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2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Portugal
gomes.g@exercito.pt dias.lfxcm@exercito.pt miguel.p.correia@tecnico.ulisboa.pt

Abstract—Cryptojacking, the appropriation of users’ computa-
tional resources without their knowledge or consent to obtain cryp-
tocurrencies, is a widespread attack, relatively easy to implement
and hard to detect. Either browser-based or binary, cryptojacking
lacks robust and reliable detection solutions. This paper presents
a hybrid approach to detect cryptojacking where no previous
knowledge about the attacks or training data is needed. Our Cryp-
tojacking Intrusion Detection Approach, CRYINGJACKPOT, extracts
and combines flow and performance counter-based features, aggre-
gating hosts with similar behavior by using unsupervised machine
learning algorithms. We evaluate CRYINGJACKPOT experimentally
with both an artificial and a hybrid dataset, achieving F1-scores
up to 97%.

Index Terms—intrusion detection, clustering, cryptojacking, net-
work flows, performance counters, security analytics

I. INTRODUCTION

Bitcoin’s presentation in 2009 made headlines, being the start-
ing point of what would be the popularization of crypto-mining
and with this the dissemination of a new attack, cryptojacking.
This recent threat is defined as the illicit appropriation of users’
computational power without their knowledge or consent to
mine cryptocurrencies. This attack can be performed through
two major attack vectors: browser-based scripts and binary
malware (executables) [1], [2].

Bitcoin created a new paradigm: an alternative to tradi-
tional electronic payment systems based on intermediaries (e.g.,
banks). Relying on such intermediaries is susceptible to prob-
lems like potentially misplacing trust, additional costs (money
transfer fees), and operation delays [3]. Bitcoin, a digital repre-
sentation of assets, alongside with blockchain, an append-only
universally accessible ledger of transactions, came to replace
those transaction intermediaries using a decentralized network of
nodes [4]. For a new group of transactions, intensive computing
power must be used to validate, add, and distribute a new block
with those transactions through the blockchain network. The
solution to a cryptographic problem must be found by computing
a so-called Proof of Work (PoW). The miner that obtains the
PoW and manages to append the block to the blockchain is
rewarded with new coins [3], [5].

Nevertheless, malicious miners started to target users’ compu-
tational resources for their own profit, a profit that is proportional
to the number of victims and the resources used [1], [2], [6],
[7]. Although recent, illicit cryptocurrency mining represents
an immediate and long-term threat to both organizations and
end-users. Security practices that allow the initial exploit could

lead to physical damage, performance and productivity impact,
increase in maintenance costs, and open security holes for more
dangerous attacks. Also, it is important to notice the incoming
revenue for the non-stop growing economy that is behind
malicious activities. For example, numerous top-visited web
sites, including YouTube [8], Showtime, and The Pirate Bay [9],
have been criticized for permitting cryptojacking attacks against
their users. At a different level, an European airport system was
found to be running Monero (XMR) mining malware [10]. A
recent survey found 65,000 domains conducting cryptojacking
activities among the Alexa Top 1M domains [2].

Cryptojacking is one of several new threats that changed
the prospect of network security. An effort is being made to
develop more robust and efficient Intrusion Detection Systems
(IDSs), capable of detecting attacks of several types. The most
common intrusion detection approaches are: Misuse / signature
detection, which uses previous knowledge of attacks to build
signatures in a matching process that flags behaviors that share
similarities with the existing signatures. It usually generates a
low number of false positives, but it fails in detecting previously
unseen attacks; Anomaly detection, where the idea is to identify
patterns that deviate from normal behavior, appearing as an
appealing solution because of its ability to detect previously
unseen attacks. However, it often leads to high false alarm rates
[16], [17].

Both approaches share a common disadvantage: they need
prior knowledge, either of existing attacks, or of what normal
behavior is. Both types of prior knowledge are hard to obtain.

IDSs can also be classified, in terms of data source, as (1)
host-based, (2) network-based, or (3) hybrid. The first (1) take
into account host characteristics for detection, the second (2)
monitors network traffic, and the third (3) – CRYINGJACKPOT’s
approach – combines both data sources [18].

Machine Learning (ML) techniques, where statistical models
are built with the knowledge extracted from data through a
computational process, plays a core role in many IDSs [17].
These techniques can be divided into two major categories:
supervised and unsupervised methods. In supervised methods,
there is labeled training data that is used by an algorithm to
build a model. One of the most common supervised methods
is classification, whereas the model is used to label never seen
data points and determine which class they belong to. Most
of the ML methods employed in misuse detection systems are
supervised [17]. Creating an IDS based on these approaches is
challenging, mainly due to the availability of well-suited data978-1-7281-8326-8/20/$31.00 c©2020 IEEE



TABLE I
CRYPTOJACKING DETECTION SOLUTIONS (ADAPTED FROM [11])

Paper Features Classifier
Seismic [12] WASM opcode counts Hand-crafted rules
RAPID [13] Resource-related API calls and consumption Support-Vector Machine
MiningHunter [13] Fingerprints Hand-crafted rules
Muñoz et al. [14] Flow-based Support-Vector Machine, C4.5, CART, Naı̈ve Bayes
Outguard [15] Signatures and behavioral features of aggressive miners Support-Vector Machine
CoinPolice [11] Throttling-independent behavior timeseries Convolutional neural network
CRYINGJACKPOT (our paper) Flow-based and performance counters K-means, Agglomerative, DBSCAN, Ensemble

