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1.1 Introduction
Blockchain is an exciting new technology that is making headlines worldwide. The
reasons behind the success of a technology are often unclear, but in the case of block-
chain it is safe to say that an important factor is that is has two killer apps, not a single
one. The first killer app are cryptocurrencies, as the original blockchain is the core
of Bitcoin [128], the first cryptocurrency and the one that is fostering the adoption
of cryptocurrencies. The second killer app are smart contracts, first introduced in
the Ethereum system [40], with their promise of computerizing legal contracts and
of supporting a countless number of applications [161, 153, 90]. Moreover, the sky
seems to be the limit for the applications people are imagining for blockchain.

A blockchain is essentially a secure, unmodifiable, append-only, log of transac-
tions. The word transaction should be taken in a broad sense; in Bitcoin a transaction
is a transfer of currency between accounts, but in smart contracts transactions do not
necessarily involve money. Blockchains trade performance and resource-usage ef-
ficiency for security, in the sense that they are implemented by a set of redundant
nodes that store the same state and run an algorithm to make consensus over the or-
der of transactions (more precisely of blocks of transactions), even if some of the
nodes misbehave in some way.

Byzantine consensus
This last aspect —replication plus consensus despite misbehavior— is a topic of re-
search since the late 1970s [133, 105]. The problem of reaching consensus in such
conditions has been first proposed by Pease, Shostak, and Lamport in 1980 [133],
but popularized by the same authors when they explained it as a story of Byzantine
generals that have to agree on a common attack plan by exchanging messages [105].
The problem considers the existence of arbitrary faults, i.e., some nodes deviating
from the algorithm they are supposed to execute, both in the domain of time (e.g., de-
laying messages or stopping to communicate) and the domain of value (e.g., sending
wrong values in messages) [21], but that later work led to the term Byzantine faults
being used to mean the same. These works considered a fully connected network
(all nodes can communicate with all), but Dolev generalized the model to consider a
mesh network, in which faulty nodes may corrupt and discard messages [73]. Con-
sensus can be used to replicate a service in a set of nodes, in such a way that clients
of that service observe a correct (non-faulty) service even if some nodes are faulty
[144].

These earlier works consider a synchronous model, i.e., they assume that the
communication and processing delays are bounded (they do not state it this way, but
they assume it is possible to know if a message was not received, which is equivalent).
However, this kind of model is inadequate for most distributed systems due to the
uncertainty of communication delays in the Internet and of processing in typical
nodes (workstations, mobile devices, servers, etc.). Moreover, they had a theoretical
vein. In the 1990s there was a line of work on algorithms for reliable communication
between nodes assuming an asynchronous model, i.e., that there are no time bounds.
Notable examples are the work by Reiter et al. [141, 140] and by Kihlstrom et al. [96,
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97]. This work has lead to the first efficient asynchronous Byzantine fault-tolerant
replication algorithm, often designated PBFT, due to Castro and Liskov [47]. After
PBFT, many others appeared [63, 102, 51, 146, 14, 53, 52, 145, 15, 94, 30, 137,
25], including our own [57, 156, 157, 158, 129]. All these algorithms provide well-
defined safety and liveness properties [13], under well-defined assumptions. We will
designate the problem solved by these algorithms informally by Byzantine consensus.

Blockchain
Interestingly, despite all this research effort, Satoshi Nakamoto, the author or authors
of Bitcoin, decided to use an entirely different approach to achieve consensus in the
system that implements that cryptocurrency [128]. This consensus algorithm, often
designated Nakamoto consensus, is based on the notion of proof-of-work (PoW).
Nodes flood the network with transactions, which they collect and add to blocks.
When a block is appended to the chain (in the log), nodes close the block they were
creating and start solving a cryptopuzzle in order to obtain a PoW for their block.
When a node solves the cryptopuzzle, it broadcasts its block with the PoW, which is
validated then appended by all nodes to the chain in the other nodes. The time needed
to solve the cryptopuzzle throttles the addition of blocks to the chain, which is a re-
quirement when there are may competing nodes, that may pretend to be even more
(a Sybil attack [74]). Moreover, the randomness of the time to solve it provides a
sort of consensus, as it supports the assumption that no two nodes will obtain PoWs
concurrently. However, this process does allow two different PoWs to be obtained
concurrently, leading different subsets of the network of nodes to append different
blocks to the chain, breaking agreement, which is an important property of any con-
sensus algorithm. This is a clear disadvantage of Nakamoto consensus in relation
to Byzantine consensus algorithms. On the positive size, the Nakamoto consensus
is more scalable, as it can be used on top of a mesh network, using a peer-to-peer
dissemination protocol, as in the case of Bitcoin [128, 70, 67, 159].

The potential of the blockchain technology has lead to an increase on the research
in the area and on the actual implementation of blockchain systems and applications.
In terms of research, a large number of papers have been published on improved
consensus algorithms [99, 29, 87, 149], blockchain scalability [67, 159, 95, 101],
attacks against cryptocurrencies and blockchains [80, 148, 116, 19], among many
other topics. In relation to implementations, for example there are now more than
2,000 cryptocurrencies with a global value of more than 100 billion euros (around
50% due to Bitcoin) [54], and in 2016 during a period of a few months there were
around 15,000 smart contracts deployed in Ethereum [110].

This chapter
This chapter presents a state of the art in the area of Byzantine consensus and its ap-
plication in blockchains. The chapter is organized as follows. Section 1.2 presents the
first part of the state-of-the-art, about Byzantine consensus. Section 1.3 presents the
second part, on blockchain based on the Nakamoto consensus and related schemes.
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Section 1.4 presents the third part, about blockchain based on Byzantine consensus.
Finally, Section 1.5 concludes the chapter.

1.2 Byzantine Consensus
This section presents a state-of-the-art in what we call Byzantine consensus, which
excludes the Nakamoto consensus based on PoW. As already mentioned, research
in the area started in the late 1970s [133, 105, 73] with synchronous algorithms and
evolved to asynchronous algorithms later. This section is about more recent work,
starting with the FLP impossibility result, then with practical algorithms starting with
PBFT.

1.2.1 On System Models
Consensus algorithms depend strongly on the system model, i.e., on the assump-
tions made about the environment and the system. In this chapter we consider a ba-
sic system model: message-passing communication; Byzantine (or arbitrary) faults;
asynchrony. We say that this is the basic system model because all the algorithms
considered refine it somehow.

The reason for this model is that it expresses well the conditions that exist in
today’s distributed systems such as those based on the Internet:

⌅ Message-passing is a convenient communication model as in the Inter-
net, and any other modern network, communication is broken-down into
some sort of messages: packets, datagrams, application-layer messages, etc.
Even network technologies that use virtual circuits in the lower layers (e.g.,
SDH/SONET and ATM), are used to transmit messages in the upper lay-
ers. Except when noticed, we consider that communication is done using
authenticated channels that authenticate messages (prevent impersonation
of the sender) and ensure their integrity (detect and discard modified mes-
sages). These characteristics are easy to implement with protocols such
as SSL/TLS [71]. An alternative system model would be shared memory
[20, 83, 111, 11, 32], but in the Internet the shared memory itself would have
to be implemented using message-passing algorithms.

⌅ Assuming Byzantine faults means to make no assumptions about how indi-
vidual nodes fail. Poor assumptions may be vulnerabilities, so making no
assumptions about faults is convenient when the objective is to make a sys-
tem dependable and secure. Byzantine faults can be intentional, malicious,
so tolerating such faults allows improving the security of the system, e.g.,
of the blockchain. A particularly pernicious subclass of Byzantine faults are
inconsistent value faults that happen, e.g., when a faulty process sends two
messages with the same identifier and different contents to two subsets of
processes.
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⌅ Asynchrony means also to make no assumptions, but about bounds on com-
munication and processing delays. This non-assumption is also convenient
because, otherwise, adversaries might do attacks that cause delays on pur-
pose. In fact, attacks against time, namely denial-of-service attacks, are very
common because they tend to be easier to do than attacks against integrity or
confidentiality.

A system model that considers Byzantine faults and asynchrony is very generic in
the sense that algorithms designed for this model are correct even if the environment
is more benign, e.g., if nodes can only crash or delays are bounded. Unfortunately,
consensus is not solvable in this basic model, a problem that we explain in Section
1.2.3.

1.2.2 Byzantine Consensus Definitions
There is no single definition of Byzantine consensus, also denominated Byzantine
agreement. In fact there are many, with significative differences.

Consider the basic system model above and that the consensus algorithm is exe-
cuted by a set of n nodes or processes. We say that a process is correct if it follows
its algorithm until termination, otherwise it is said to be faulty. We assume that there
are at most f ¡ n faulty processes. Each process proposes a value (sometimes called
the initial value) and decides a value.

Two common and similar definitions of consensus are binary consensus and
multi-valued consensus. They differ in terms of the range of admissible value, respec-
tively, binary or arbitrary. Otherwise the definition is similar [27, 139, 77, 112, 97]:

⌅ Validity: If all correct processes propose the same value v, then any correct
process that decides, decides v.

⌅ Agreement: No two correct processes decide differently.

⌅ Termination: Every correct process eventually decides.

The first two properties are safety properties, i.e., properties that say that bad
things cannot happen, whereas the last is a liveness property that states that good
things must happen [12]. A weaker validity property is the following [76, 75, 23]:

⌅ Validity’: If a correct process decides v, then v was proposed by some pro-
cess.

Although Validity is stronger than Validity’, it does not say much about the value
decided in case not all correct processes propose the same value. This limitation lead
to the definition of vector consensus in which processes decide on the same vector
with one value per process, for at least n-f processes [76, 131]. This definition of con-
sensus is related to the interactive consistency problem, which however considered
a synchronous system model [133]. In terms of definition, the difference between
vector consensus and multi-valued consensus is the validity property that becomes:
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⌅ Vector validity: Every correct process that decides, decides on a vector V of
size n:

⌅ 8pi : if pi is correct, then either V[i] is the value proposed by pi or ?;
⌅ at least f+1 elements of V were proposed by correct processes.

A different solution to the same difficulty with the validity properties is given
by the validity predicate-based consensus [65]. We will come back to this definition
as it was written with blockchains in mind. The definition is similar to the previous
ones, but the validity property depends on an application-specific valid() predicate:

⌅ Predicate-based validity: If a correct process decides v, then v satisfies the
valid() predicate.

