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Abstract—This paper presents the Cyber Visualization Tool
for Intrusion detection (CYBERVTI), a tool that provides
intrusion detection algorithms with an effective graphical
interface. The goals of the tool are twofold. First, it aims
to aid the human analyst on observing ongoing threats as a
step towards responding to these attacks. Second, it aims to
help the analyst study the performance of the algorithms with
different parameters, in order to decide which combination best
suits his goals. The tool integrates a set of recently-proposed
intrusion detection algorithms based on unsupervised machine
learning, which it aims to help configuring. CYBERVTI follows
a client-server system architecture and implements a REST
API that mediates the communication between the server and
the GUI on the client-side. A significant challenge is to define
data structures that allow storing and accessing data efficiently
in an interactive manner. A clear and minimalist visual aspect
was chosen for the GUI, containing functionalities that enable
the user to analyze the network data in a simple and clear
way. For system evaluation, we used the ISO/IEC 25010:2011
requirements. For validation, we compared the results obtained
by our tool with the results described in the original papers
that present the algorithms.
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I. INTRODUCTION

The amount of digital data generated in the world continues
to grow, even more so at this time when remote work and
education have become part of the reality of many people
[11]. This growth in the Information Technology (IT) field
combined with an environment of constantly changing risks
and threats make cyber security essential to us all. Therefore,
to protect individuals and organizations more effectively, it is
necessary to identify threats using Intrusion Detection Systems
(IDSs) [2].

With the evolution of the Machine Learning (ML) field,
the number of IDSs that use unsupervised ML, e.g., anomaly-
based IDSs, has been growing [1], [14], [18], [5], [20], [3],
[16], [7], [8], [10]. IDSs that use such algorithms do not need
to have signatures of the attacks to detect them, which is an
advantage in comparison to knowledge-based (or signature-
based) IDSs, as it allows detecting new attacks.

IDSs can be enhanced with visualization tools for faster
and more immediate verification of the results obtained by
the algorithms they use [26], [19], [21], [12], [13], [30]. The
visualization tool can become a key component of the IDS,
allowing the analyst to visualize graphically the information

extracted from the potentially large volume of monitoring
data being collected and produced. Therefore, the goal of this
work is to design and implement a graphical tool to simplify
the activity of those responsible for the security of computer
networks.

The paper presents the Cyber Visualization Tool for Intru-
sion detection (CYBERVTI). The goals of the tool are twofold.

First, it aims to aid the human analyst in observing ongoing
threats as a step towards responding to these attacks. It aims
to be a graphical tool for the automatic detection of threats in
cyberspace that is intuitive and easy to use.

Second, it aims to help the analyst study the performance
of the detection algorithms with different parameters, in order
to decide which combination best suits his goals. To this end,
it provides the user with an abstraction of the event analysis
processes, allowing the optimization of the utilization of the
algorithms applied for intrusion detection.

The tool integrates a set of recently-proposed intrusion de-
tection algorithms based on unsupervised ML, specifically on
clustering techniques [3], which it aims to help configuring for
achieving high performance: FLOWHACKER [25], OUTGENE
[7], and DYNIDS [8]. The initial version includes these three
algorithms, but it is extensible to as many as needed.

CYBERVTI follows a client-server architecture. The server-
side / back-end exports a REpresentational State Transfer
(REST) Application Programming Interface (API) that allows
accessing the data that it stores and processes [24]. The API
is invoked by the client / front-end, that provides the visual
interface and with which the analyst interacts – the Graphical
User Interface (GUI).

An important challenge is to define data structures that
allow storing and accessing data efficiently. Specifically, we
wanted the analyst to have a comfortable user experience
when accessing and requesting the processing of data in an
interactive manner, avoiding long waiting times for data to
be processed. As far as the GUI is concerned, a clear and
minimalist visual aspect was chosen, containing functionalities
that allow the user to analyze the network data in a simple and
clear way.

For system evaluation, we used the theoretical requirements
for system and software evaluation of the ISO/IEC 25010:2011
standard. For validation, we compared the results obtained by
our tool with the results described in the original papers that
present the algorithms.978-1-6654-9550-9/21/$31.00 ©2021 IEEE



II. BACKGROUND

This section presents the background necessary to un-
derstand the intrusion detection algorithms that are used in
CYBERVTI: clustering and the three algorithms currently
integrated (FLOWHACKER, OUTGENE, and DYNIDS).