[16], [17], [19]–[23].
Unsupervised learning – the set of techniques we use – is

compelling for intrusion detection because, by definition, it
does not need labeled data as input, nor signatures, or train-
ing. Among its several advantages, this detection methodology
allows detecting new attacks, which is an improvement over
the conventional approaches previously described by finding
patterns, structures, or knowledge in unlabelled data [16], [17].
Within unsupervised learning, clustering algorithms are a pop-
ular choice for anomaly detection, aiming to find malicious
information within networks without prior knowledge. Consider
that a feature is a measurable characteristic of the relevant
phenomenon, e.g., the number of bytes received by an interface
in port TCP/80. For a clustering algorithm, an entity (e.g., a
machine or a user) is characterized by a vector of features,
and these entities are aggregated in clusters based on their
features similarity. The resulting groups or clusters can be
analyzed and flagged as malicious or not using manual analysis,
outlier detection, thresholds, or heuristics like considering small
clusters suspicious [17], [19], [21]. These approaches have been
investigated and implemented by several authors for network
security applications [19]–[23].

Concerning the detection of cryptojacking, there is an in-
creasing corpus of recent literature (Table I). These works have
several limitations. Most of them address exclusively browser-
based mining [11]–[13], [15], [24]–[26]. Even though this
malicious approach represents the majority of all cryptojacking
activity [27], the classical malware-related challenges, persis-
tence and obfuscation, make of this an important threat that
needs attention. Also, works that depend on well-known scripts,
tags, or signatures [12], [28], are susceptible to the techniques
that evade these detection mechanisms. The approaches that
use the measurements of the host’s resources consumption [13],
[15], [29], cannot guarantee detection when there are hosts with
legitimate heavy workloads.

We present CRYINGJACKPOT, a new hybrid IDS based on
unsupervised learning for cryptojacking detection. Our approach
performs clustering ensemble with different unsupervised ML
algorithms, using both host-based and network-based features.
Using the operating system performance counters that represent
the system state or activity (host-based) and network flows
(network-based), we aim to develop a robust and reliable ap-
proach that does not need previous knowledge or training data
for the detection of browser-based as well as binary cryptojack-
ing malware. Combining the dual nature of our features, our
approach is able to detect cryptojacking under intensive loads
and intensive network traffic, resistant to different throttling

degrees (consumption percentages), code obfuscation, and the
use of proxies.

We first tested CRYINGJACKPOT with a public dataset (CSE-
CIC-IDS2018 [30]) and flow-based features with good results,
even though this dataset includes many attacks with a more
noticeable behavior. We also created a hybrid dataset to ana-
lyze network flows and performance counters simultaneously.
CRYINGJACKPOT obtained values for an F1-score of 82% for the
public dataset and an F1-Score of 97% for the hybrid dataset in
several experiments designed to cover a large number of real-
world scenarios.

II. BACKGROUND

This section starts by explaining cryptojacking attacks, pro-
vides some background on the use of clustering for intrusion
detection, and explains how we chose the mechanism to pinpoint
attacks (outlier detection).

A. Cryptojacking

To deal with some of the issues with blockchain technology,
such as network consensus, operations’ irreversibility, among
others, the notion of PoW was introduced. This algorithm turns
the task of adding new blocks to the chain highly expensive in
terms of computing power [5]. More specifically, the task of
adding a new block is based on the solution of a cryptographic
problem, where the miner has to take a block of transactions
and compute the hash value of that block and a nonce [5]. This
task – designated mining – is done repeatedly until a specific
number of prefixing zeros in the hash value is achieved. The first
miner able to solve this problem is rewarded with new coins for
the computational effort used. The new block is disseminated
through the nodes of the network that add it to their local
instance of the blockchain [3], [5].

Due to technological developments, not long after the appear-
ance of Bitcoin, the practice of mining this cryptocurrency by
end-user machines became infeasible. This paradigm would not
change until 2014 with the appearance of a new cryptocurrency,
Monero (XMR). XMR uses a different PoW algorithm called
RandomX, that makes the mining tasks equally efficient on the
Central Processing Unit (CPU) and the Graphics Processing
Unit (GPU), while making it less effective with Application-
Specific Integrated Circuits (ASICs)1. Being ideal for mining
by end-users, there was an increase in mining scripts develop-
ment. Some web applications started using web mining scripts
legitimately as a revenue alternative, e.g., for suppressing adds.

1Monero’s PoW algorithm was updated from CryptoNight to RandomX in
October of 2019, with the objective of being even more ASICs resistant [31].



However, others started running then illegitimately, without
user knowledge or consent. These scripts usually use CPU
computational power.

In 2017, Coinhive, a major browser service provider made a
big entrance by providing an Application Programming Interface
(API) so that developers could implement browser mining
on their websites. Coinhive was using legitimate politics to
establish dominance over the remaining similar services. This
trend skyrocketed as Coinhive’s scripts started to dominate, in-
creasing browser-based mining, and in consequence, increasing
cryptojacking [1]. Eventually Coinhive stopped its operation due
to the problems it was raising.

Cryptojacking is in the attacker’s perspective easier to deploy
and entails fewer risks than other attacks, which calls the
attention for this type of threat. Even though for browser-based
mining the exploit behavior ceases whenever the victim closes
the browser [1], crypto-mining malware share the persistence
and obfuscation characteristics of traditional malware [7].