These definitions of consensus consider that all processes play the same role: all
propose a value and all decide a value (at least if they are correct). Lamport intro-
duced an alternative definition in an algorithm known as Paxos [103, 104], which
has been thoroughly studied and modified [106, 163, 113, 63]. In Paxos, processes
play one or more of the following roles: proposers, which propose values; acceptors,
which choose the value to be decided; and learners, which receive the chosen value.
The problem can be defined in terms of five properties [104, 113]:

⌅ Safety 1: Only a value that has been proposed may be chosen.

⌅ Safety 2: Only a single value may be chosen.

⌅ Safety 3: Only a chosen value may be learned by a correct learner.

⌅ Liveness 1: Some proposed value is eventually chosen.

⌅ Liveness 2: Once a value is chosen, correct learners eventually learn it.

This definition is related to state machine replication (SMR) or the state machine
approach [144, 31], but first let us introduce atomic broadcast or total order broad-
cast. Atomic broadcast is a problem that is different from consensus, but the two
have been shown to be equivalent in several system models [35, 44, 58, 89]. The
problem essentially states that all processes deliver the same messages in the same
order, which is equivalent to running a sequence of consensus instances to decide
what message(s) to deliver next. Atomic broadcast can be defined in terms of four
properties [61]:

⌅ Validity: If a correct process broadcasts a message m, then some correct pro-
cess eventually delivers m.

⌅ Agreement: If a correct process delivers a message m, then all correct pro-
cesses eventually deliver m.

⌅ Integrity: For any identifier id and sender p, every correct process q delivers
at most one message m with identifier id from sender p, and if p is correct
then m was previously broadcast by p.
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⌅ Total order: If two correct processes deliver two messages m1 and m2, then
both processes deliver the two messages in the same order.

State machine replication is related to Paxos because it involves two kinds of pro-
cesses: clients that make requests and receive replies (similarly to Paxos’ proposers
and learners); servers that provide a service to the clients and do consensus about
the order of execution of the requests (similarly to Paxos’ acceptors). This approach
involves ordering requests using an atomic broadcast protocol, which, as explained,
is equivalent to consensus. Consider a state machine that provides a service and that
is characterized by a set of state variables that define its state, and by a set of com-
mands that modify the state variables. All correct servers follow the same history of
states if four properties are satisfied:

⌅ Initial state: All correct servers start in the same state.

⌅ Agreement: All correct servers execute the same commands.

⌅ Total order: All correct servers execute the commands in the same order.

⌅ Determinism: The same command executed in the same initial state in two
different correct servers generates the same final state.

If these properties are satisfied, the service is correct as long as no more from f
servers are faulty. The relation between n and f depends on the algorithm, e.g., it can
be n � 3f+1 [47, 63, 102, 14] or n � 2f+1 [57, 51, 157, 158]. SMR is a problem
different from consensus, but we will abuse the language and call it consensus as it
involves solving consensus. We prefer to use this term because it is common in the
blockchain domain.

The Paxos definition of consensus is interesting because it allows a simple imple-
mentation of SMR in the crash failure model [144, 104]. However, in the Byzantine
failure model this is more complicated because faulty processes can deviate from the
algorithm arbitrarily [47, 113].

There are several other consensus variants. In the k-set consensus problem, cor-
rect processes can decide at most k different values [50, 68]. The Byzantine generals
with alternative plans problem takes into account the fact that processes may have
several views about what decisions/actions are acceptable and unacceptable [55].
Each process has a set of good decisions and a set of bad decisions. The problem is
to make all correct processes agree on good decisions proposed by a correct process,
and never on a bad decision.

All these definitions of consensus consider that the algorithm is executed by a
fixed set of n known processes. There are a few works on consensus in dynamic sys-
tems in which the set of processes is unknown and varying [126, 7, 10, 9]. The single
Byzantine algorithm of this kind, BFT-CUP, is based on an oracle called participant
detector that provides hints about the active processes [10, 9].

Table 1.1 presents a summary of the consensus definitions.
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Definition Characteristics References
binary consensus agreement about a binary value [27, 139]
multi-valued consensus agreement about an arbitrary value [77, 112, 97]
vector consensus agreement about a vector with values

from at least n-f processes
[76, 131]

interactive consistency similar but for synchronous system
models

[133]

validity predicate-based
consensus

validity property depends on an
application-specific valid() predicate

[65]

Paxos multi-valued consensus with 3 roles:
proposers, acceptors, learners

[103, 104, 106, 163, 113, 63]

atomic broadcast processes broadcast and deliver the
same messages in the same order

[35, 44, 58, 89, 61]

state machine replication servers implement a replicated service;
clients request that service

[144, 31, 57, 51, 157, 158]

k-set consensus correct processes can decide at most k
different values

[50, 68]

consensus with unknown
processes

for dynamic systems in which the set of
processes is unknown

[126, 7, 9, 10, 9]

Table 1.1: Definitions of consensus and related problems.

1.2.3 FLP Impossibility
A problem with consensus in the basic system model is that it is not solvable. This
fact derives trivially from an impossibility result known as FLP, after the names of
its proponents [82]. FLP considers binary consensus and a different, weaker, sys-
tem model (let us call it the FLP system model). This system model also considers
message-passing communication and asynchrony, but only that a single process can
fail simply by crashing (neither any process, nor arbitrarily). It also excludes the
existence of random numbers so the statement is actually about deterministic algo-
rithms. An intuition of this result is that the combination of uncertainty in terms of
time (asynchrony) and uncertainty in terms of failure (a process may fail) does not
allow an algorithm to distinguish if a process is slow or faulty.

This result is inconvenient because it requires modifying the system model, but,
interestingly, has also fostered research on consensus. Specifically, there has been a
lot of research on system models that are similar to the FLP system model and the
basic system model and allow solving consensus. These new conditions in which the
problem is solvable are often said to circumvent FLP, whereas, in fact, they change
its premises.

The main ways of circumventing FLP are the following [62]:

1. Add time assumptions to the model, thus partially sacrificing asynchrony. The
idea is to add these assumptions in a way that is realistic in the Internet and
other networks. Dwork et al. presented two partial synchrony models that add
such time assumptions and allow solving consensus [77]. A partial synchrony
model captures the intuition that systems may behave asynchronously (i.e.,
with variable/unknown processing/communication delays) for some time in-
terval, but that they tend to eventually stabilize. Therefore, the idea is to let the
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system be mostly asynchronous but to make assumptions about timing proper-
ties that are eventually satisfied. Algorithms based on this model are typically
guaranteed to terminate only when these timing properties are satisfied. Chan-
dra and Toueg proposed a third partial synchrony model that is similar but
weaker [49]: for each execution, there is an unknown global stabilization time
GST, such that an unknown bound on the message delivery time D is always
satisfied from GST onward. When designing PBFT, Castro and Liskov used
an even weaker model in which delays are assumed not to grow exponentially
forever [47]. This last model has been adopted by many Byzantine consensus
and SMR algorithms [63, 53, 52, 156]. NewTOP [127] and XPaxos [109] con-
sider stronger time assumptions, respectively that pairs of nodes and correct
replicas can communicate within a known delay D.

2. Add oracles to the model that provide hints about process failure, thus par-
tially sacrificing asynchrony. This idea was introduced by Chandra and Toueg
[49]. The FLP result derives from the impossibility of distinguishing if a pro-
cess is faulty or simply very slow, therefore, intuitively, having a hint about
the failure/crash of a process may be enough to circumvent FLP. The idea is
to associate an unreliable failure detector (UFD) to each process, which pro-
vides hints about other processes failures. Chandra and Toueg presented eights
classes of UFDs based on properties of accuracy and completeness [49]. They
also proved that extending the FLP system model with a rather weak UFD was
enough to solve consensus [48]. These oracles are an elegant construct but, at
the end of the day, they hide time assumptions that are necessary to implement
them (the system cannot be asynchronous). There are other oracles that allow
solving consensus and are not failure detectors, e.g., the W detector, which pro-
vides hints about who is the leader process [48], and ordering oracles, which
provide hints about the order of messages broadcasted [136].

3. Use a hybrid system model that includes a subsystem with stronger time as-
sumptions, again partially sacrificing asynchrony. A wormhole is an abstrac-
tion that system-wise is a component of the system, but model-wise is an exten-
sion to the system model [154, 155]. The first work on wormholes to solve con-
sensus [56] considers the basic system model extended with a wormhole called
Trusted Timely Computing Base (TTCB) [60]. The TTCB is a secure, real-
time, and fail-silent distributed component, which provides enough timeliness
to circumvent FLP. Applications implementing the consensus algorithm run in
the normal system, i.e., in the asynchronous Byzantine system, but use the ser-
vices provided by the wormhole. In this case, the consensus algorithm relies
on the Trusted Block Agreement Service, which essentially makes an agree-
ment on small values (typically hashes) proposed by a set of processes. Later,
a simpler multi-valued consensus algorithm and a vector consensus based on
the TTCB were also proposed [130, 131]. There are other consensus and SMR
algorithms based on wormholes, although most authors do not use the term
“wormhole” [57, 59, 51, 61, 157, 158, 94, 26].
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4. Add randomization to the model, partially sacrificing determinism. FLP applies
to deterministic algorithms, so a solution to circumvent this result is to add ran-
domization to the system model —the ability to generate random numbers—
and design probabilistic algorithms [28, 45, 46, 84, 139, 151, 43, 58, 122, 125].
This involves changing one of the properties that define consensus and make
it probabilistic.

These ways of circumventing FLP are also a form of classifying algorithms in
the area. Table 1.2 presents a summary of the techniques to circumvent FLP.

Technique Positive / Negative References
add time assumptions algorithms efficient if net-

work stable / delayed other-
wise

[77, 49, 47, 63, 53, 52, 156]

add oracles same as previous [49, 48, 136]
hybrid model efficient algorithms / addi-

tional assumptions
[60, 130, 131, 57, 59, 51, 61, 157, 158, 94]

allow randomization no assumptions / less effi-
cient algorithms

[28, 45, 46, 84, 139, 151, 43, 58, 122, 125]

[123, 124, 118, 119]

Table 1.2: Techniques to circumvent FLP.

1.2.4 Byzantine Consensus Patterns
The consensus algorithms mentioned in the previous section follow two major com-
munication patterns: decentralized and leader-based. In this section we use these
patterns to present briefly how Byzantine consensus algorithms work. Moreover, this
will become useful later to understand blockchain consensus algorithms.

