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Abstract. The detection of security-related events using machine learning ap-
proaches has been extensively investigated in the past. Particularly, machine learning-
based network intrusion detection has attracted a lot of attention due to its poten-
tial to detect unknown attacks. A number of classification techniques have been
used for that purpose, but they were mostly classical schemes like decision trees.
In this paper we go one step further and explore the use of a set of machine
learning techniques denominated generically as “deep learning” that have been
generating excellent results in other areas. We compare three recent techniques –
generalized linear models, gradient boosting machines, and deep learning – with
classical classifiers. The comparison is performed using a recent data set of net-
work communication traces designed carefully for evaluating intrusion detection
schemes. We show that deep learning techniques have an undeniable value over
older algorithms, since better model fitting indicators can be achieved.

Keywords: Network Security, Network Intrusion Detection Systems, Machine Learn-
ing, Deep Learning, NIDS Performance Evaluation, Data Mining

1 Introduction

With the continuous growth in number and impact of network attacks, network intrusion
detection systems (NIDS) are increasingly becoming critical security components. From
a research standpoint, although investigated for many years [16], NIDSs continue to get
a lot of attention due to their practical interest and to challenges such as the need to
handle large data volumes [17, 27].

Anomaly-based network intrusion detection is a particularly promising approach as
it allows detecting previously unknown attacks. This approach resorts to machine learn-
ing to create models of normal behavior, then detecting deviations from this behavior.
Most of the research in this area uses standard predictors known for decades, such as
naive Bayes, thus supervised machine learning.

Deep learning is currently a hot topic in machine learning [3, 4]. This kind of tech-
niques have been achieving excellent results in the recognition of speech, faces, and
images, to name a few [3]. Schmidhuber has a recent survey on major work in the area
[21].

The term deep learning first appeared in the late 2000s associated to recent work
in neural networks with many layers, or deep belief networks. However, with time its
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semantics expanded to a variety of other methods, as neural networks are equivalent to
other statistical and machine learning approaches in structural terms. Recursive gener-
alized linear models have the same structure as deep belief networks. Gradient boosting
machines leverage performance via boosting with an ensemble of weak prediction mod-
els, typically decision trees.

This paper explores the use of these three deep learning techniques in the context
of anomaly-based network intrusion detection: generalized linear models (GLM), gra-
dient boosting machines (GBM), and deep learning (DL), using H2O’s denominations
[1]. We executed both standard predictors and these advanced techniques with a re-
cent, carefully crafted, data set of network traffic containing known attacks. The goal
is to understand if deep learning algorithms have superior performance over standard
predictors and at what cost.

The data set is composed of sequences of records that represent traffic flows. Each
record is labelled as normal or attack (i.e., as being an attack or part of an attack). In
terms of machine learning, the intrusion detection problem can be modelled as a linear
regression problem. This means that we use a machine learning predictor (e.g., GBM)
configured with the train data set to predict if every record of the test data set is normal
or attack. We assess the quality of the prediction using standard metrics such as the
mean square error.

The main contributions of this paper are showing that it is possible to discern, in a
transverse manner, abnormal inputs from normal in a given set of data by means of the
algorithms employed and, more importantly, that new methods very little explored in
the literature can convey good results.

The experimental results show that the deep learning algorithms provide a better fit
than older algorithms, taking advantage of their superior modelling capacities. As an
example the capacity to fit tweedie type distributions has proven to be rather beneficial
with the data set we used, since most of the features of the NSL-KDD has tweedie like
distributions.

2 Method

The paper presents an experimental comparison of some deep mining algorithms with
more classical mechanisms in the context of network intrusion detection. The deep
mining algorithms selected were those more popular today and with available imple-
mentations. For the classical algorithms there was a vast choice, so we selected a few
of different types among those known to provide better results.

The experimental comparison method used was:

– select an adequate data set of network traffic containing attacks;
– tune the detection algorithms;
– run the algorithms with the data set;
– analyse the results.