In a mining pool several individual miners come together to
divide the computational effort and increase their change of
satisfying the PoW before its competitors. The mining server
has to be efficient when distributing tasks to optimize the profit,
a scenario where latency is key.

Moreover, the Stratum protocol is a line-based protocol built
over Transmission Control Protocol (TCP) specially designed
for crypto-mining communication. It is used by most of the
mining pools to communicate with miners or pool servers.
Besides being easy to implement, extensible, and compatible
with most platforms, the major advantage of Stratum against
HTTP is that servers can drive the load by themselves and send
broadcast messages to miners without any long-polling, load
balancing or packet storms [2], [14]. A simple way to understand
the need for a dedicated protocol arises from understanding
the HTTP protocol’s nature. The client asks the server for
specific data, a request that the server can not predict. However,
when mining, the information that will be exchanged is already
known, by what the Stratum protocol came up to optimize these
iterations.

B. Clustering and intrusion detection

Clustering is a set of techniques for finding patterns in high-
dimensional unlabeled data [16]. The general idea is that similar
objects are grouped by measuring the distance between them.
A clustering algorithm takes as input a set of entities and
returns a set of subsets (or clusters) of these entities. However,
this process does not tell us anything about the nature of the
individual subsets/clusters.

For intrusion or anomaly detection, many works leverage the
idea that big clusters represent normal behavior and that the
outliers (e.g., small clusters of entities or noise) may correspond
to anomalous behavior [17]. Outliers are those points in a dataset
that are highly unlikely to occur for a model of the data. Outliers
may be considered to be those entities in clusters with a single
entity [22], [32], or those that are further from all the other data
points than a given a threshold [33], [34].

In this work, we pursue the idea of finding outliers as one
entity clusters, for which the choice of the algorithms represents

an important design step. Due to the lack of literature for
the detection of cryptojacking with unsupervised methods, we
decided to provide our system with redundancy by choosing
three kinds of algorithms and the implementation of an ensemble
technique influenced by previous works [23], [35], [36].

The clustering algorithms we chose can be classified
as partition-based, hierarchical, and density-based. K-means
(O(nkdi)), is a popular partition-based algorithm that distributes
the given data points X into k clusters, where each data point is
more similar to the centroid that defines its cluster than it is to
other cluster’s centroids. It is important for the implementation
step to take into account two key factors: the number of clusters,
and the distance metric, being the Euclidean distance generically
the most used metric [17].

In hierarchical clustering (HC), algorithms organize data into
a hierarchical structure according to the proximity matrix. The
results of HC are usually depicted by a binary tree or dendro-
gram. We chose Agglomerative hierarchical clustering, since
divisive clustering is an unusual practice due to its computational
effort [37]. The algorithm starts by assigning each object to
a different cluster, then it computes pairwise distances of n
data points and links them according to a linkage function
(e.g., minimum distance). The results can be represented by a
dendrogram where the root node represents the whole dataset
(single cluster), and each leaf node is a data object. The
complexity of the algorithm is O(n2), mainly due to the cost
of computing all pairs of distances [23], [38].

DBSCAN groups data points into clusters that have a higher
density than a threshold number (MinPts). It performs this task
within a window of a specified size defined by the distance
to the data point (eps). In other words, DBSCAN creates a
new cluster from a data object by absorbing all objects in
its neighborhood, given a user-specified density threshold [17],
[39]. DBSCAN is a complex algorithm (O(nlog(n))), associated
with high execution times. All clustering algorithms were set to
use Euclidean distance. Moreover, motivated by the capabilities
of each of these algorithms, we support our choice with the
good results obtained in several works [21]–[23], [39]–[41].

III. THE CRYINGJACKPOT APPROACH

The CRYINGJACKPOT approach aims to automatically identify
outliers, i.e., entities – hosts – targeted by cryptojacking, by
extracting, combining and processing a set of features. These
features are obtained from host-based performance counters
[42] and network flows [43], [44]. In relation to counters, in
the paper we consider only counters provided by Microsoft
Windows, but the approach is generic. The use of these host-
based features is motivated by the nature of the attack and the
associated resource consumption. Exploring resource consump-
tion is an approach already used in previous works [13], [28],
[29]. The latter, network flows, is motivated by their ability to
allow detecting attacks immersed in large volumes of data [14],
[21], [23], [45].

Figure 1 represents our approach that has four major steps:
data collection (1), data processing (2), clustering (3), and
evaluation (4), each of them presented in-depth in the following
sections. The first step, concerns feature engineering and the



possible methods to obtain the data; the second step addresses
all the processing done to the raw data (features extraction and
normalization); the third, clustering, is the core our approach,
involving parameter inference and the clustering algorithms.
Finally, step four concerns the evaluation of the results.

Fig. 1. CRYINGJACKPOT’s general overview

A. Data collection

As previously mentioned, CRYINGJACKPOT obtains features
from two different data sources, performance counters and
network flows.