The two patterns are represented in Figure 1.1. In decentralized consensus algo-
rithms, all processes play the same role and try to individually reach a decision. In
leader-based (or coordinator-based or primary-backup) consensus algorithms, there
is a leader (or primary or coordinator) that tries to impose a decision; if the leader
is faulty, a new leader has to be elected. The fact that in decentralized consensus
algorithms all processes communicate with all others imposes a quadratic message
complexity (O(n2)). On crash fault-tolerant leader-based consensus algorithms it is
possible to achieve linear message complexity (O(n)) [49, 92, 143], but in Byzantine
leader-based consensus algorithms the need to deal with inconsistent value faults
imposes a quadratic message complexity.

Decentralized consensus algorithms work basically the following way (Figure
1.1(a)). In the first step, every process broadcasts a proposal, and waits for n-f mes-
sages. In the second step, every process picks a proposal with enough votes or a
default value, broadcasts it, and waits for n-f messages. In the third step every pro-



From Byzantine Consensus to Blockchain Consensus ⌅ 13

Figure 1.1: The two main organization patterns of Byzantine consensus algorithms:
(a) decentralized and (b) leader-based.

cess picks a proposal if it has enough votes, broadcasts it, waits for n-f messages, and
decides the value if it received enough copies. Otherwise, the whole process is re-
peated. This explanation and the figure are based on Bracha’s algorithm [34]. In that
algorithm the broadcast primitive is not standard, unreliable, network broadcast, but
reliable broadcast [34, 89]. The reliable broadcast problem consists in guaranteeing
that when a process sends a message, all processes deliver that message, or possibly
no message at all if the sender is faulty. This problem is weaker than atomic broad-
cast (no ordering) and also weaker than consensus, but requires 3 communication
steps and O(n2) messages in the basic system model. Therefore, there are many more
messages being actually sent than those represented in the figure; Bracha’s algorithm
has O(n3) message complexity.

Leader-based consensus algorithms work essentially as shown in Figure 1.1(b).
In the first step, the leader broadcasts a proposal and in the following two steps
the other processes agree on accepting it and confirm their acceptance. This pattern
corresponds to the normal mode operation of PBFT, omitting the interaction with the
clients (recall that PBFT is a SMR algorithm). In that algorithm, as in many others, in
case the leader is suspected, a new leader may have to be elected (also not represented
in the figure). There is another class of leader-based consensus algorithms that rotate
the leader, so there is no need for electing a new one, including some our own [77,
156, 52, 157, 61].

1.2.5 Hybrid Models to Reduce Processes
After defining consensus and explaining the main ways to circumvent FLP, we
present two areas in which we did much work related to the topic (this and the next
section).

Most Byzantine consensus and SMR algorithms consider the basic system model
extended with time assumptions (e.g., the same as PBFT [47]) or failure detectors (1
and 2 in Section 1.2.3). In these models, the relation between the number of processes
n and the maximum number of faulty processes f is n � 3f+1 [47, 63, 102, 14]. This
means that 4 processes are needed to mask 1 that is faulty, 7 to mask 2, and so on. In
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the 1990s and 2000s these numbers were considered high, and the folklore in the area
said that many companies refused to use such algorithms due to the costs involved. At
the time many companies used crash fault-tolerant algorithms, which required only
n � 2f+1, e.g., as part of Chubby [38] or Zookeeper [91]. Interestingly the concern
with the number of replicas vanished with Bitcoin and blockchain (Section 1.3), but
reducing the number of processes is clearly an important goal. Notice that in SMR,
more processes (server replicas in that context) mean more hardware, more software
licences, and more administration costs. Moreover, it is important to avoid common
mode failures, which requires different replicas, i.e., diversity [108].

We were the first to show that it is possible to reduce the minimum number of
replicas in Byzantine SMR from 3f+1 to 2f+1 using a hybrid failure model (3 in Sec-
tion 1.2.3) [57, 59]. That algorithm, BFT-TO, is based on a wormhole called Trusted
Ordering Wormhole (TO wormhole).1 This wormhole is distributed (has a compo-
nent in each replica) and provides an ordering service, so it solves consensus. It has to
be implemented in a way that it satisfies two security properties: integrity (its service
and data cannot be tampered with by an adversary) and confidentiality (of the cryp-
tographic material used to protect the communication). Therefore, the TO wormhole
fails only by crashing, so it can solve consensus with only 2f+1 replicas, e.g., using
Schiper’s algorithm [143]. BFT-TO uses the TO wormhole to order hashes of the
requests, so it is not bound by the n � 3f+1 relation of other Byzantine consensus
algorithms.

A few years later, Chun et al. proposed the Attested Append-Only Memory
(A2M), another wormhole used to implement state machine replication with only
2f+1 replicas [51]. This Byzantine SMR algorithm was called A2M-PBFT-EA. Like
the TO wormhole, A2M has to be tamperproof, but it is local to the computers, not
distributed, which is a significative improvement. Replicas using the A2M are forced
to commit to a single, monotonically increasing sequence of operations. Since the
sequence is externally verifiable, faulty replicas cannot present different sequences
to different replicas.

Later, we presented an even simpler wormhole that also allows implementing
state machine replication with only 2f+1 replicas, the Unique Sequential Identifier
Generator (USIG) [157, 158]. This component contains only a counter and a few
cryptographic functions that are used to associate sequence numbers to certain op-
erations done by the replicas, e.g., producing a signed certificate that proves un-
equivocally that the number is assigned to that message. The USIG has been used
to implement three SMR algorithms: MinBFT and MinZyzzyva that are inspired on
PBFT and Zyzzyva [102] but with less replicas [158]; and EBAWA that uses a ro-
tating leader and has other characteristics adequate for wide-area networks [157].
The USIG is also the basis for a methodology to transform consensus algorithms that
tolerate crash faults and require 2f+1 processes, into similar algorithms that tolerate
Byzantine faults also with 2f+1 processes [61].

We implemented the USIG as a thin layer on top of the Trusted Platform Module

1This explanation is based on the most recent, more refined, version of the algorithm [59], instead of
the original [57].
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(TPM), a security chip designed by the Trusted Computing Group and now present
in the mainboard of mosts PCs [152, 158]. Our implementation was based on one of
the TPM’s monotonic counters and signatures. Abraham et al. presented a Byzantine
consensus based on the TPM that uses one of the TPM’s Platform Configuration
Registers (PCRs) instead of the monotonic counter [5]. Our experiments have shown
that using the TPM was a bad option, as the signature implementation was quite
slow (approximately 0.4s to obtain a signature). Both USIG and Abraham et al.’s
abstraction are similar to Trinc [107].

Kapitza et al. implemented our USIG service on an FPGA and called it Counter
Assignment Service in Hardware (CASH) [94]. Then, they designed CheapBFT, a
Byzantine SMR architecture and algorithm that tolerates that all but one of the repli-
cas active are faulty in normal-case operation. CheapBFT runs only f+1 replicas in
normal-case operation and keeps the other f replicas on hold; it activates these f repli-
cas in case there is disagreement between the active replicas because one or more are
faulty. In total it uses 2f+1 replicas, similarly to MinBFT in which it is based. This
reduction of the number of replicas is interesting, but comes at the cost of having a
trusted infrastructure to detect disagreement between replicas and activate the repli-
cas on hold, which is much more complex than the USIG service.

Hybster parallelizes consensus instances to be able to order more than 1 mil-
lion operations per second, increasing one order of magnitude the performance of
algorithms in the area [26]. That scheme is based on TrInX, a software version of
USIG/Trinc/CASH implemented in Intel SGX enclaves [114, 16]. These enclaves
are trusted execution environments that run software components isolated from the
rest of the platform, including the operating system. This isolation is enforced by the
CPU itself. TrInX is different from similar components in two ways. First, for par-
allelization purposes, it can implement an arbitrary number of counters and provide
multi-counter certificates. Second, for performance, it uses message authentication
codes based on cryptographic hash functions instead of digital signatures.

Table 1.3 summarizes the works on using hybrid models to reduce the number of
processes.

Algorithm Subsystem Characteristics References
BFT-TO TO wormhole distributed subsystem [57, 59]
A2M-PBFT-EA A2M local subsystem [51]
MinBFT, MinZyzzyva, EBAWA USIG local and simple subsystem [157, 158]

TPM / PCRs based on common hardware, slower [5]
CheapBFT CASH hardware implementation of USIG [94]
Hybster TrInX alternative implementation of USIG [26]

Table 1.3: Byzantine consensus algorithms based on hybrid models.
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1.2.6 Randomization
Another area in which we did significant work was on solving Byzantine consensus
using randomization. As mentioned in Section 1.2.3, adding randomization to the
model allows circumventing FLP and involves making one of the properties that
defines the consensus problem probabilistic, instead of deterministic. Most authors
choose to make a liveness property probabilistic (e.g., Termination), as the algorithm
may run until this property is satisfied, so its probabilistic nature becomes irrelevant.
The Termination property becomes:

⌅ Probabilistic termination: Every correct process eventually decides with
probability 1.

Curiously there are a few papers that sacrifice a safety property instead of live-
ness. Specifically, these algorithms satisfy an agreement property with a certain prob-
ability [151, 46]. This is arguably a bad idea, but is also the option taken in several
blockchains, starting with Bitcoin’s.

Randomized Byzantine consensus algorithms have been around since 1983 [27,
139]. All randomized consensus algorithms are based on a random operation, typ-
ically picking randomly 0 or 1, something that is often designated tossing a coin.
Randomized consensus algorithms can be classified in two classes, depending on
how the coin tossing operation is done:

⌅ Local coin: algorithms in which each process tosses its own coin. The first
algorithm is due to Ben-Or [27]. Local coin tossing is trivial to implement:
it requires just a random number generator that returns binary values. How-
ever, when consensus algorithms based on local coins require tossing a coin,
there tends to be disagreement about the coin values in each process, so these
algorithms terminate in an expected exponential number of communication
steps [27, 34].

⌅ Shared coin: algorithms in which processes toss coins cooperatively. The first
algorithm is due to Rabin [139]. Shared coin tossing is more complicated
because it requires a distributed algorithm that provides the same coin value
to all non-faulty processes. However, these algorithms can terminate in an
expected constant number of steps, as all processes see the same sequence of
coins tossed [28, 45, 46, 84, 139, 151].

Randomized consensus algorithms have raised a lot of interest from a theoretical
point of view. However, on the practical side they have often been assumed to be inef-
ficient due to their probabilistic nature, which leads to high expected time complexity
(number of rounds to terminate) and high expected message complexity (number of
messages sent). However, those assumptions miss the fact that consensus algorithms
are not usually executed in oblivion, but in the context of a higher-level problem (e.g.,
atomic broadcast) that can provide a context that promotes fast termination (e.g.,
many processes proposing the same value can lead to a quick termination). More-
over, adversary models usually consider a strong adversary that completely controls
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the scheduling of the network and decides which processes receive which messages
and in which order, whereas in practice, an adversary is not able or interested in do-
ing such attacks (it would be simpler to block the whole communication instead).
Therefore, in practice, the network scheduling may also foster fast termination.