We start with the first and leave the rest for Section 3.
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2.1 The Dataset

Data sets have been widely adopted as a means to benchmark NIDSs (or IDSs in
general). Two of the first data sets used for intrusion detection in this scope were
DARPA1998 and DARPA1999, developed under the auspices of DARPA. These data
sets have been widely used for several years [14, 6]. However, they were also much
criticized due to a number of reasons like: they were synthetic, so could lead to overop-
timistic results; the attack characterization was not realistic; they did not allow false
alarm evaluation [13, 14]. The KDD99 data set was developed in an attempt to im-
prove these two data sets. The definition of this data set involved identifying parameters
that would allow effective detection, while minimizing processing costs. The objective
was to allow real-time detection. Extensive work has been done over this data set, but
many criticisms were also made [25]. However, an extensive study of the KDD99 data
set argues that this data set is still valid within the following scope of objectives [9]:
dealing with high dimensional data; learning from a very large imbalanced data set;
feature selection research; detecting new intrusions and simulating intrusion detection
of encrypted data.

The NSL-KDD data set. With such a scarcity of adequate data sets, researchers from the
University of New Brunswick (UNB) created a new data set known as the NSL-KDD
data set or NSL-KDD data set for short [23]. The NSL-KDD data set is fairly recent
and aims at solving, among others, the most hindering problems identified by Travalle
et al. in KDD99 [25]. The authors explain that their data set may still suffer from some
of the problems discussed by McHugh [14]. McHugh claims that a data set should re-
flect as much as possible live data, at risk of bias towards unrealistic results with respect
to true detection, false alarms, or both. However, the UNB researchers claim that pro-
cessed data sets have benefits in terms of redundancy reduction in both the train and test
sets. Also unbalance issues of the KDD99 data set have been minimized by redistribut-
ing the sample proportions of classes. The cardinality of the records corresponding to
each difficulty level group is inversely proportional to the percentage of records in the
original KDD99 data set. As a consequence, the prediction rates of different machine
learning methods vary in a wider range arguably allowing a more precise assessment of
distinct learning techniques. In this regard, the NSL-KDD aims at a greater degree of
balancing.

The NSL-KDD data set is composed of sequences of entries or records. Each entry
represents a flow, i.e., a sequence of IP packets starting at a time instant and ending at
another, between which data flows to and from a source IP address to a target IP address
using a transport-layer protocol (TCP, UDP) and an application-layer protocol (HTTP,
SMTP, SSH, IMAP, POP3, or FTP). Each flow is labeled as either normal or attack. In
the version of the data set used, no specifics on the attack types is included, although
there were several types of attacks. The attacks fall into four main classes:

– Probing – scan based attacks, e.g., network scans; port sweep;
– Denial of Service (DoS) – network and systems denial of service, e.g., syn flood;
– Remote to Local (R2L) – unauthorized access from a remote machine, e.g., pass-

word guess attacks;
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– User to Remote (U2R) – unauthorized access to local superuser (root) privileges,
e.g., buffer overflow attack on a program running as root.

The data set is composed of two sub-data sets: train data set, used for training a
NIDS, and test data set, used for testing the NIDS. Both have the same structure and
contain attacks of the four classes. It is important to note that the test data does not have
the same probability distribution as the training data, and it includes specific attack
types not in the training data, hence with specific distributions. A total of 37 types of
attack are included in contrast with only 23 in the train data set. Table 1 summarizes
this information. Each record of the data set is characterized by features that fall into
three categories: basic, features, and traffic features. These features are represented in
Table 2.

Fig. 1. Correlation Plot of the features included in the NSL-KDD Dataset.
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Class Train data set attacks Attacks in test data set only
Probe portsweep, ipsweep, satan, guesspasswd, spy snmpguess, saint, mscan
DoS smurf, neptune, land, pod, teardrop, buffer over-

flow, warezclient, warezmaster
worm, udpstorm

R2L imap, phf, multihop snmpget, httptunnel
U2R perl, loadmodule, ftp write, rootkit sqlattack , mailbomb, processtable

Table 1. Attacks in the NSL-KDD train and test data sets (all attacks from the train exist also in
the test data set)