We lean towards performance counters indicators for Win-
dows machines, to explore cryptojacking behavior as a CPU-
heavy attack. For Windows machines, several performance coun-
ters are available for monitoring purposes [42], from which we
chose the indicators that best reflected cryptojacking manifes-
tation. We end up with up to 123 performance counters, a set
of indicators that described CPU, memory, network usage, and
running processes within a host. Some examples:

\Processor(*)\% Processor Time
\Memory\Available Bytes
\Network Interface(*)\Bytes Sent/sec

However, as they are, these indicators can not be employed
as features. For a given time window and a given host, there
will be several measurements regarding these metrics. Therefore,
we had to combine them to generate a set of features that the
clustering step could process. We studied the use of average
value, max value and the standard deviation. We also combined
these statistical metrics, but the best results were obtained
by using exclusively the average value for each performance
counter. From the initial set of 123 performance counters, we
then created 123 features, each one as the average value of
the respective indicator for a given time window. For example
CPUTime_avg is a feature that, for a specific host and time
window, gives the average value of the \Processor(*)\%
Processor Time counter. Moreover, we studied the contribu-
tion of each one of the 123 initial features using heat maps,
and by discarding redundant features, we ended up with 61
performance counters-based features.

Regarding flow-based features our choices were influenced
by works that addressed the Stratum protocol and cryptojacking
detection [14], [25], [28]. Some particularities of Stratum were
fundamental for our choice of features (cf. Section II). As stated
by Muñoz et al. [14], Stratum shows an asymmetry in connec-
tions, i.e., the server sends more data than the client/victim. This

effect can be observed using features about inbound/outbound
flows, e.g., inbound/outbound packet counts. Moreover, Stratum
generates flows that take 5 to 30 minutes to finish. We decided
to create features related with 80/HTTP and 443/HTTPS ports,
as Stratum utilizes these ports.

CRYINGJACKPOT explores flows from both source and desti-
nation perspectives, where hosts are used as aggregation keys,
either as source IP (SrcIP) or as destination IP (DstIP).

From a source standpoint, CRYINGJACKPOT starts by ex-
tracting 2 fixed features that explore incoming data patterns:
(1) SrcBytesPktBwd, number of bytes per packet received
as SrcIP; (2) SrcMeanBytesBwd, average number of bytes
received as SrcIP.

We then implemented a technique that greatly improved our
results. We extracted a set of 11 features from flows whose
destination IPs had been, for a given time window, contacted
only by one host/source IP, i.e, a rare destination. This decision
aimed to explore connections made with mining pools’ exclusive
domains. Considering that these rare destination-related features
are tagged with _List. For this reason, we used additional tags
to better understand these features. For example, let’s consider
the Src_PSH_Count_List feature for further explanation.
The initial tag indicates a feature extracted from flows were the
network hosts represent the source IP. PSH_Count describes the
feature as being the count of TCP PSH (push) flags during a
given time window. This feature was obtained by observing the
traffic between the victim and the malicious domain. The final
tag is an indication that this feature was obtained from flows
where the destination IP has a unique contact. Additionally,
CRYINGJACKPOT also defines 5 port-related features, regarding
HTTP/80 and HTTPS/443, using in this case, source ports as
aggregation keys (Table II). Similar to the evaluation performed
for performance counters, we also weighed our initial set of
features, having end up with 37 flow-based features.

CRYINGJACKPOT is similar from a destination standpoint, but
different port-related features where used (Table II).

B. Extraction, normalization, and parameter inference

CRYINGJACKPOT can process data on different predefined time
windows, of durationW = {w1, w2, ..., wn}, e.g., 10 minutes, 1
hour, 1 day. This approach performs clustering for every window
of duration wi ∈ W for the periods of data available. For every
time window of duration wi ∈ W , features are extracted from all
flows and counters regarding the time window being analyzed.
Following the rationale in Section III-A.

This step results in two vectors of features for each host, one
containing the features obtained from the performance counters
and the second with features from network flows.

For each time window wi ∈ W , features have to be normal-
ized before the clustering step. Normalization is performed by
scaling each feature to a common range, and it is important not
to lose information during this process. Therefore, we chose the
min-max scaling method described in Equation (1) and (2). This
method transforms all features into the range [0,1], ensuring that
features will contribute proportionally during the clustering step
by using Euclidean distance as distance metric.

Xstandard = (X −Xmin)/(Xmax −Xmin) (1)



TABLE II
FEATURES USED IN CRYINGJACKPOT

Flow-based Features Performance Counter-based Features
# bytes per packet received as [SrcIP/DstIP] cpu-% cpu time process-[I/O] write bytes/sec memory-pages faults/sec

average bytes received as [SrcIP/DstIP] cpu-% user time process-[I/O] data bytes/sec memory-available bytes
# stablished sessions with a [DstIP/SrcIP] having an unique contact as [SrcIP/DstIP] cpu-% priviledge time process-max utilization of the virtual space bytes memory-committed bytes

# packets foward to [DstIP/SrcIP] having an unique contact as [SrcIP/DstIP] cpu-% idle time process-max utilization of the paging file bytes memory-commit limit
# packets received from [DstIP/SrcIP] having an unique contact as [SrcIP/DstIP] cpu-% C1 time process-max utilization of the work set memory-write copies/sec

flows’ average duration with [DstIP/SrcIP] having an unique contact as [SrcIP/DstIP] cpu-% C2 time network interface-total bytes/sec memory-transition faults/sec
# PSH flags with [DstIP/SrcIP] having an unique contact as [SrcIP/DstIP] cpu-C1 transitions/sec network interface-packets/sec memory-cache faults/sec
# SYN flags with [DstIP/SrcIP] having an unique contact as [SrcIP/DstIP] cpu-C2 transitions/sec network interface-packets received/sec memory-pages input/sec
# FIN flags with [DstIP/SrcIP] having an unique contact as [SrcIP/DstIP] process-% cpu time network interface-packets sent/sec memory-page reads/sec