A second, more real, reason for inefficiency is that these algorithms are not exe-
cuted alone but stacked to solve a relevant problem, such as SMR. Most randomized
consensus algorithms in the literature solve binary consensus [28, 45, 46, 84, 139,
151], as the expected time complexity becomes much worse if the random number
has more than one bit [81]. Therefore, to do something useful, we need transforma-
tions, e.g., from binary consensus and broadcast primitives into multi-valued con-
sensus and from multi-valued consensus into vector consensus or atomic broadcast
[43, 58, 122]. This stacking of algorithms can lead to large expected time and mes-
sage complexities.

We have shown that randomized consensus can be efficient in two steps. As a
first step, we developed a set of transformations from binary randomized consensus
to multi-valued consensus, vector consensus and atomic broadcast [58]. The pro-
posed transformations have a set of properties that we believed had the potential to
provide good performance. Firstly, they do not use digital signatures constructed with
public-key cryptography, a well-known performance bottleneck in such algorithms
at the time. Secondly, they make no synchrony assumptions, since these assump-
tions are often vulnerable to subtle but effective attacks. Thirdly, they are completely
decentralized, thus avoiding the cost of detecting faulty leaders that exists in leader-
based protocols like PBFT [47, 156, 52]. Fourthly, they have optimal resilience, i.e., n
� 3f+1. In terms of time complexity, the multi-valued consensus protocol terminates
in a constant expected number of rounds, while the vector consensus and atomic
broadcast protocols have O(f) complexity.

The second step involved implementing minor variations of these algorithms and
evaluating their performance experimentally [122, 125]. The algorithms were imple-
mented as a protocol stack called RITAS. At the lowest level of the stack there are two
broadcast primitives: reliable broadcast and echo broadcast (essentially weaker ver-
sions of atomic broadcast that do not require ordering or consensus). On top of these
primitives, stands Bracha’s binary consensus [34]. Building on the binary consensus
layer, multi-valued consensus allows the agreement on values of arbitrary range. At
the highest level there is vector consensus that lets processes decide on a vector with
values proposed by a subset of the processes, and atomic broadcast that ensures total
order. The algorithms have shown good performance, e.g., with latencies in the order
of milliseconds and throughput of a few thousand messages per second delivered by
the atomic broadcast primitive [125].

ABBA was a major step in randomized consensus algorithms [45]. This bi-
nary consensus algorithm is based on a shared coin created using a novel combi-
nation of cryptographic schemes, mainly threshold signatures and a threshold coin-
tossing scheme, which has lead to constant expected time complexity (O(1)) and ex-
pected message complexity O(n2). This algorithm theoretically performs better than
Bracha’s (which uses local coins), but resorts to expensive public-key cryptography,
so we made a thorough experimental comparison of the two [121]. In a nutshell,
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Bracha’s algorithm performed always better, but we considered only 4, 7, and 10
processes, and ABBA seemed to scale much better, so with a few more processes it
would start performing better and stay that way.

When further experimenting with these algorithms on WiFi networks (802.11a/g
at 54 Mb/s and 802.11b at 11 Mb/s), both with PDAs (circa 2006 there were no
smartphones) and laptops, we observed that the performance was much worse than
in wired networks, possibly due to the lower bandwidth [120]. Later, we concluded
that the reasons were more profound and that the basic system model was inadequate
for wireless networks, most especially wireless ad-hoc networks [123, 124]. In the
basic system model every pair of processes is connected by an authenticated channel,
so when a process broadcasts a message to all others —a common communication
pattern in these algorithms— it actually sends n-1 messages; as the medium is shared,
it becomes occupied for the period of sending all these individual messages. More-
over, there are several effects in wireless networks that lead to retransmissions: loss
of signal due to mobility, interference from other wireless networks, electromagnetic
interference from other sources, reflection and blocking caused by objects. There-
fore, the problem is not only that in theory the bandwidth is lower than in typical
wired networks, but that in practice the available bandwidth is even further reduced.

This lead us to investigate an adequate system model for wireless networks
[123, 124]. In this system model, processes broadcast messages to all others and
there can be dynamic omission faults that prevent any number of processes from
receiving the message sent in a round. Interestingly, Santoro and Widmayer have
proved that, even with strong synchrony assumptions, there is no deterministic so-
lution to any non-trivial form of agreement if n-1 or more messages can be lost per
communication round [142]. We proposed two binary consensus algorithms that cir-
cumvent this impossibility result using randomization. The first tolerated only crash
faults [123, 124], so we focus on the second, Turquois, which tolerates Byzantine
faults [118, 119]. Turquois works in rounds, similarly to Bracha’s algorithm, but
does progress only in rounds when processes receive enough messages. Moreover, it
uses a novel message validation scheme that has two aspects: authenticity validation
and semantic validation. Turquois was evaluated experimentally and proved to be
much faster than ABBA and Bracha’s algorithm.

Despite our work in the early 2010s, randomized consensus algorithms contin-
ued not to raise much practical interested until very recently with the appearance of
HoneyBadgerBFT [117]. This algorithm is inspired on SINTRA, a protocol stack
that builds on ABBA [43] (our own stack, RITAS, was inspired on SINTRA, but
avoided public-key cryptography for efficiency). HoneyBadgerBFT solves atomic
broadcast and manages to improve over SINTRA by resorting to an efficient trans-
formation from multi-valued consensus to vector consensus (that they call common
subset agreement) using batching. The algorithm solves atomic broadcast with time
complexity O(n).

Table 1.4 summarizes the works on randomized consensus.



From Byzantine Consensus to Blockchain Consensus ⌅ 19

Algorithm / Stack Characteristics References
several with local coin binary consensus [27, 34]
several with shared coin binary consensus [28, 45, 46, 84, 139, 151]
SINTRA protocol stack; builds on the ABBA binary

consensus algorithm
[43]

RITAS protocol stack; avoids public-key cryptogra-
phy for efficiency

[58, 122]

HoneyBadgerBFT efficient atomic broadcast based on an effi-
cient transformation

[117]

from multi-valued consensus to vector con-
sensus

Table 1.4: Randomized Byzantine consensus algorithms and stacks.

Summary
This section provided a brief state-of-the-art on Byzantine consensus. We started
with a discussion on the system models that are relevant in this context, then pre-
sented several definitions of consensus protocols, including related notions such as
state machine replication and atomic broadcast. Then, we presented the influential
FLP impossibility result and the main approaches to circumvent it. Next, the organi-
zation patterns used in most algorithms are presented. Finally, we presented two areas
in which we did significant work: using hybrid models to solve consensus with less
processes, and efficient randomized consensus algorithms. The next section presents
the notions of blockchain and Nakamoto consensus, as well as several related algo-
rithms.

1.3 Blockchains with Nakamoto Consensus
As mentioned in the introduction, the original blockchain —the one at the core of
Bitcoin— runs a consensus algorithm based on the notion of proof-of-work (PoW)
[128], which we denominate Nakamoto consensus. This section presents the origi-
nal blockchain, its consensus algorithm, the killer applications (cryptocurrencies and
smart contracts), and variants of PoW-based consensus. It does not present more
recent blockchains that use Byzantine consensus related to those presented in the
previous section (Section 1.4).

1.3.1 Bitcoin’s Blockchain and Consensus
This section presents Bitcoin’s blockchain and consensus. They were not introduced
in a scientific paper, but on a white paper that presents how they work in an infor-
mal way [128]. In a sense, that paper presents a brilliant piece of work, which puts
together several previously existing concepts to create a novel, highly successful, sys-
tem. However, it misses important aspects such as a clearly defined system model,
properties, communication protocol, and consensus algorithm. Moreover, the Bit-
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coin system is not static, but a system in production, with frequent software updates
and conceptual changes. Fortunately, there is more rigorous documentation from the
Ethereum project [40, 160] (Ethereum in many aspects is very close to Bitcoin), from
Garay et al. [85], and others [18].

Bitcoin’s blockchain is a secure, unmodifiable, append-only, log of transactions,
as mentioned before. This blockchain is executed in a set of nodes that run Bitcoin’s
software and form a peer-to-peer network (P2P). This network is decentralized, i.e.,
it has no central control or authority, although the team that develops that software
has some control, at least as far as they manage to convince the nodes to install
the new versions of the software (complete autonomy is a myth). The nodes run a
consensus algorithm to decide which transactions to log. Every consensus decides
the next block (or set) of transactions that is added to the log.

Each node stores locally a chain of blocks or blockchain (Figure 1.2). This chain
is a linked list that contains the log itself. The first block is called genesis block. Each
record contains the following items:

⌅ Version: a non-trivial combination of version of the Bitcoin software used to
create the block and a bitmask [162];

⌅ Hash previous block: cryptographic hash (SHA-256) of the header of the
previous block (i.e., the previous block except the transactions);

⌅ Hash Merkle root: the cryptographic hash that is at the root of the Merkle
tree that summarizes the transactions;

⌅ Time: a timestamp that indicates when the block was created;

⌅ Nonce: a number that has the property of making the cryptographic hash of
the header to be below a certain threshold (related to PoW, explained later);

⌅ Transactions: list of the block’s transactions (the only item that is not part of
the header).

A Merkle tree is a binary tree where the root and every node is a hash of its
two children, except the leafs that are, in this case, transactions. The use of such a
tree allows nodes to delete or not download the transactions that are not relevant to
them, as the Merkle tree allows nodes to verify transactions individually (instead of
needing all the transactions to check the hash of a block).

Notice that the consensus algorithm also defines the order in which the nodes
are appended to the chain. Therefore, it would be more consistent with the original
distributed algorithms nomenclature (Section 1.2) to say that the algorithm solves
atomic broadcast or SMR. Nevertheless, we will stick to the term consensus, as it is
the one that is used in the blockchain and cryptocurrency literature. One aspect in
which the consensus used in blockchains differs from these two other problems is
that each block depends on the previous, as it includes its hash.

There are several types of nodes in Bitcoin. Each type of node implements a
subset of the following four roles [18]:
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Figure 1.2: Chain of blocks in Bitcoin’s blockchain.