A. Clustering

The objective of this class of ML algorithms is to find
patterns in multidimensional unlabeled data. These patterns
are found after the data is grouped based on a measure of
similarity [3]. The clustering process that analyses the input
data and leads to its classification, can be divided into four
steps [29]: i) Feature selection and extraction that chooses
and normalises the different features of a candidate set that
are important for clustering; ii) Clustering algorithm selection
that uses a criterion function to group the data points according
to the similarity of their characteristics; iii) Cluster validation,
when standards and evaluation criteria are applied to provide
a degree of confidence on the pooling results; and iv) In-
terpretation of results that generates knowledge and relevant
information from the initial data.

Clustering algorithms can be categorized by the methods
they use, which can be: partition, hierarchical, density, and
neural. K-Means, the cluster algorithm currently supported by
CYBERVTI, is a partition algorithm [28]. K-Means is used to
partition a dataset into k groups automatically. It proceeds by
selecting k initial cluster centres and then iteratively improving
them in two phases: i) each instance di is assigned to its closest
cluster center; and ii) each cluster center Cj is updated to
be the means of its constituent instances. It converges when
there is no further change in the assignment of instances to
clusters. K-Means has a linear complexity, O(nkdi), where:
n is the number of points to consider; k, number of clusters
generated; d, data-point dimension; i, the number of iterations
until convergence.

B. Algorithms: FlowHacker, OutGene, DynIDS

FLOWHACKER [25] is a network intrusion detection al-
gorithm that uses anomaly-based techniques. It implements
unsupervised ML, specifically clustering (K-Means), to group
machines with similar network behaviours. Potential threats
are grouped in different clusters from the remaining entities,
so hosts or users with anomalous behaviour are in isolated
clusters and can be identified. FLOWHACKER uses 28 features
divided into two groups. Half of the features are related to the
source computer, and the other half are the same but relative to
the destination computer. Eight of the 14 features consider the
bidirectional flow (to and from ports) of 4 application-layer
protocols, which are: HTTP (port 80), IRC (port 194), SMTP
(port 25), SSH (port 22), and IRC (port 6667). The remaining
features are: number of connections made, number of ports
used by the source, number of ports contacted by the source,
the sum of bytes sent by the source, and the sum of packets
sent by the source.

OUTGENE [7] has several similarities to FLOWHACKER
but is introduces two new concepts: i) genetic zoom, using

a genetic algorithm that identifies the best subset of features
leading to the formation of the same clustering output that
all features would generate; and ii) time stretching, to detect
stealth attacks that use a low execution pace, analyze the flow
of events in different time windows at different time scales.
OUTGENE removes the two features associated to port 6667
(IRC) as it is less used today.

DYNIDS [8] is another network intrusion detection algo-
rithm that uses anomaly-based and clustering methods to group
hosts with similar behaviour and detect threats. This behaviour
is characterized by features extracted from network flows.

The main innovation of DYNIDS [8] is the dynamic (run-
time) selection of features based on the observed traffic flow.
This algorithm uses 12 static features, half relative to the
source and half relative to the destination. These static features
are: the number of different IPs contacted by an entity, number
of flows where the entity is the source, number of different
source ports used, the number of different destination ports
contacted, sum of total packet length receiver, and the sum
of total packets length sent. However, it also uses port-based
features obtained dynamically, according to the data analyzed
in each time window. DynIDS uses four features for each
port (number of packets sent and received in a port, source
and destination host). The dynamically defined features are
identified based on the DYN3 X algorithm that filters at
the x/3 ratio the ports that appear most in the flows, the
ports that appear in fewer flows and the ports used by fewer
machines. This approach does not limit the system’s ability to
detect attacks related to specific ports because the features are
correlated with the traffic flow in the network.

DYNIDS [8] also applies the concepts of genetic zoom and
time stretching. Regarding clustering, it applies 3 clustering
algorithms: K-Means (partition-based), Agglomerative (hierar-
chical) and DBSCAN (density-based). In K-Means, the elbow
method is used, where several k (number of clusters) are tested
until the optimal number of clusters (kOPT ) for grouping the
data. This way, it is possible to obtain a better performance in
identifying outliers, which is done by intercepting the results
of the three algorithms.