# bytes per packet forward by [SrcIP/DstIP] to [DstIP/SrcIP] having an unique contact process-% user time network interface-bandwidth memory-pages output/sec
# bytes per packet received by [SrcIP/DstIP] to [DstIP/SrcIP] having an unique contact process-% priviledge time network interface-bytes received/sec memory-pool paged bytes

packets inbound/outbound ratio with [DstIP/SrcIP] having an unique contact process-working set network interface-unicast packets received/sec memory-pool nonpaged bytes
bytes inbound/outbound ratio with [DstIP/SrcIP] having an unique contact process- virtual bytes network interface-non-unicast packets received/sec memory-pages writes/sec

process-page faults/sec network interface-unknown packets received memory-pool paged allocs
process-page file bytes network interface-bytes sent/sec memory-pool nonpaged allocs

Src View —— Port-related —— Dst View process-thread count network interface-unicast packets sent/sec memory-max use of cache’s bytes
# of bytes per packet received in port x # of bytes per packet sent to port x process-pool paged bytes network interface-packets não-unicast sent/sec memory-pool paged resident bytes

# of packets received from port x in / out packets sent to port x process-pool nonpaged bytes network interface-average rsc packet size for tcp memory-total bytes in system’s code
# of bytes received from port x in / out bytes outbound sent to port x process-[I/O] read operations/sec network interface-rsc active connection for tcp memory-total bytes in system’s driver

# of packet sent to port x # of packets received from port x process-[I/O] write operations/sec memory-pages/sec memory-bytes in system’s cache
# of bytes sent to port x # of packets sent to port x process-[I/O] read bytes/sec memory-cache’s bytes memory-% bytes used

# of bytes sent to port x memory-kbytes available

Xnormalized = Xstandard × (max−min) +min (2)

Moving forward to the clustering step, a critical decision is
about the clustering algorithms’ initialization parameters. These
parameters dictate the obtained results in what is known as a
try and error process, because there is not a specific set of prior
parameters that are known to generate the ideal results.

In relation to the parameters of K-means and Agglomerative,
both assign a set of objects into K clusters, so K must be
defined. The best K value might be found through brute force,
a method that is unfeasible in practice, due to the computa-
tional effort required. For this, we used two algorithms, elbow
algorithm and the silhouette algorithm, to find the value of K.
The elbow algorithm is widely employed, and has obtained
good results in several works [22], [23]. This method looks
at the obtained score explained as a function of the number
of clusters. The score is usually obtained using the sum of
square errors (SSE) between the samples and the correspondent
centroid. This method is based on the idea that one should
choose a number of clusters so that adding another cluster does
not improve the result in a significant way. This criterion has the
downside that this turning point may be unclear [46]. Therefore,
we also implemented the silhouette algorithm, which uses two
factors, cohesion and separation. The silhouette coefficients are
obtained by comparing the similarity between the sample and
the respective cluster (cohesion), and the similarity with other
clusters (separation). This coefficient is in the range [−1, 1] with
1 meaning a high similarity between object and cluster [46].

Regarding DBSCAN, this requires that the density in a neigh-
borhood of a given object must be high enough to have a
cluster assigned [37]. We have to choose the number of samples
in a neighborhood for a point to be considered as a core
point (min samples) and the maximum distance between two
samples for one to be considered as in the neighborhood of the
other (eps) [47]. eps can be chosen as the most pronounced
change for when the distances between each entity and its
neighbors are calculated and sorted [48]. All three clustering
algorithms can be set to use Euclidean distance.

C. Clustering and evaluation

After the features extraction and normalization, the vectors
of features are provided as input to the clustering algorithms.

The idea is to group machines with similar behavior based on
the set of fixed features. CRYINGJACKPOT is able to execute
this task by using the host-related features independently from
the flow-based ones, with the main goal being the use of both
sets simultaneously. This is an important design step because it
provides our system of flexibility for further implementations.
It can, in future applications, make use of alternative host-based
indicators, such as alternative operating systems.

The result of the clustering step is a set of clusters with hosts
for each time window of duration wi ∈ W . Each host appears
in a cluster for each time window.

We use three algorithms – K-means, Agglomerative, and
DBSCAN – based on three clustering strategies – partition,
hierarchical, and density-based. Furthermore, our goal of de-
veloping a robust and reliable system pushed us to implement a
clustering ensemble, were the results of the clustering algorithms
are combined for the overall improvement of our approach
results. This is done by voting the results of each algorithm,
i.e., we follow the rule of the 2 out of 3. More specifically, a
host is considered to be a true positive (Section V-A), if flagged
as an outlier for at least two algorithms. The same applies for
false positives.

Several methods can be used for the classification. If needed,
a manual inspection can be performed by a security analyst,
starting with the smallest clusters. However, to automate the
identification of anomalies, we consider that an outlier is an
entity that is isolated in a cluster. The disadvantage of this
approach is that for several simultaneous victims, our detection
capabilities shows worst results as victims share clusters.

IV. HYBRID DATASET

Due to our approach’s nature, we were not able to find out
a dataset that met our needs of having both network flows
and performance counters combined with cryptojacking attacks.
Therefore, we created a hybrid dataset, where real-world data
was collected to then be used for our needs.