⌅ Wallet: storing the data necessary to access the coins (BTC) of the node’s
owner (including cryptographic material);

⌅ Miner: solving the cryptopuzzle necessary to obtain PoWs for blocks;

⌅ Full blockchain: storing the full chain of blocks;

⌅ Network routing: implementing Bitcoin’s P2P protocol, making the node part
of the Bitcoin network.

When a node (with wallet and network routing roles) wants to do a transaction, it
disseminates that transaction in the P2P network. All nodes (with mining role) collect
transactions and add them to blocks. When a node (with mining role) appends a block
to the chain, it closes the block it was creating and starts solving the cryptopuzzle in
order to obtain a PoW for that block. A node appends a block to the chain when it
receives a block that has the hash of the last block in the chain and a valid PoW.

The cryptopuzzle is the problem of finding a nonce that makes the hash of the
block lower than a certain target, or, equivalently, to start with a number of 0-bit
values. The target number is defined dynamically, in order to tune the difficulty of
the problem (the target may be, e.g., 2187). This process of solving the cryptopuzzle
is called mining, involves a huge amount of energy, and is compensated with two
forms of incentives in coins: new minted coins created by the block itself (50 coins
in the beginning of Bitcoin, but periodically reduced), and a transaction fee (payed by
everyone that has a transaction in the block). Today (successful) mining is not done
by individual nodes, but by large groups of nodes: mining pools where ad-hoc sets of
nodes share mining work and split the reward [86] or mining datacenters dedicated
to mining Bitcoin [135].

This algorithm is clearly not a classical Byzantine consensus as those presented
in Section 1.2:

⌅ Validity is ensured by the nodes that receive the block, which do not add
it to the chain unless the two hashes are correct, the timestamp is within
certain bounds, and the transactions satisfy certain conditions (e.g., they do
not spend money already spent).
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Figure 1.3: Temporary fork in Bitcoin’s blockchain.

⌅ Agreement can be violated, as the algorithm allows PoWs for two differ-
ent blocks to be obtained concurrently by competing groups, leading differ-
ent subsets of the network of nodes to append different blocks to the chain
(blocks from different groups of nodes must be different, as the first trans-
action of the block is a special transaction that creates a number of coins to
reward the effort of the group of nodes). Such temporary forks are healed
by letting the chains grow and pruning the smallest subchain(s), effectively
undoing the transactions in all blocks in these smallest chains since the fork
point (Figure 1.3).

⌅ Termination is only eventually satisfied because in case there is a temporary
fork it has to be healed for consensus on a block to terminate. Moreover,
Nakamoto claims that as long as a majority of the CPU power —mining
power— is controlled by nodes that are not faulty, they will generate the
longest chain and the properties of the blockchain will be assured [128];
however, Eyal and Sirer have shown an attack in which colluding miners
obtain a revenue larger than their fair share, making it rational to collude and
create a pool with more than half of the mining power [80].

Bitcoin’s blockchain may be said to implement a speculative variation of validity
predicate-based consensus (Section 1.2.2). There are several speculative versions of
SMR algorithms [102, 88, 158, 138]. These algorithms reply faster to clients in nor-
mal conditions, but in some cases servers may have to rollback part of the execution.
This is essentially what happens also with Bitcoin’s blockchain, which may have to
remove from the chain some previously added blocks, undoing many transactions.

This speculative validity predicate-based Byzantine consensus can be defined in
terms of the following properties:

⌅ Predicate-based validity: If a correct process decides v, then v satisfies the
valid() predicate.

⌅ Eventual agreement: Eventually no two correct processes decide differently.

⌅ Termination: Every correct process eventually decides.

In Bitcoin the valid() predicate checks if: the previous block referenced by the
block exists; the timestamp of the block is greater than the timestamp of the previous
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block and less than 2 hours in the future; the PoW of the block is valid; no transaction
causes an error (tries to spend unavailable money or is wrongly signed).

Vukolic formalizes the necessity that consensus is not undone in terms of the
following property, which is not satisfied by consensus algorithms based on PoW
[159]:

⌅ Consensus finality: If a correct node p appends block b to its copy of the
blockchain before appending block b’, then no correct node q appends block
b’ before b to its copy of the blockchain.

These properties define the consensus variation. A blockchain has to satisfy a set
of additional properties, which are particularly challenging when consensus is based
on PoW [33]:

⌅ Exponential convergence: The probability of a fork of depth d is O(2�d).

⌅ Liveness: New blocks containing new transactions will continue to be ap-
pended to the chain.

⌅ Correctness: All blocks in the longest chain will only include valid transac-
tions.

⌅ Fairness: A miner with a ratio a of the total mining power will mine a ratio
a of the blocks when time tends to infinite.

The first property is important to give users confidence that waiting for a number
of blocks being appended to the chain after the one containing their transaction will
ensure this transaction is permanently part of the chain.

As mentioned above, there are different types of Bitcoin nodes, that implement
different subsets of the four roles. The most important types of nodes are the fol-
lowing [18]. A reference client implements the four roles, i.e., it provides the full
functionality. A full blockchain node is a node that keeps a copy of the chain, so it
implements the full blockchain and the network routing roles. A solo miner is a node
that is concerned only with mining, so it implements all roles except the wallet. A
lightweight wallet or simplified payment verification node is a basic user wallet that
provides only the wallet and network routing roles. Notice that these are the original
types of nodes; mining pools and mining datacenters have servers that play mainly
two roles: miner and routing (using another protocol, typically Stratum [147]).

There is no trivial matching between these node types and SMR’s client and
server, but it is reasonable to say that nodes that implement the wallet and network
routing roles correspond to clients, whereas nodes that implement the miner, full
blockchain, and network routing roles correspond to servers. Interestingly, the refer-
ence node type includes all these roles, so such nodes are both clients and servers.

Figure 1.4 represents the Bitcoin’s consensus communication pattern. Major dif-
ferences in relation to Byzantine consensus patterns (Figure 1.1) are that there are
less communication steps and servers do not communicate all-with-all. These differ-
ences are associated to a much lower message complexity, but also to a weakening
of the agreement and termination properties.
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Figure 1.4: Communication pattern in Bitcoin and other blockchains.

This does not mean that Bitcon’s blockchain performs well. Quite on the contrary,
as the threshold of the cryptopuzzle is configured for miners to take 10 minutes to
find a solution and there is a maximum of transactions per block (imposed by a
maximum block size of 1 MB), the throughput is limited (7 transactions per second
until recently). The latency is also huge due to those 10 minutes, plus the existence
of a queue of about 1 hour of pending transactions, plus about 1 hour for 6 blocks
to be inserted in the chain, providing some assurance that the block with the relevant
transaction will no longer be removed (recall that termination is not guaranteed). It is
also noteworthy that the energy consumed by the Bitcoin network is estimated to be
in the order of a few tens of TWh per year and raising due to the PoW mechanism,
which corresponds to the energy spend by a medium-sized European country [72].
On the positive side, the Bitcoin network supports a large number of nodes —more
than 10,000 currently [3]— whereas Byzantine consensus algorithms support only
some 10 to 100 servers or so.

In the context of Bitcoin and generically blockchain, the term fork is also used
with two other meanings. There is a soft fork when there is a new version of the
node software that is backwards compatible with the previous version. A hard fork
is similar except that the new version is not backwards compatible. When there is a
hard fork, two subnetworks may start existing as some users may change to the new
versions while others do not. In fact, although we talk simply about Bitcoin in this
chapter, today there are several co-existing Bitcoin networks created by hard forks:
Bitcoin, Bitcoin Cash, Bitcoin SV, Bitcoin Gold, etc.
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1.3.2 Blockchain Applications
This section deviates from the line of the rest of the chapter on consensus algorithms.
The objective is to present briefly what we called the two blockchain’s killer apps:
cryptocurrencies and smart contracts, as this is important to better understand the
notion of blockchain.

The first cryptocurrency, in the sense we use the term, was Bitcoin [128], which
we use as example. As already explained, Bitcoin is based on the original blockchain.
Bitcoin’s blockchain does not store the amount of money owned in users’s accounts,
but transactions involving accounts. The money in an account is designated the un-
spent transaction output (UTXO) [40].

An account is identified by a 20-byte address that is the hash of a public key
Ku of an elliptic curve public-key cryptographic (ECC) scheme. The corresponding
private key Kr is kept by the account’s owner in a wallet. There are many wallet
implementations, from those more secure that use specific hardware, to others less
secure in software an even at the cloud.

A transaction contains one or more inputs. Each input contains a reference to a
UTXO (a transaction in a block of the chain) and a signature produced by the owner
of the account. That signature has two components: a real signature, obtained with
the ECC scheme with Kr; and the public key Ku.

Every coin is created by a special transaction; every time a new block is mined
and added to the chain, the first transaction of the block is such a transaction that
creates coins.

Bitcoin’s ledger can be considered a state machine: the state is the ownership
of every coin (the UTXO of every account) and the transactions are commands that
modify the state, either creating coins or transfering currency to other accounts (Sec-
tion 1.2.2). On the contrary of most state machine implementations, in Bitcoin the
state is not stored explicitly, but implicitly, i.e., in terms of an initial empty state and
commands that modify it. The outcome of a transfer transaction can be the transfer of
currency or an error (because the account does not have enough money or the signa-
ture is invalid), but recall that blocks with transactions that return error are not stored
in the blockchain (Section 1.3.1). The major objective is to avoid double spending,
i.e., that the same owner uses the same coins more than once.

The notion of smart contracts was introduced by Szabo in 1997 [150]. The gen-
eral idea is the one of contracts that are automatically executed and, to the possi-
ble extent, automatically enforced. The author gives as example a vending machine,
which can be considered to be a legacy, automatically executed and enforced, smart
contract: a person inserts coins and automatically receives from the vendor a product.
According to Szabo, “smart contracts go beyond the vending machine in proposing
to embed contracts in all sorts of property that is valuable and controlled by digital
means”. However, there was no solution for implementing the concept at large scale
in the late 1990s.

Buterin created Ethereum as a platform for the implementation of smart contracts
in a blockchain, using a cryptocurrency when necessary [40]. Ethereum provides a
cryptocurrency called ether that is similar to Bitcoin’s. The way it works is very
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similar to what we just described, except that the part of the state that is modified by
the transactions in a block is stored in the chain, at the end of that block. However,
Ethereum did not aim to be just another cryptocurrency, but to support the execution
of distributed applications, designated by Dapps.

Besides a cryptocurrency, Ethereum provides support for the execution of smart
contracts. In Ethereum an account is more complex than in Bitcoin. An account has
four data items:

⌅ Nonce: a counter used to guarantee that each transaction is processed only
once;

⌅ Ether balance: the currency in ether held by the contract;

⌅ Contract code: the program that implements the contract;

⌅ Storage: space to store data persistently.