III. CYBERVTI

CYBERVTI is a visualization tool for intrusion detection. It
is based on a client-server architecture, using a REST API
[24]. We chose this approach to remove the data storage
and complex processing from the client-side, supporting many
users while hiding from them the complexity of the server-
side. The algorithms and the database (DB) are on the server-
side with more computing power to do the processing and with
more storage capacity. We use REST because it is a simple
and widely-adopted request/response mechanism. Its calls are
message-based and follow the HTTP standard. We integrate
the network intrusion detection algorithms in the back-end of
our system, and the communication is made through HTTP(S)
requests. The results obtained are sent to the client and are
displayed in the GUI, which is local.



Fig. 1. CYBERVTI architecture

A. Architecture and Data Flow

The architecture of CYBERVTI is presented in Figure 1.
The server-side, or back-end, does the processing and storing.
It is composed of a database and a data processing module
(Services in Figure 1), where the algorithms responsible for
feature engineering, clustering, and obtaining statistical data
are executed. The API is also implemented on the server-side.

CYBERVTI uses network monitoring data to detect intru-
sions. This data can be collected by routers, by tools such as
tshark and Wireshark, or taken from datasets that can be used
to study the performance of the detection algorithms. The data
flow in CYBERVTI (in the server-side) is the following:

1) Data on-boarding: the data is loaded, filtered (to remove
unnecessary data), and input files are generated (.csv).

2) Data preparation: data is verified and validated.
3) Feature engineering: the features are selected, extracted,

and normalized.
4) Data processing: the statistics acquisition and clustering

algorithms are applied.
After steps 2, 3 and 4, the data are stored in the database

and in a specific directory for the features on the server-side.

B. Technologies

CYBERVTI is written in Python (version 3.8), and all the
tool code (GUI and back-end) is available on the A3CE Project
public repository on GitHub1. The intrusion detection algo-
rithms that are integrated into the tool are also implemented
in Python. They are based mainly on the Pandas and Scikit-
learn libraries.

For implementing the REST API, we used Flask [17] [23],
which is a web microframework. Its main purpose is to provide
a simple and extensible application core. This allows the
developer to choose which systems to integrate and how.

The DB was implemented in SQLite [22]. This is an open-
source embedded relational database designed to provide a
convenient way for applications to manage data. SQLite has
the main goal of being highly portable, easy to use, compact,
efficient, and reliable. To manage and interact with DB, we
use SQLAlchemy as an interface between SQLite and Python.

1Repository url: https://github.com/a3ceProject/CyberVTI

SQLAlchemy [6] is a Python library that provides a high-level
Python-style interface to relational DBs. To save the results of
the feature extraction, Parquet files were used. Parquet [27] is
an open-source file format available that offers columnar data
storage format different from row-based files such as .csv files.
Parquet is optimized to work with complex bulk data and has
different ways of efficiently encoding data.

In the front-end, Tkinter was used for all graphic devel-
opment of the visualization tool. Tkinter [15] is a standard
Python interface based on a thin object-oriented layer on top
of Tcl/Tk2 for building a GUI. However, we used matplotlib, a
Python package that allows constructing graphics efficiently. It
is also allowed to interact and change the visualization aspects
of the graphs and insert information that leads to a better
perception of the displayed data.

C. Graphical User Interface

The GUI offers an abstraction layer that allows any type
of user to use the CYBERVTI. The user can visualise and
analyse the data more effectively as it is presented graphically.
It is clearly simpler than the common approach of executing
scripts through the command terminal. Features were added to
the system to obtain relevant data for the user and to provide
flexibility in data analysis.

The first time the CYBERVTI GUI is opened, the user will
not find any files loaded. The GUI will present two buttons,
one to upload a file and the other to refresh the view after
uploading. When the user has files on the application, a list
of filenames is displayed.

When a file is loaded in the application, several default
analyses are performed immediately, in order to speed up
the requests the analyst may do. At this stage, the user can
also define new analyses to be done immediately. Figure 2
shows the view at this point. The view is divided into 5 parts
corresponding to its function:

1) Name of the selected file and a graph with the number
of events (all the net flows) in the file. The x-axis is the
timestamp of the events.

2) Drop-down menu and an input text box to choose the
time interval for new file analysis.

3) Input text box allows the user to choose the time window
for the analyses (or several, separated by commas), and
radio buttons to select the method that will be applied
to extract the features. The currently supported methods
correspond to the features of each of the three algorithms
supported, to the features combination of DYNIDS and
OUTGENE, and to a free selection (the user chooses the
list of ports to analyse).

4) Back button to go to the initial view.
5) Three buttons that allow: starting the analysis, viewing

the event graph in more detail, and viewing the results
obtained.