As stated by Sharafaldin et al. [49], there is a set of consider-
ations to take into account when using or creating a dataset. We
took those observations into account, as we needed to obtain
a set of specific data to our detection tests. This task was
conducted in two stages: benign data collection (B-Profiles)



and malicious data collection (M-Profiles). Regarding the B-
profiles, an ideal dataset would consist of all the information
associated to a real-world network without any filtering. This
idea has several drawbacks: the access to the entire network
is not always possible; there are privacy or anonymity-related
issues, among others. An alternative is the artificial generation
of traffic, for both profiles, a technique still to be perfected [49].

Our approach to creating the dataset is described as follows.
We decided to obtain a small set of real-world data, with no
filtering. We extracted all the information, regarding network
traffic (packets) and performance counters, for a set of users
whose fingerprints reflected the current real-world computa-
tional trends. This initial set of data was then used to replicate
the remaining network structure (Section IV-B) employing an
approach that aimed to ensure that the data approximated what
would be a real-world dataset. The M-profile (Section IV-A)
data was obtained with a similar approach, using real malware
samples combined with users’ real traffic. We considered having
obtained an up to date dataset, not constrained by anonymity
issues, where we have access to all the pertinent information
we needed to obtain reliable results for our detection approach.

A. Malicious samples collection

Finding cryptojacking samples was one of the most important
tasks as we wanted to guarantee that only active malicious
samples were gathered, and that we had covered as many
possible variants of the attack. We aimed to find browser-based
scripts as well as binary malware.

Regarding browser-based cryptojacking, we used a source
code search engine (https://publicwww.com/ ) to look for spe-
cific tags that identified embedded code from mining providers
scripts. Despite the shutdown of Coinhive, that provided a script
for Monero mining, in 2019, a huge amount of top domains
during our search had these mining scripts in their source
code, however, they were deactivated. Nevertheless, since the
Coinhive shutdown, alternative providers emerged [50], e.g.,
https://minero.cc/ and https://www.coinimp.com/.

TABLE III
BROWSER-BASED CRYPTOJACKING SAMPLES

Search Tag Domain Mining Script
minero.cc tibumpiscinas.com.br minero.cc/lib/minero.min.js
minero.cc naftkala.com minero.cc/lib/minero.min.js
hostingcloud serieshdpormega.com hostingcloud.racing/8vVW.js
hostingcloud vstars.pl hostingcloud.racing/BBlJ.js
webminepool oslafo.com webminepool.com/lib/base.js

From our search we selected 5 browser-based samples that
we proved to be executing mining tasks in the background.
Table III summarizes information about the samples and Figure
2 shows an extract of source code. These samples also work
with different throttle levels, i.e., percentage of CPU time
consumption, allowing us to explore different scenarios during
detection. We were able to show that even attacks with reduced
CPU consumption are detected.

We also developed our approach to be able to detect binary
cryptojacking samples. To find these binaries, we searched
through malware repositories such as https://urlhaus.abuse.ch/
and https://dasmalwerk.eu/. We end up with 5 binary malware

Fig. 2. Malware source code for www.serieshdpormega.com

samples for cryptojacking with different throttle values (Table
IV).

TABLE IV
BINARY CRYPTOJACKING SAMPLES

Binary sample
down.gogominer.com/sex Live1.5.0.1099.exe
14.141.175.107/cryptominerbros/wordpress/
14.141.175.107/cryptominerbros/wordpress/wp-content/Vh/
149.28.24.180/miner/bashd32
ivansupermining.info/bin/minbuild.exe

B. Creating the baseline extractions

With the necessary malicious samples we created the baseline
extractions that later were used to create the hybrid dataset we
needed. B-Profiles aim to encapsulate the entity behaviors of
users in their normal tasks. This is one of the great challenges
of artificial datasets, to achieve the complex behavior of a real-
world users. For our dataset extractions we defined 3 types
of host behavior profiles: (1) Low-Profile (L); (2) Mid-Profile
(M); (3) High-Profile (H). Profile (1) represents hosts with
low use of system resources and light network traffic. Profile
(2) represents host with an intermediary user with a workload
focused on productivity (Microsoft Office, cloud working). The
high-profile (3) aims to reproduce network and CPU demanding
loads (virtual machines, Adobe Photoshop, web downloads,
multiple web tabs). Our approach aimed to create a dataset with
different network types, i.e., to enable cryptojacking detection
for different workloads, and most importantly, to understand if
high-profile workloads hide the attack behavior.

Having our strategy defined, we used 9 Windows 10 Enter-
prise with Intel(R) Pentium(R) CPU G3250 @3.20GHz, 3200
Mhz, 2 Core and 8,00 GB of RAM to run our extractions. These
machines were divided by the three profiles, and each machine
had Wireshark installed to obtain the flows, and a PowerShell
script developed by us to fulfill our need for the performance
counters.

Following a schedule so that the expectations for the pro-
files were met, we end up with one day of extractions re-
garding benign activity, with 9 CSV files three for each
profile and similarly, 9 PCAP files with the network traffic.
For the PCAPs files we used CICFlowMeter available in
https://github.com/ahlashkari/CICFlowMeter to obtain the CSV
files with flows from the network packets.

Following the same approach, but now using the malicious
samples previously mentioned, we used 10 machines. 5 of
them were used to run the browser-based scripts under strict
schedule and the other 5 for the binary samples than run
permanently in the background. Also, here the machines were



divided by profiles. At the end of our daily extraction, we
obtained equivalent files as in the benign extraction.