Ethereum supports two types of accounts. Externally owned accounts have no
contract code, are controlled by private cryptographic keys, and serve to do pay-
ments, just like Bitcoin’s accounts.

Contract accounts are controlled by their contract code. When a contract account
receives a message, its contract code is executed, possibly reading and writing the
account’s storage, sending messages, and creating new contracts. A message can
come in a transaction from an externally owned account or from a contract. Notice
that by receiving a message/transaction we actually mean the moment when a node
accept there is consensus on a block and triggers that transaction for processing.

A message contains the following fields:

⌅ Nonce: the nonce of the externally owned account that sent the message;

⌅ Recipient: the recipient account for the message;

⌅ Ether: the amount of currency (ether) to transfer from the sender’s account
to the recipient’s account (if any);

⌅ Data: an opaque data field with input(s) for the contract;

⌅ Startgas: the maximum number of computational steps the transaction is al-
lowed to execute;

⌅ Gasprice: the transaction fee the sender account pays per computational step
to the miner (the node that created the PoW for the block).

The startgas and gasprice have the purpose of preventing accidental or inten-
tional denial of services. In practice, they force users to pay for the execution of con-
tracts, limiting the amount of code they can execute. The term gas denominates the
unit of computation. Ethereum executes smart contract code written in the Ethereum
virtual machine (EVM) code language. For every EVM opcode there is a gas cost de-
fined, varying from 0 (e.g., for the STOP opcode that halts the execution) to 32,000



From Byzantine Consensus to Blockchain Consensus ⌅ 27

(for the CREATE opcode that created a new account with code) [1]. There is an
additional fee (5 gas) per byte in the transaction data field. The objective of this
mechanisms is to make the sender —potentially an attacker— to pay the miner for
the computational resources it uses.

Transactions containing a message from a contract to another contract have the
same fields as a message (above), plus a signature created by the sender with its
private key.

When a transaction for a contract account is received, Ethereum checks if: its
syntax is correct, the signature is valid, and the nonce matches the sender’s account
nonce. If not, it returns an error, else it calculates the transaction fee (startgas x
gasprice), subtracts the fee from the sender’s account balance (if enough, otherwise
returns an error), and increments the sender’s nonce. Then, it transfers the transac-
tion’s ether from the sender’s account to the recipient’s and executes the contract
code until it terminates or runs out of gas. If the value transfer fails because the
sender does not have enough money or the code runs out of gas, all state changes
are reverted, except the fees that are added to the miner’s account. Otherwise, the fee
corresponding to the remaining gas is transferred back to the sender’s account.

EVM is a low-level programming language that is inconvenient for humans to
write. Therefore, smart contracts are written in a higher-level language, typically So-
lidity [78], although there are other options (e.g., Serpent and LLL). The approach is,
therefore, similar to Java and .NET: a high-level language (Java, C#, VB.NET, etc.)
is compiled to a lower-level language (bytecodes, Common Intermediate Language)
that is interpreted or goes through just-in-time compilation. EVM has the important
characteristic of being Turing-complete. Bitcoin already supported basic program-
ming in a language that was not Turing-complete (Script). Hyperledger Fabric uses
an interesting alternative: smart contracts —chaincode in their lingo— are executed
in Docker containers, so they can be programmed in several different languages [93].

1.3.3 Nakamoto Consensus Variants
Creating variants of Bitcoin and Nakamoto consensus is one of the more prolific
research topic in the blockchain area, so this section will focus on some of the most
relevant works.

Many works improve the Nakamoto consensus with the goal of solving problems
of fairness (Section 1.3.1). One of the first works in this line points out that nodes
that receive transactions directly from non-miner nodes (lightweight wallets) benefit
from keeping information about these transactions to themselves, so that they can
put them in a block and receive the associated reward [22]. Babaioff et al. augment
the Nakamoto consensus with a scheme to reward information propagation with fees,
and prove that it can achieve an equilibrium using a game-theoretic model.

A selfish mining attack starts from the same idea of a node withholding trans-
actions [80]. The attack consists in a (selfish) mining pool to withhold transactions,
privately mine blocks with these transactions, and, when the length of the public
chain gets shorter than the length of the private chain, the pool disseminates their
blocks, intentionally forking the chain and making non-faulty nodes do useless com-
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putation. This attack makes all nodes waste resources, but the selfish pool looses less
and earns more reward than what corresponds to its mining power. Moreover, it is ra-
tional for the non-selfish nodes to join the selfish mining pool, increasing its share of
the total mining power. Eyal and Sirer show that Bitcoin is not incentive-compatible,
as it is vulnerable to selfish mining. They propose a modification to the Bitcoin al-
gorithm to resist this attack: all (non-faulty) nodes shall propagate information about
all competing blocks that lead to branches of the same length and pick randomly the
one to which they will start mining the next block.

Sompolinsky and Zohar have shown that blockchains with many nodes and in
which blocks are mined fast have high fork rates, allowing reasonably weak attack-
ers to reverse payments they made [148]. To solve this problem, they present the
greedy heaviest-observed sub-tree (GHOST) mechanism. Recall that in Bitcoin tem-
porary forks are healed by pruning the smallest subchain(s). GHOST does not prune
the smallest but the lightest subchains, i.e., it selects the heaviest subchain (or “sub-
tree”). The weight of a subchain is the number of blocks it contains, counting all
its branches. Ethereum implements a version of GHOST that considers only 7 gen-
erations of blocks, to simplify implementation and to keep the incentive of mining
blocks for the longest chain [40].

Miller et al. recognize the problems of fairness created by large mining pools, re-
ferring that in 2014 the largest mining pool, GHash.IO, exceeded 50% of the mining
power [116]. To deal with this problem, they introduce the notion of strongly nonout-
sourceable puzzles (SNP), which are alternatives to PoW that are not amenable for
mining pools. Specifically, a SNP is a cryptopuzzle that satisfies the following prop-
erty: if a pool operator outsources mining work to a worker, then the worker can steal
the reward without producing any evidence that can potentially implicate itself [116].
The authors present a SNP scheme called scratch-off puzzles. The scheme involves
creating puzzles that are solvable in parallel, in such a way that the workers retain
a signing key that can later be used to obtain their reward. Moreover, it provides a
zero-knowledge spending option that allows workers to spend their reward in a way
that does not reveal information.

The PoW mechanism provides the benefit of allowing arbitrary nodes to partici-
pate in a blockchain at the cost of consuming much energy (tens of TWh per year in
Bitcoin, as mentioned before). Therefore, there is a quest for alternative mechanisms
that solve the same problem without such a cost. The proof-of-stake (PoS) mecha-
nism is one of the first. The idea is that nodes have a certain stake in the network,
instead of having done a certain work. Nodes are called stakers or minters, no longer
miners. Stakers do not get a reward for mining a block, only transaction fees. PPCoin
uses a hybrid scheme in which there are two types of blocks: PoW blocks, the same
as in Bitcoin; and PoS blocks that contain a single transaction called coinstake [99].
Its authors introduce the notion of coin age that is the number of coins the user holds
multiplied by the time he holds them. In a coinstake transaction an user pays himself
an amount, effectively reducing his coin age. Producing a PoS block involves solving
a cryptopuzzle similar to obtaining a PoW, but requiring low effort and low energy
consumption (the search space is limited). Their scheme uses PoW blocks in the beg-
gining but substitutes them by PoS blocks at some stage (undefined). The difficulty of



From Byzantine Consensus to Blockchain Consensus ⌅ 29

the cryptopuzzle is variable and is lower the higher the coin age consumed. Casper
the Friendly Finality Gadget (Casper FFG) is a PoS mechanism being develop for
Ethereum [41]. Casper FFG does not aim to create chains of blocks —in Ethereum
these will continue to be created using PoW for now— but to select which subchain
to maintain and which to prune, in case there are conflicting subchains. The main
idea is to use Casper FFG to produces periodic checkpoints (1 every 100 blocks) us-
ing PoS. Moreover, it provides an accountability scheme that allows punishing faulty
nodes. In the context of Ethereum a complementary mechanism called Casper the
Friendly GHOST (Casper TFG) is being designed, but less information about it is
available. Activating Casper in Ethereum will involve a hard fork of that blockchain.

There is a line or research on useful puzzles, i.e., on alternatives to PoW that
spend energy solving useful tasks. The challenge is to find puzzles that are hard to
compute, but with solutions that that can be verified efficiently. Primecoin seems to
be the first cryptocurrency based on such an puzzle [98]. Its puzzles involve finding
chains of prime numbers that are large enough to be hard to find, but not to verify.
These prime numbers might be useful as cryptographic keys. Permacoin substitutes
PoW by proofs-of-retrievability (PoR) to support distributed storage of data [115].
The purpose of a PoR is to certify that a node is using storage space to store a file.
Therefore, Permacoin is a peer-to-peer file storage system in which nodes have an
incentive to provide storage space, instead of mere altruism.

Apostolaki et al. show that by hijacking less than 100 BGP prefixes it is possible
to isolate more than 50% of the Bitcoin mining power, even when considering that
mining pools are strongly multi-homed [19]. They present several countermeasures
to reduce the impact of these attacks on Bitcoin, most of them related to increasing
the number or diversity of connections between nodes (8 by default in Bitcoin) and
to protect the communication (by default not encrypted or integrity-protected).

Table 1.5 summarizes the works on variants of Nakamoto consensus presented.

Algorithm Mechanism Problem Handled References
Bitcoin proof-of-work (PoW) double spending [128]
Ethereum PoW / PoS efficiency, using PoS [40]
Bitcoin variant PoW fairness, by rewarding [22]
Bitcoin variant PoW selfish mining [80]
Bitcoin variant greedy heaviest-observed sub-tree (GHOST) high fork rate [148]
Bitcoin variant strongly nonoutsourceable puzzles (SNP) large mining pools [116]
PPCoin proof-of-stake (PoS) PoW inefficiency [99]
Ethereum Casper FFG / TFG PoW inefficiency [41]
Primecoin useful puzzles useless spending of energy [98]
Permacoin proofs-of-retrievability (PoR) distributed storage of data [115]
Bitcoin variants several countermeasures mining power isolation [19]

Table 1.5: Nakamoto consensus variants.
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Summary
This section provided a brief state-of-the-art on blockchain with Nakamoto con-
sensus and its variants. We started with a presentation of the Bitcoin blockchain
and its consensus algorithm. Then, we presented two major applications for block-
chains: cryptocurrencies and smart contracts. Finally, we presented several vari-
ants of the Nakamoto consensus and PoW, such as proof-of-stake and other related
schemes. The next section presents blockchains based on Byzantine consensus algo-
rithms (Section 1.2), some of them also with PoW and other mechanisms related to
Nakamoto consensus.