2Open-source widget toolkit that provides a library of basic widgets for
GUI. Adapted from: https://www.tcl.tk/

https://github.com/a3ceProject/CyberVTI
https://www.tcl.tk/


Fig. 2. CYBERVTI analysis view.

Fig. 3. CYBERVTI results first view.

Regarding the visualisation of the results, the first view the
user sees is in Figure 3. The name of the file is identified
by the number 1. In number 2 is the input box to choose the
maximum number of elements in the same cluster. To find
outliers, the default value has to be left as 1. The user can
also select the IP view on the network shown in the drop-down
menu. This view can be: internal (Int), only IPs belonging to
the network; or external (Ext), only IPs outside the network.
Number 3 shows a list containing the parameters of the data
processing already performed. With a double-click on a line
of the list, GUI displays the respective results view.

After choosing the file analysis, the tool presents a list of
results obtained: number 4 in Figure 4. This list comprises the
cluster timestamp, the cluster number, the number of machines
in that cluster, and the IPs of those machines. In case the
maximum number of elements per cluster is 1, the IPs shown
are those identified as attackers or victims. This is a simple
decision criterium used in many works in the area [7], [8].
Number 5 is associated to three functionalities: i) display the
heatmap of the data obtained for the chosen timestamp; ii)
save in .csv format in a user directory the clusters obtained
from the file through the selected analysis; and iii) present
the metrics corresponding to the performance of the analysis
performed.

The metrics view is presented in Figure 5. In the zone
identified by number 1 are the metrics that were obtained
through the total values of the following classifications: True
Positive (TP), True Negative (TN), False Negative (FN) and
False Positive (FP), the formulas for these calculations are

Fig. 4. CYBERVTI analysis second view.

Fig. 5. Algorithm evaluation metrics view.

Fig. 6. Navigation menu organisation.

presented in Section IV-B. In number 2, the metrics are shown
but divided by their respective analysis intervals.

The GUI of the CYBERVTI (Figure 6) has a navigation
menu in the upper part of the window, which is divided into
four sub-menus: Files, Settings, View and Help. In the file
submenu, it is possible to save the total number of events at
certain time intervals and save all clusters of a given analysis
into a .csv file on a local path.

The files sub-menu (Figure 7) allows changing the param-
eters related to the file upload: i) Frequency, defines the time
intervals in which the number of events in the file are grouped;
ii) Date Format, timestamp format used in the input file; iii)
Default Time Windows, list of time windows used for the
initial analysis (when the file is loaded); iv) Default Methods,



Fig. 7. File settings window.

Fig. 8. Features settings window.

Fig. 9. Clustering settings window.

the extraction method used to extract features in the initial
analysis; and v) Path, sets the directory in which the new file
upload window will open.

The features sub-menu (Figure 8) allows changing the
parameters related to the features extraction: i) Nr. Ports, set
number of port in a dynamic features analysis (Dyn3 x); ii)
IP to match, the IP prefix that define external and internal
network; iii) Ports List, user-defined ports list for a static
analysis; and iv) OutGene Ports and FlowHacker Ports, the
default list of ports of the respective intrusion detection
algorithms.

The clustering sub-menu (Figure 8) allows to change the
parameters related to clustering analysis: i) K, number of
clusters or -1 to run the elbow method to find the best value
for K; ii) Elbow Method Min. K and Elbow Method Max.
K, range of values of the number of clusters that the elbow
method uses iterations.

In the results sub-menu (Figure 10), the parameters used
in the calculation of the performance metrics can be changed.
Two lists are used: i) White List, IPs addresses of hosts that
are not threats and the metric calculation algorithm will not
consider this IPs; and ii) Red List, IPs addresses of the hosts
that the user knows are attackers or victims, and the time
intervals in which they are active. Both lists are used to
calculate performance metrics. In number 1 are the white list
and the option to show its IPs if they are considered threats. In
number 2, the red list is shown, the id, the IP address, the start
and end time of the attack, and the respective view about the
network. In number 3, the user can add or remove an element

Fig. 10. Results settings window.

from the red list.
The view submenu allows configuring parameters related to

visual aspects in the main view, the graph of events and the
heatmap. In the help sub-menu, the user will have access to
the description of the procedures to help him use the graphical
interface.

D. Back-end

The resources, services, and functions that allow the tool
to be used are implemented on the server-side. An important
requirement is to allow efficient access to data. For that reason,
it is necessary to have a solid and stable REST API.