As the final step to create the dataset, we created 10 days
of extractions, one day for each one of the victims we had
created. We defined the number of machines that we wanted in
the dataset for each day, a number ranging from 300 to 400. The
process to create these machines from the baseline extractions
was:

• defining a number of machines per profile;
• reproducing the amount of desired machines from the

baseline extractions adding noise.
Regarding the noise method, the objective was to clone

machines/hosts by changing the baseline values by a random
percentage (Equation 3).

x′ = x+ random([−1, 1])× x

random([3, α])
, α ∈ [15, 30] (3)

The predefined values were chosen to set a threshold for
which we did not change the type of profile for the replicas.
Our dataset ended up with 10 days of data, with the first
6 days having predominantly low-profile hosts, a common
behavior in real-world networks, and the other 4 days with
predominantly high-profile hosts, the main reason being the
evaluation of our approach to detect cryptojacking among heavy
workloads. Additionally, for this 10 days, half of them have
victims under browser-based cryptojacking, i.e., cryptojacking
exists for specific time windows during the day. The other half
has binary malware and cryptojacking is constantly running
during the day.

V. EXPERIMENTAL EVALUATION

To develop and evaluate CRYINGJACKPOT, we used Python
(v3) [51]. In addition, we used popular libraries such as Pan-
das [52] for data manipulation, and Scikit-learn [47] for data
processing and the clustering algorithms. All the experiments
were done in commodity hardware (4-Core Intel Core i7 2.6GHz
with 16GB RAM). The focus of the experiments is the test
against different real-world possible scenarios and performance
evaluation.

A. Metrics

TABLE V
CONFUSION MATRIX-BASED INDICATOR

Indicator Description
True Positives (TP) entities correctly classified as outliers
False Positives (FP) entities wrongly classified as outliers
True Negatives (TN) entities correctly classified as inliers
False Negatives (FN) entities wrongly classified as inliers

We considered an outlier – a positive – to be a host iso-
lated in a cluster, identified by an IP address, flagged by the
CRYINGJACKPOT. Based in the confusion matrix of Table V, the
following metrics were used in the evaluation:

• Precision (PREC) – the fraction of outliers that are real
(i.e., true positives): PREC = TP/(TP + FP)

• Recall (REC) – the fraction of outliers that are cor-
rectly classified as such by the detector: REC =
TP/(TP + FN )

• F-Score – a global detection score: FScore = 2 ×
(PREC × REC )/(PREC + REC )

To obtain the values for the indicators of Table V, we
analyzed the clustering results concerning attack’s windows
only (persistent malware implies the consideration of all time
windows).

B. Dataset characterization

Two datasets were used. The first dataset, developed by us, is
described in Section IV. It is a hybrid dataset, where data was
generated through baseline real-world data profiles. This dataset
contains both network flows and performance counters data for
Windows machines. Also, several types of cryptojacking attacks
are present among the data.

The second, CIC-IDS 2018 [30], that we designate as artificial
dataset, was created to test and evaluate network IDSs. We used
this dataset combined with the cryptojacking attacks that we
created to test our approach under different circumstances (the
original dataset contained no cryptojacking attacks). Regarding
the original dataset, its authors developed a systematic approach
in order to produce a diverse and comprehensive benchmark
dataset. In their approach, they created user profiles with ab-
stract representations of activity seen on typical networks. The
benign behavior of each machine was generated using CIC-
BenignGenerator [49], which is a tool to generate B-Profiles,
i.e., profiles that translate the abstract behavior of a group of
users, thanks to several ML and statistical analysis techniques.
Regarding malicious behavior, this was generated using M-
Profiles. These profiles aim to describe an attack scenario
unambiguously, in such a way that humans might interpret these
profiles and subsequently carry their attacks.

We used the first 6 days from this dataset for our experiments.
However, first, we had to add the cryptojacking attacks to the
already existing data. For this process, we used the malicious
extractions described in Section IV, and for each one of the 6
days, we added the respective cryptojacking-related flows. One
aspect that must be taken into account is that the cryptojacking
samples we produced and introduced in this artificial dataset
differed in nature from the original data since they were not
obtained under the same circumstances.

TABLE VI
SUMMARY OF THE ATTACKS FOR THE CIC-IDS-2018 DATASET

Day Attack Duration

1 Brute Force to FTP and SSH 90 min each
Cryptojacking Script 3, 5, 7, 10 min

2 DoS GoldenEye and Slowloris 40 min each
Cryptojacking Binary permanent

3 Brute Force to FTP and DoS Hulk 60 min + 35min
Cryptojacking Script 3, 5, 7, 10 min

4 DoS LOIC-HTTP 60 min
Cryptojacking Binary permanent

5 DoS LOIC-UDP and HOIC 30 min + 60 min
Cryptojacking Script 3, 5, 7, 10 min

6 Brute force Web/XSS and SQL inj. 60 min + 40 min
Cryptojacking Binary permanent

Unlike the hybrid dataset, this dataset comes with a set of
attacks with flow-based data only, on which we add information
related with cryptojacking. The attacks and their duration are



described in Table VI. One must notice that browser-based cryp-
tojacking (scripts) are associated with different time windows,
while for binary cryptojacking we assume a permanent attack
window, i.e., the attack was active during the whole day.

In both datasets data was divided into 24 hour intervals, and
our test were conducted using for the clustering algorithms, time
windows of 10, 30, 60, and 120 minutes. Furthermore, clustering
focuses on internal host only, as our goal is to detect machines
for a given network subject to cryptojacking.