1.4 Blockchains with Byzantine Consensus
The previous section presented the original blockchain (Bitcoin’s), Ethereum, and
several variants of Nakamoto consensus. These consensus algorithms have essen-
tially the same goal of the Byzantine consensus algorithms of Section 1.2 —doing
agreement— but trade scalability for performance and weaker versions of the agree-
ment and termination properties (Section 1.3.1). However, one of the evolutions of
these first blockchains are the so called permissioned blockchains, which require a
different tradeoff. This section starts by presenting such permissioned blockchains,
then presents a new generation of permissionless blockchains that provide a service
similar to Bitcoin and Ethereum, but better performance. The former are based on
variants of Byzantine consensus algorithms such as BFT-SMaRt, whereas the later
are based on hybrid consensus algorithms.

1.4.1 Permissioned Blockchains with Byzantine Consensus
Around 2014 many private companies started to understand the potential benefits
of blockchain technology. That year, a group of major financial institutions formed
a consortium called R3 with the objective of understanding the benefits of block-
chain for their operation, e.g., to support payments between them [134]. These com-
panies and institutions soon understood that the permissionless nature of Bitcoin
or Ethereum —the lack of need of permission to participate— was not what they
needed. In fact, it was even unacceptable to put customer information in such infras-
tructures, from the point of view of compliance, privacy, etc.

This scenario has lead to the appearance of permissioned blockchains, in which
nodes must authenticate themselves and be authorized to become peers. This allowed
the creation of consortia blockchains (managed by a group of institutions) and pri-
vate blockchains (managed by a single institution) [39]. Permissioned blockchains
have important differences in relation to permissionless: they do not need the PoW
mechanism to throttle appends to the blockchain; the number of nodes is typically
much lower (e.g., 5 to 20 instead of hundreds or thousands); they can be implemented
using Byzantine consensus algorithms (Section 1.2) and made much more efficient.
In relation to consensus definitions, they can use validity predicate-based consen-
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sus, no longer speculative validity predicate-based consensus as Bitcoin and other
permissionless blockchains.

Next, we review some of the existing permissioned blockchains based on Byzan-
tine consensus:

Hyperledger is a blockchain project of the Linux Foundation that is developing
several blockchains. The most popular of these blockchains seems to be Hyperledger
Fabric, a modular blockchain focused on running smart contracts [42, 17]. Hyper-
ledger Fabric does not provide a cryptocurrency and runs smart contracts (chaincode)
in Docker containers (Section 1.3.2). Fabric considers two types of nodes: validating
peers that run the consensus algorithm, validate the transactions, and maintain the
chain; and non-validating peers that function as proxies to connect clients that issue
transactions, possibly validating but not executing these transactions. Despite these
nodes being called peers, Fabric is not peer-to-peer, as all validating peers commu-
nicate with all the others directly.

The consensus algorithm used is configurable; when version 1.0 was published,
there was a fault-tolerant consensus algorithm based on the Apache Kafta stream
processing platform; recently a Byzantine consensus algorithm based on the BFT-
SMaRt library [30, 149] has been included. This later algorithm is a variant of PBFT
so it solves SMR, is leader-based, has optimal resilience (n � 3f+1), and assumes
the basic system model extended with a weak time assumption to circumvent FLP.
Unlike the blockchains presented in the previous section (Bitcoin’s, Ethereum), it
provides strong agreement and termination properties, not their eventual versions.
BFT-SMaRt’s default algorithm is quite efficient, with a throughput of tens of thou-
sands of transactions per second and latency below 1s [149]. BFT-SMaRt provides
another consensus algorithm called WHEAT that uses speculative executions and
other mechanisms to be more efficient in large-scale deployments, at the cost of be-
coming slower if not all replicas reply within certain time bounds.

Corda was developed by the R3 consortium [36]. Corda is similar to Hyperledger
Fabric in many aspects. Its purpose is also to support the execution of smart contracts,
although the motivation of the consortium is specifically financial agreements. In
Corda, the consensus algorithm is executed by nodes called notaries and is also not
peer-to-peer. This algorithm is again configurable and the Byzantine fault-tolerant
version is also based on the BFT-SMaRt library.

Tendermint provides its own consensus algorithm, but it is similar to PBFT and
BFT-SMaRt’s default algorithm [37]. There is, however, a major difference in rela-
tion to Fabric and Corda: Tendermint’s communication is peer-to-peer, as each node
sends messages (gossip) only to a subset of the existing nodes. This in theory might
allow a better throughput than using BFT-SMaRt, but the experimental results sug-
gest their performance is similar [37], although it is not fair to compare experiments
done in different settings.

The Red Belly Blockchain is a permissioned blockchain based on an efficient
Byzantine consensus algorithm [66, 64]. The algorithm has two components. The
first is a Byzantine binary consensus that, as the previous algorithms, assumes the
basic system model extended with a weak time assumption. Moreover, it is also
leader-based, although it rotates the leader so there is no leader election involved
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(similarly to our Spinning algorithm [156]). The second is a transformation from
binary consensus into multi-valued consensus. The overall algorithm has optimal re-
silience and terminates in O(f) steps (or O(1) if there are no faulty nodes). Red Belly
Blockchain supports some hundreds of nodes and a throughput of several hundred
thousand transactions per second [66].

These works do not consider a hybrid model (Section 1.2.5), so nodes do not
require trusted components (wormholes) and their resilience is n � 3f+1. In large
blockchains like Bitcoin’s there is no need to improve this resilience, but in consor-
tium or private blockchains there may be a benefit on having only n = 2f+1 nodes,
e.g., only 5 or 7 instead of 7 or 10, which we have shown to be possible with trusted
components [57, 158]. Moreover, with a trusted component it is also possible to
reduce the number of communication steps and messages exchanged, which is bene-
ficial in terms of latency and throughput [158]. Interestingly, the Hyperledger project
is implementing a version of our MinBFT algorithm based on Intel SGX [4].

For completeness, we mention that there are many other permissioned block-
chains available, although they use different approaches to do consensus: Quorum, an
enterprise version of Ethereum; Hyperledger Burrow, from the Hyperledger project;
Guardtime’s KSI blockchain, developed for the Estonian government; Ripple, that
provides a money transfer service; Stellar, that supports the deployment of financial
products; and others.

1.4.2 Permissionless Blockchains with Hybrid Consensus
The blockchains presented in the previous section are unsuitable for permissionless
operation for at least two reasons. First, they become less efficient when the number
of nodes grow; in fact they certainly cannot support a number of nodes similar to
Bitcoin (more than 10,000 [3]) or Ethereum (also more than 10,000 [2]). Second,
they reach consensus based on node votes, so they need the nodes that can vote to be
clearly identified, otherwise they would be vulnerable to Sybil attacks (a node that
pretends to be several) [74] or to collusions of faulty nodes.

There are some recent proposals of permissionless blockchains that leverage the
benefits of Byzantine consensus algorithms, whereas also using PoW and related
mechanisms to allow any node to be part of the system. These blockchains are based
on what some authors call hybrid consensus algorithms, in the sense that they mix
the two types of algorithms [24]. Next, we present briefly some of these systems.

Bitcoin-NG aims to provide a more scalable version of Bitcoin [79]. The idea is
to use a leader-based Byzantine consensus algorithm to order blocks of transactions;
to deal with the fact that any node can be part of the blockchain, Bitcoin-NG uses
PoW to elect the leader. However, this use of PoW allows the existence of temporary
forks, as in Bitcoin’s blockchain.

PeerCensus [69] and Hybrid consensus [132] are based on a similar idea: they
use PoW to limit the rate at which nodes can join the blockchain, and run a Byzan-
tine consensus algorithm among the blockchain nodes to order blocks. Again, the
possibility of temporary forks remains. PeerCensus is used to build a cryptocurrency
called Discoin. More importantly, the Hybrid Consensus work studies the conditions
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in which a permissionless consensus can satisfy the property of responsiveness, i.e.,
in which the latency for a transaction to be confirmed is a function of the network de-
lay. They prove that permissionless consensus is impossible in partially synchronous
models, and that their hybrid consensus is responsive (by leveraging PoW).

Byzcoin is based on the same idea of using a variation of Byzantine consensus
for ordering and PoW for defining the committee of nodes that run the consensus
[100]. However, its authors introduce two interesting ideas for performance reasons.
First, they substitute PBFT’s vectors of MACs by signatures and use a collective
signing protocol (nodes jointly produce signatures) to avoid the leader to check O(n)
signatures during consensus. Second, they use the notion of communication trees
from multicast protocols to reduce the number of messages sent.

Algorand is a cryptocurrency that introduces several new mechanisms and is not
based on PoW [87]. First, it considers weighted users, i.e., the voting power of a node
depends on the amount of money it holds. In that sense, there is some relation to PoS.
Second, it does consensus by committee, i.e., only a subset of the nodes (committee)
run the Byzantine consensus algorithm, greatly reducing the number of messages ex-
changed. The committee members are chosen randomly, but the probability of a node
being chosen is not constant, depends on its weight. Third, it uses a cryptographic
sortition scheme for committee members to be chosen in a private and non-interactive
way (i.e., without communication), making it harder for adversaries to do denial of
service attacks against these nodes. Fourth, it uses participant replacement again to
mitigate denial of service attacks. The idea is that once a committee member sends
a message, it stops being a member, so it is no longer useful to do denial of service
against it.

Solida is inspired by Byzcoin and Hybrid consensus [6]. Transactions are ordered
by a committee using an adaptation of the PBFT algorithm. The number of members
of the committee is fixed, so when a new member joins, the oldest leaves. A node
joins the committee by presenting a PoW and, when it does so, it becomes the leader.
If two nodes obtain a PoW concurrently, a leader election protocol is executed to
select which one becomes the leader, avoiding the creation of temporary forks.

Other more recent algorithms that follow similar principles are Chainspace and
Omniledger [8, 101].

Table 1.6 summarizes both the permissioned and permissionless blockchains pre-
sented.