For efficient storage management, the first step was to
know what data has to be saved and how to do it. The DB
implemented in SQLite has 4 tables: Users, Files, Features
Metadata, Clusters. The Users table is simple and has the user
id as Primary Key (PK) and the username that is a unique
constraint and cannot be null.

After the upload of the input file in .csv format, the storage
of this occurs in two phases: 1) the file is stored in its entirety
in a server directory called Data files, where there is a folder
relative to the user; and 2) the metadata related to the file is
stored in an SQLite DB table (Table I).

The Features Metadata table (Table II) stores data about
how the features were extracted to avoid repeating the process-
ing already done. Extracted features are stored in a server-side
directory in .parquet files.

The Clusters table (Table III) is where the clustering results
and heatmap data are stored.

The processing module is divided in 3 main components:



TABLE I
INPUT FILE METADATA DB TABLE.

Files
id Integer PK
user id Integer FK
upload timestamp Varchar(n)
file name Varchar(n)
time view Blob
start time Varchar(n)
end time Varchar(n)

TABLE II
INPUT FEATURES METADATA DB TABLE.

Features Metadata
id Integer PK
file id Integer FK
time window Integer
method Integer
nr ports Integer
ip to match Varchar(n)
port day list Blob
outgene ports Blob
flowhacker ports Blob
standard ports Binary

TABLE III
CLUSTERS DB TABLE.

Clusters
id Integer PK
file id Integer FK
config id Integer FK
view Varchar(n)
ip Varchar(n)
c timestamp Varchar(n)
cluster number Integer
data to heatmaps Blob

• Activity analysis: analyzes and groups the data that the
input file contains (e.g., netflow events, with a frequency
set by user).

• Feature extraction: this module extracts features from the
input file. The first step is to check if features have
already been extracted for the input parameters. After
that, features are extracted according to the selected
method and parameters and are saved.

• Clustering: this is the main module for producing results,
where the various IPs are grouped using a clustering
algorithm (K-Means). The outliers will correspond to the
clusters that have only one IP address in them.

CYBERVTI has the REST API, which is also implemented
on the server-side, to communicate between the back-end and
the front-end. The endpoints that the API has been divided
into Users, Files, Features, Clusters and Metrics.

IV. EVALUATION AND RESULTS

The first part of the evaluation is based on the metrics
for system and software evaluation presented in ISO/IEC
25010:2011 Systems and software Quality Requirements and
Evaluation (SQuaRE) [9]. The second part compares the

results obtained by CYBERVTI with those described in the
original articles of the implemented algorithms.

A. ISO/IEC 25010:2011 Evaluation

The evaluation of CYBERVTI is based on the theoretical
concepts of systems and software evaluation presented in
ISO/IEC 25010:2011 Systems and software Quality Require-
ments and Evaluation (SQuaRE) [9]. It considers the GUI
and the back-end of the system. The evaluation parameters
were divided into two groups: Key Evaluation Parameters and
Complementary Evaluation Parameters. The Key Evaluation
Parameters and their evaluation are:

• Functional Suitability: This aspect concerns the achieve-
ment of the objectives by the functions of the tool. It
evaluates if the results presented are in accordance with
what was obtained by the various algorithms. CYBERVTI
meets its main objective to detect anomalous behaviour
and classify machines as potential threats or victims.
CYBERVTI allows the user to choose several different
analysis methods and offers the ability to analyse network
activity over several time periods.

• Compatibility: This refers to the tool’s ability to function
correctly regardless of the hardware or software used.
This aspect also considers the interoperability and the
degree to which two or more systems, products, or
components can exchange information and use the infor-
mation that has been exchanged. The CYBERVTI GUI is
compatible with both Windows and Linux environments.
A Docker container image is provided with the back-end
code, packages, and dependencies so that the tool works
regardless of the operating system used. Regarding the
input data format, they are limited to the .csv format and
the structure of the columns with fixed headers. However,
this format is simple and easy for the user to input data.

• Usability: Degree of effectiveness, efficiency, and satis-
faction obtained by users when using the tool. The diffi-
culty of use, ability to configure and operate, protection
against user errors, and whether the outputs are shown are
important and properly organized should be considered.
The CYBERVTI GUI is made in a simple way, containing
only the necessary functions for efficient data analysis.
The results obtained are organized and presented in tables
and graphs. The GUI has a help button that allows the
user to clarify doubts about the use of the tool, protecting
the system against user errors.

