academia propose general data models for cross-chain interaction, namely the
Rosetta API, Quant Overledger’s gateways [36, 77], Blockdaemon’s Ubiquity API [78], Polkadot’s XCMP [79, 80],
and Cosmos’s IBC [81]. The Rosetta API and Blockdaemon’s Ubiquity API only support public blockchains. Quant
Overledger supports public and private blockchains but does not allow them to realize complex operations such
as merging views. Polkadot and Cosmos have the previous limitation and can only support blockchains created
with Substrate and Tendermint, respectively. None of those are well-accepted standards. On the other hand,
BUNGEE aims to create views independent of the underlying blockchains, aiming to follow the efforts of IETF’s
standardization group SATP [41, 42, 82].

View applications. In [57], views provided fine-grain dynamic access control over private data in Hyperledger
Fabric. In addition to the applications referred to in Section 1, we identify some studies using the concept of
view for different purposes. Some authors use views to perform audits of participants on different blockchains
[83, 84]. In particular, a view is created and then merged with other views from the same participant on different
blockchains to create a global view of the participant’s activity. Applications are, for instance, cross-chain tax
audit [85], or cross-chain portfolio tracking [86], and even cross-chain security, by representing and monitoring
cross-chain state [87], all applications that could benefit from a more formal treatment that BUNGEE can provide.

7 CONCLUSION

Views directly support blockchain interoperability since it is easier to share the perspectives of all participants
across heterogeneous DLTs. This enables complex orchestration of cross-blockchain services and supports the
new research areas of DLT interoperability, including blockchain gateway-based interoperability. In this paper,
we introduce the concept of blockchain view, a foundational concept for handling cross-chain state. Views rep-
resent different perspectives of blockchain participants, allowing one to reason about their different incentives
and goals. We present BUNGEE, a system that can create views from a set of states according to a projection
function, yielding a collection of states accessible by a certain participant. BUNGEE can create a snapshot by
retrieving the state of a blockchain, and based on participants’ permissions, build a view of the global state. After
that, BUNGEE creates extended states, the basis for merging blockchain views. Different views (possibly from
different blockchains) can be merged into a consolidated view, enabling applications such as cross-chain audits
and analytics. Finally, we discuss different aspects of BUNGEE, including decentralization, security, privacy, and
its applications. An important area for future work is the use of zero-knowledge proofs to enhance view privacy.
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