Summary
This section presents a set of recent blockchains based on Byzantine consensus. First,
it presents permissioned blockchains, which run essentially a Byzantine consensus
algorithm, typically a SMR algorithm. Then, it presents permissionless blockchains
that require a more complex consensus algorithm to deal with the fact that partici-
pants are unknown and Sybil attacks may exist.
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Algorithm Type Characteristics References
Fabric w/BFT-SMaRt Permissioned modular, efficient, not peer-to-peer [17, 149]
Corda w/BFT-SMaRt Permissioned similar to the previous [36]
Tendermint Permissioned peer-to-peer [37]
Red Belly Blockchain Permissioned based on an efficient Byzantine con-

sensus algorithm
[66, 64]

Bitcoin-NG Permissionless / Hybrid use PoW to elect the leader of a leader-
based consensus

[79]

PeerCensus, Hybrid consensus Permissionless / Hybrid use PoW to throttle nodes joining the
committee that runs consensus

[69, 132]

Byzcoin Permissionless / Hybrid similar but uses multicast trees [100]
Algorand Permissionless / Hybrid committee members selected using a

cryptographic sortition scheme
[87]

Solida Permissionless / Hybrid when node joins the committee it be-
comes leader and another leaves

[6]

Chainspace, Omniledger Permissionless / Hybrid similar [8, 101]

Table 1.6: Blockchains with Byzantine consensus algorithms.

1.5 Conclusion
The objective of the chapter was to present a state of the art in the area of Byzantine
consensus and its application in blockchains.

Section 1.1 introduces the notions explored in the chapter, including those related
to blockchain and Byzantine consensus.

Section 1.2 presents a state-of-the-art in what we call Byzantine consensus, which
excludes the Nakamoto consensus based on PoW. The area started in the late 1970s
with synchronous algorithms, but the section is about more recent work, starting with
the FLP impossibility result, then with practical algorithms starting with PBFT.

Section 1.3 presents the original blockchain, its consensus algorithm, the killer
applications (cryptocurrencies and smart contracts), and variants of PoW-based con-
sensus.

Section 1.4 starts by presenting permissioned blockchains, then presents a new
generation of permissionless blockchains that provide a service similar to Bitcoin and
Ethereum, but better performance. The former are based on variants of Byzantine
consensus algorithms such as BFT-SMaRt, whereas the later are based on hybrid
consensus algorithms.
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SGX-based high performance BFT. In Proceedings of the 12th ACM Euro-
pean Conference on Computer Systems, pages 222–237, 2017.

[27] Michael Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols. In Proceedings of the 2nd ACM Symposium on Princi-
ples of Distributed Computing, pages 27–30, August 1983.

[28] Michael Ben-Or. Fast asynchronous Byzantine agreement. In Proceedings
of the 4th ACM Symposium on Principles of Distributed Computing, pages
149–151, August 1985.

[29] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of activ-
ity: Extending Bitcoin’s proof of work via proof of stake. ACM SIGMETRICS
Performance Evaluation Review, 42(3), 2014.

[30] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State machine repli-
cation for the masses with BFT-Smart. In Proceedings of the IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, pages 355–362,
June 2014.

[31] Alysson Neves Bessani and Eduardo Alchieri. A guided tour on the theory
and practice of state machine replication. In Tutorials of the 32nd Brazilian
Symposium on Computer Networks and Distributed Systems, 2014.

[32] Alysson Neves Bessani, Miguel Correia, Joni da Silva Fraga, and Lau Cheuk
Lung. Sharing memory between byzantine processes using policy-enforced
tuple spaces. IEEE Transactions on Parallel and Distributed Systems,
20(3):419–432, 2009.

[33] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A
Kroll, and Edward W Felten. SoK: Research perspectives and challenges for
Bitcoin and cryptocurrencies. In 2015 IEEE Symposium on Security and Pri-
vacy, pages 104–121, 2015.



38 ⌅ References

[34] Gabriel Bracha. An asynchronous b(n� 1)/3c-resilient consensus protocol.
In Proceedings of the 3rd ACM Symposium on Principles of Distributed Com-
puting, pages 154–162, August 1984.

[35] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast pro-
tocols. Journal of the ACM, 32(4):824–840, October 1985.

[36] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda:
An introduction. R3 CEV, August, 2016.

[37] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of block-
chains. Master’s thesis, The University of Guelph, 2016.

[38] Mike Burrows. The Chubby lock service for loosely-coupled distributed sys-
tems. In Proceedings of the USENIX 7th Symposium on Operating Systems
Design and Implementation, pages 335–350, 2006.

[39] Vitalik Buterin. On public and private blockchains. https://blog.ethereum.org/
2015/08/07/on-public-and-private-blockchains/, August 2015.

[40] Vitalik Buterin and Ethereum team. Ethereum - a next-generation smart con-
tract and decentralized application platform. White Paper, 2014-17.

[41] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437, 2017.

[42] Christian Cachin. Architecture of the Hyperledger blockchain fabric. In Work-
shop on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[43] Christian Cachin and Jonathan A. Poritz. Secure intrusion-tolerant replication
on the Internet. In Proceedings of the Conference on Dependable Systems and
Networks, pages 167–176, 2002.

[44] Cristian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure
and efficient asynchronous broadcast protocols. In Advances in Cryptology:
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science. Springer-
Verlag, 2001.

[45] Cristian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Con-
tanstinople: Practical asynchronous Byzantine agreement using cryptography.
In Proceedings of the 19th ACM Symposium on Principles of Distributed Com-
puting, pages 123–132, July 2000.

[46] Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with
optimal resilience. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, pages 42–51, 1993.

[47] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In
Proceedings of the 3rd USENIX Symposium on Operating Systems Design
and Implementation, pages 173–186, February 1999.



References ⌅ 39

[48] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest
failure detector for solving consensus. Journal of the ACM, 43(4):685–722,
July 1996.

[49] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reli-
able distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[50] Soma Chaudhuri. More choices allow more faults: Set consensus problems
in totally asynchronous systems. Information and Computation, 105(1):132–
158, July 1993.

[51] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. At-
tested append-only memory: making adversaries stick to their word. In Pro-
ceedings of the 21st ACM Symposium on Operating Systems Principles, pages
189–204, October 2007.

[52] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco
Marchetti. Making Byzantine fault tolerant systems tolerate Byzantine faults.
In Proceedings of the 6th USENIX Symposium on Networked Systems Design
& Implementation, pages 153–168, 22–24 April 2009.

[53] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco
Marchetti. UpRight Cluster Services. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles, October 2009.

[54] coinmarketcap. https://coinmarketcap.com/, March 2018.

[55] Miguel Correia, Alysson Neves Bessani, and Paulo Verı́ssimo. On Byzantine
generals with alternative plans. Journal of Parallel and Distributed Comput-
ing, 68(9):1291–1296, September 2008.

[56] Miguel Correia, Nuno F. Neves, Lau Cheuk Lung, and Paulo Verı́ssimo.
Low complexity Byzantine-resilient consensus. Distributed Computing,
17(3):237–249, 2005.

[57] Miguel Correia, Nuno F. Neves, and Paulo Verı́ssimo. How to tolerate half
less one Byzantine nodes in practical distributed systems. In Proceedings of
the 23rd IEEE Symposium on Reliable Distributed Systems, pages 174–183,
October 2004.

[58] Miguel Correia, Nuno F. Neves, and Paulo Verı́ssimo. From consensus to
atomic broadcast: Time-free Byzantine-resistant protocols without signatures.
Computer Journal, 41(1):82–96, January 2006.

[59] Miguel Correia, Nuno Ferreira Neves, and Paulo Verı́ssimo. BFT-TO: intru-
sion tolerance with less replicas. Computer Journal, 56(6):693–715, 2013.

[60] Miguel Correia, Paulo Verı́ssimo, and Nuno F. Neves. The design of a COTS
real-time distributed security kernel. In Proceedings of the 4th European De-
pendable Computing Conference, pages 234–252, October 2002.



40 ⌅ References

[61] Miguel Correia, Giuliana Santos Veronese, and Lau Cheuk Lung. Asyn-
chronous byzantine consensus with 2f+1 processes. In Proceedings of the
2010 ACM Symposium on Applied Computing (SAC), pages 475–480, 2010.

[62] Miguel Correia, Giuliana Santos Veronese, Nuno Ferreira Neves, and Paulo
Verı́ssimo. Byzantine consensus in asynchronous message-passing systems: a
survey. International Journal of Critical Computer-Based Systems, 2(2):141–
161, 2011.

[63] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Li-
uba Shrira. HQ-Replication: A hybrid quorum protocol for Byzantine fault
tolerance. In Proceedings of 7th USENIX Symposium on Operating Systems
Design and Implementation, pages 177–190, November 2006.

[64] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. Blockchain
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[94] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon
Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus
Stengel. Cheapbft: resource-efficient byzantine fault tolerance. In Proceed-
ings of the 7th ACM European Conference on Computer Systems, pages 295–
308, 2012.

[95] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain pay-
ment networks. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 439–453, 2017.

[96] Kim Potter Kihlstrom, Louise E. Moser, and Paul M. Melliar-Smith. The
SecureRing group communication system. ACM Transactions on Information
and System Security, 4(4):371–406, November 2001.



References ⌅ 43

[97] Kim Potter Kihlstrom, Louise E. Moser, and Paul M. Melliar-Smith. Byzan-
tine fault detectors for solving consensus. The Computer Journal, 46(1):16–
35, January 2003.

[98] Sunny King. Primecoin: Cryptocurrency with prime number proof-of-work.
2013.

[99] Sunny King and Scott Nadal. PPCoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, 2012.

[100] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,
Linus Gasser, and Bryan Ford. Enhancing Bitcoin security and performance
with strong consistency via collective signing. In 25th USENIX Security Sym-
posium, pages 279–296, 2016.

[101] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,
Ewa Syta, and Bryan Ford. OmniLedger: A secure, scale-out, decentralized
ledger via sharding. In Proceedings of the 39th IEEE Symposium on Security
and Privacy, 2018.

[102] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed-
mund Wong. Zyzzyva: Speculative Byzantine fault tolerance. In Proceedings
of 21st ACM SIGOPS Symposium on Operating Systems Principles, October
2007.

[103] Leslie Lamport. The part-time parliament. ACM Transactions Computer Sys-
tems, 16(2):133–169, May 1998.

[104] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):51–58, 2001.

[105] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, July 1982.

[106] Butler Lampson. The abcd’s of paxos. In Proc. of the 20th annual ACM Symp.
on Principles of Distributed Computing, 2001.

[107] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda.
Trinc: small trusted hardware for large distributed systems. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implemen-
tation, pages 1–14, 2009.

[108] Bev Littlewood. The impact of diversity upon common mode failures. Relia-
bility Engineering & System Safety, 51(1):101–113, 1996.

[109] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko
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