• Security: How the data (used and stored) and the whole
system are protected and the system’s reliability. CY-
BERVTI is ready to use HTTPS requests to obtain more
security during communication. The security of stored
data is directly related to the server’s security where the
back-end is running. Regarding the system’s reliability,
in the graphical interface folder, there is a configuration
file that must not be corrupted. Otherwise, the GUI may
stop working.

The Complementary Evaluation Parameters and their eval-
uation are:



• Performance Efficiency: This point considers the effi-
ciency of algorithm execution in terms of processing
time and how the memory in the system is used. The
algorithms integrated into the CYBERVTI used multipro-
cessing. However, the processing done by the server can
still be improved with the use of distributed systems and
load balancers.

• Maintainability: How effectively a system can be modi-
fied, the modules should follow the open-close principle,
and if system maintenance is done simply. CYBERVTI
requires maintenance to manage the files stored in folders
on the server for efficient use of storage space, i.e., files
that are not used for a long time should be deleted.

• Portability: Efficiency with which a system and its re-
sources have to be transferred to other hardware, soft-
ware, or used in another environment. The front-end is
easily exportable to Windows and Linux environments
through a .zip file. A docker container allows the back-
end to be easily integrated into a physical server.

• Reliability: How the system behaves to perform specified
functions under specified conditions. How the system
reacts if a fault occurs, incorrect data is provided, or
some function stops or loops. CYBERVTI does not enter
infinite loops. However, if there is an error in the pro-
cessing, the API stops, and it is necessary to restart it.
Regarding the incorrect data in the input files, they will
not be loaded if they do not comply with the formatting. If
the tool gets incorrect or undefined data, it will be loaded
normally, but the results obtained may be incorrect. Since
it is a prototype, these reliability aspects are considered
acceptable.

B. Experimental Evaluation

We use the CSE-CIC-IDS2018 dataset, which was created
to test and evaluate NIDSs [4]. This dataset is structured
to represent the network of a medium enterprise, with six
subnets deployed on the Amazon Web Services (AWS) cloud
computing platform. We consider all attack scenarios in the
dataset, which are: brute force attacks (FTP and SSH), Denial
of Service (DoS) attacks, web attacks, infiltration attacks, port
scans, and botnet attacks.

Regarding the evaluation and verification of intrusion de-
tection algorithms, we considered only one case (the one that
is common to the papers of the three algorithms): detecting
the misbehavior of nodes internal to the network, either
because they are attackers or victims. This means that only
the IP addresses belonging to the network under analysis were
considered, i.e., only the IPs with the prefix 172.31.0.0/16
were analysed to understand which machines on the network
are suffering or carrying out cyber attacks.

It should be noted that DYNIDS was not implemented with
the 3 clustering algorithms, only K-Means was implemented.
Thus, the results obtained based on this detection algorithm
do not fully match those described in the DYNIDS paper [8].

To analyse the performance of the algorithms, we con-
sider the hosts detected as outliers. According to the attacks

and their duration presented in the dataset, we considered:
True Positives (TPs), hosts that are correctly classified; True
Negatives (TNs), hosts that are not flagged as outliers; False
Negatives (FNs), hosts that should have been classified as
outliers but were not; and False Positives (FPs), hosts that
were classified as outliers but were not threats.

The metrics that we privileged for the evaluation were the
F1-Score and the Matthews Correlation Coefficient (MCC)
because they provide a summary of the performance of the
algorithms. We did not calculate the Accuracy because the
dataset is very unbalanced, as any network intrusion monitor-
ing dataset (malicious traffic is just a small fraction of normal
traffic). The metrics we obtained are:

Precision – the fraction of outliers that are real:

Precision =
TP

TP + FP
(1)

Recall – the fraction of outliers that are correctly classified
by the algorithms:

Recall =
TP

TP + FN
(2)

F1-Score – global evaluation metric of the algorithm per-
formance:

F1 − Score = 2 ∗
Precision ∗Recall

Precision+Recall
(3)

MCC – used for the quality assessment of binary classifi-
cations:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

Figures 11, 12, 13 and 14 show the Precision, Recall, F1-
Score and MCC of the detection algorithms implemented in
CYBERVTI. These were obtained by analysing the CSE-CIC-
IDS2018 dataset in several time windows. We noticed that
the implemented algorithms did not perform well in detecting
botnet attacks, failing to detect any victim in the various
time windows. Therefore, we start by presenting results for
detection without day 10, when these attacks happened. The
values presented in the graphs were calculated relative to the
total values of TPs, TNs, FNs, and FPs.