C. Results with the hybrid dataset

Our first tests consisted in combining flow-based features
with counters-based ones, to identify cryptojacking by using
the clustering algorithms already mentioned. We also performed
the detection using both types of features independently. A
first observation was that the combination of host-based and
flow-based features generated better results than using them
separately. These differences translate into far more consistent
results for all implemented algorithms and improvements on the
overall results (Figure 3). From using only flow-based features,
we obtained a 39% increase for the best F-Score, and we
overcome the lack of robustness when using only counters with a
F-Score 4.5% increase, when combining both types of features.

Fig. 3. Comparison of F1-Scores when using only flow-based features, perfor-
mance counters-based features, and the combination of both (hybrid dataset).

Fig. 4. Comparison of results between mostly low-profile days and mostly
high-profile days (hybrid dataset).

Figure 4 presents results comparing 6 days with predomi-
nantly low-profile machines and 4 days with predominantly high
high-profile machines (heavier workload). These results were
obtained by computing the average of the individual metrics
when dividing the days by the categories. The results indicate
that our detection approach is robust when detecting cryptojack-
ing in machines with heavy workload, which is a considerable

Fig. 5. Comparison of results between browser-based and binary cryptojacking
(hybrid dataset).

challenge as the CPU consumption of the cryptojacking scripts
or malware is masked by the machine workload. For example,
day 16 had predominantly high-profile machines, with one low-
profile victim, infected with a binary. We obtained an average
F1-Score of 0.98.

A similar study was conducted by dividing the days according
to the type of cryptojacking attack, browser-based (script) or
binary (Figure 5). The overall results are slightly worse when
considering browser-based cryptojacking because, as we dis-
covered, for attack windows under 3 minutes, our detection
capabilities were reduced. When studying the network packets
and the system response, we saw that there is a delay while
the connection with the mining pool is established, having less
impact on the victim features since average values are used for
some of them.

Figure 6 shows the results for the two best time windows
when the silhouette method is used. The values displayed were
obtained by computing the average of each metric for all days
at a given time window. The three implemented algorithms had
similar behavior, with DBSCAN performing slightly better. For
K-means and Agglomerative results, silhouette contributed to
better results than the most common elbow algorithm. However,
the same did not apply for the artificial dataset (see Section
V-D), which could be related to the use of a flow-based features
without the host-based features.

D. Results with the artificial dataset

The artificial dataset has only flow-based features, but in-
cludes more attacks than cryptojacking. Therefore, here we
evaluate the performance of CRYINGJACKPOT with that restriction
and with other attacks.

The cryptojacking detection results for the two best windows
are displayed in Figure 7. We observe that our clustering en-
semble approach reaches an ”average” result, an improvement
for the somewhat inconsistent results obtained by the three
implemented algorithms (e.g., low precision but high recall for
Agglomerative). Moreover, the overall best performer detecting
cryptojacking was K-means combined with the elbow method,
with an average F1-Score for all time windows of 0.68.

Even though we expected that all cryptojacking attacks would
be detected as they have an identifiable behavior, we obtained an
average recall for the three algorithms of 0.84, so cryptojacking
was not always detected (there were false negatives). This result
leads us to conclude that in terms of network-based features,



based on flows, data regarding cryptojacking is fairly similar to
the original data patterns of the artificial dataset.

TABLE VII
RECALL FOR CIC-IDS-18 ORIGINAL ATTACKS DETECTION

Time Window K-means Agglomerative DBSCAN
10 min 0.03 0.40 0.11
30 min 0.09 0.54 0.32
60 min 0.24 0.62 0.32

120 min 0.46 0.79 0.63

Regarding the original attacks’ detection – i.e., attacks other
than cryptojacking –, we obtained low recall values (Table VII).
This was to be expected as our scheme is targeted at detecting
a specific attack, cryptojacking, and to use flow features in
combination with host-based features.

VI. RELATED WORK

There are several papers related with cryptojacking detection
with the majority focusing on detecting browser-based crypto-
jacking. The first papers used signature-matching as detection
approach [12], [25], a technique that was employed in more
recent works combined with ML algorithms [15], [24]. A differ-
ent set of works explored the detection of resource consumption
by the attack [13], [29], with several works using consumption
indicators as features for ML methods [11], [26].

Using network flows for network security purposes, is a
recent approach for cryptojacking detection. Muñoz et al. [14]
presented a ML-based method able to detect cryptojacking using
NetFlow/IPFIX measurements. Although it is the subject of less
research, there are related works that explore these techniques
for binary cryptojacking [7], [28].

As previously explained, we advance previous works by using
unsupervised ML algorithms that combine flow-based and host-
based features for both browser-based and binary cryptojacking.
No previous work provides an equivalent mechanism.

VII. CONCLUSION

We present CRYINGJACKPOT, a hybrid approach for crypto-
jacking detection, based on unsupervised learning, that detects
undefined attacks without signatures and clean training data.
CRYINGJACKPOT is based on clustering, i.e., on aggregating hosts
with similar traffic patterns, using for this end the combination
of features from flow-based data and performance indicators for
Windows OS machines. For the evaluation, two datasets were
used. Firstly, we developed a reliable hybrid dataset with both
flow-based and host-based data, where cryptojacking detection
was performed with excellent results. We then used a public
dataset to test our flow-based features capabilities by studying
the detection of cryptojacking in the presence of other attacks,
having achieved positive results. CRYINGJACKPOT has proven to
be a reliable and flexible solution for cryptojacking detection
with precision, recall, and F1-score between 0.92 and 1.
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