The results with all algorithms are presented in Figures 13
and 14. Something that comes immediately to mind in the
figures is that some results appear to be bad. For instance,
precisions of 0.25 to 0.27 are quite bad (Figure 11). However,
this is not an issue as the point is that we run the algorithms in
several time windows, following OUTGENE’s time stretching
approach, in order to detect the malicious traffic in any of
them, not in all of them.

From the figures, we conclude that DYNIDS is the algo-
rithm that obtains the best results. As expected, the results of
FLOWHACKER and OUTGENE are similar since they use a
similar approach, differing only in one port from the list of
ports analysed. The results obtained in the metrics to evaluate
the performance of the algorithms vary a little due to the
way the TPs, TNs, FNs and FPs were accounted for. The
correlation between the 3 clustering algorithms was not used
in our implementation of the DYNIDS so their performance
decreased, as expected.



Fig. 11. Precision of the 3 algorithms for the dataset.

Fig. 12. Recall of the 3 algorithms for the dataset.

V. RELATED WORK

This section presents visualization tools that are somehow
related to CYBERVTI.

Cyber Mission Impact Assessment (CMIA) [19] is a tool
to evaluate the system/network mission impact that possible
cyber incidents would have. The effects of cyber incidents on
the mission are classified as degradation, disruption, modifi-
cation, manufacturing, unauthorized use, and an interception.
Regarding the visualization part, this tool graphically presents
the results of the incident effects on the system mission and
a diagram of the network infrastructure.

Graph-Based Analytics and Visualization for Cybersecurity
(CyGraph) [21] is a system for analyzing and reasoning
about network attack relationships. It correlates data from
various sources into a common, normalized model. It builds
a persistent graphical data store representing network attack
relationships and associated network data, providing an in-
teractive visualization of complex dependency relationships.
CyGraph is based on a client-server architecture implemented
through a REST API.

Cyber Attack Modelling and Impact Assessment tool
(CMIAC) [12] is a tool for cyber attack modelling and impact
assessment. That is based on representing potential malefactors
behaviour, generating attack graphs, calculating security met-
rics, and providing risk analysis procedures. It applies a set of
algorithms with different timelines and precision to get near-
real-time event analysis and security and impact assessment

Fig. 13. F1-Score of the 3 algorithms for the dataset.

Fig. 14. MCC of the 3 algorithms for the dataset.

predictions. The attack graph is modified according to the
changes in the analysed network.

VisSecAnalyzer [13] is a visual analysis tool for network
security assessment that aims to provide visual support to the
cybersecurity officer. Its goal is to reveal the most vulnerable
points of the information system, forming attack patterns.
After assessing the network security and analyzing the severity
of the detected vulnerabilities, this tool can suggest possible
countermeasures. The GUI in VizSecAnalyzer consists of
interactive graphs and colourful security reports, allowing an
exploration of a large-scale network.

Rapid EvaLuation Of Anomaly Detection (RELOAD) [30]
is a tool that implements network anomaly detection algo-
rithms. Its goal is to evaluate the performance of the algorithms
in anomaly detection. It allows the user to integrate new
algorithms and make their evaluation. However, it provides
previously integrated algorithms. This tool takes data from an
existing dataset and identifies the essential features automat-
ically. After this stage, the anomaly detection algorithms are
run, and the classification results are obtained. In the final
phase, metrics are generated relative to the performance of
the algorithms. RELOAD is executed locally and has a simple
GUI.

These tools were the basis of inspiration and knowledge
acquisition for the development of our solution. They do not
share our goal of being focused on unsupervised ML detection
algorithms or their configuration. They also do not follow a
client-server architecture similar to ours.



VI. CONCLUSIONS

We present a visualisation tool for intrusion detection, based
on a client-server architecture and containing an interactive
and simple GUI. In the back-end are the algorithms based
on unsupervised ML, responsible for obtaining the data for
the GUI and REST API, that allows the communication data
between the back-end and the front-end through HTTP/HTTPS
requests. The GUI of the tool has buttons, lists, graphs
and menus, allowing its use by any user without previous
knowledge. The user can easily change the hyperparameters
of the algorithms, obtaining personalised results for different
types of analysis.
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