Feature Description
duration length of the flow in seconds
protocol-type type of the protocol, e.g., TCP, UDP, ICMP
service network service, e.g., HTTP, telnet
src-bytes num. of data bytes from source to destination
dst-bytes num. of data bytes from destination to source
flag status of the flow, normal or error
lang 1 if flow is from/to the same host/port; 0 otherwise
wrong-fragment num. of erroneous fragments
urgent num. of urgent packets
hot num. of hot indicators
num-failed-logins num. of failed login attempts
logged-in 1 if successfully logged in; 0 otherwise
num-compromised num. of compromised conditions
root-shell 1 if root shell is obtained; 0 otherwise
su-attempted 1 if su root command attempted; 0 otherwise
num-root num. of root accesses
num-file-creations num. of file creation operations
num-shells num. of shell prompt
num-access-files num. of operations on access control files
num-outbound-cmds num. of outbound commands in an ftp session
is-hot-login 1 if the login belongs to the hot list; 0 otherwise
is-guest-login 1 if the login is a guest login; 0 otherwise
count num. of connections to the same host as current connection
serror-rate perc. of connections that have SYN errors
rerror-rate perc. of connections that have REJ errors
same-srv-rate perc. of connections to the same service
diff-srv-rate perc. of connections to different services
srv-count num. of connections to the same service as current connection
srv-serror-rate perc. of connections that have SYN errors
srv-rerror-rate perc. of connections that have REJ errors
srv-diff-host-rate perc. of connections to different hosts

Table 2. Features used to characterize each flow in the data set: basic (top), content (middle),
traffic (bottom).

2.2 Tools

All experiments were performed with R which is a programming language and software
environment for statistical computing and graphics supported by the R Foundation for
Statistical Computing. The R language is widely used among statisticians and data min-
ers for developing statistical software and data analysis [19]. It is a GNU project that
provides a wide variety of statistical (linear and nonlinear modeling, classical statisti-
cal tests, time-series analysis, KNN, clustering etc.) and graphical techniques, and is
highly extensible. R provides tools for data pre-processing, classification, regression,
clustering, association rules, and visualization.
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The R packages H2O [1], kknn [20], rpart [26] and e1071 [15] were used in the anal-
ysis process. The main package was H2O, that implements deep learning algorithms for
R. It calls the H2O software package (Apache 2.0 License) produced by H2O.ai (previ-
ously 0xdata). The H2O R package provides a number of implementations of machine
learning algorithms: GLM, GBM, deep learning (multi-layer neural network models),
K-means, naive Bayes, principal components analysis, principal components regres-
sion, and random forest.

2.3 Performance metrics

To assess our results we use a set of metrics adequate for evaluating regression models:
Mean Square Error, Root Mean Square Error, R Squared (also named Coefficient of
Determination). The commonly used error indicator is not used since its not the most
adequate for regression models.

Mean Square Error. The mean squared error (MSE) of an estimator measures the aver-
age of the squares of the errors or deviations between the estimated values (ŷi) and the
real values (yi). In other words, it gives the average of the squared differences between
the estimator and what is estimated: MSE = 1

n

∑n
i=1(yi − ŷi)2

Root Mean Square Error. The square root of MSE. The use of RMSE is very common as
it makes an excellent general purpose error metric for numerical predictions. Compared
to the similar mean absolute error, RMSE amplifies and severely punishes large errors.

Root Mean Square Error is given by RMSE =
√

1
n

∑n
i=1(yi − ŷi)2

Root Square Error. The square root of the square of the errors. It provides a measure of
error without error signal bias. RSE =

√∑n
i=1(yi − ŷi)2

R Square. R Square, also called coefficient of determination, R2 is the proportion of
variability in a data set that is accounted for by a statistical model. In other terms it is an
indicator of how well data fits a statistical model. In this definition, the term variability
is defined as the sum of squares: R2 = 1 − SSres

SStot
= 1 −

∑
i(yi−ȳ)2∑
i(fi−ȳ)2

The values of fi
are the predicted values in the model.

3 Results

This section presents the study itself. The section starts with the older algorithms (Sec-
tion 3.1), then presents the advanced, deep learning, schemes (Section 3.2). For each
algorithm we explain how it works, then explain how we tuned its parameters in order
to obtain results as good as possible, then present its results for intrusion detection.

3.1 Classical algorithms

This section explores three algorithms: k-nearest neighbors, decision trees, and sup-
port vector machines. These were chosen as representative of some of the most tested
algorithms in the realm of NIDS.
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k-Nearest Neighbors. The k-Nearest Neighbors algorithm (KNN) is a non-parametric
method used for classification and regression. In both cases, the classes are grouped
according with the k closest training examples in the feature space. KNN can be used
for classification or regression. Here we use it for regression.

A test data set, different from the training data set but with the same shape and
features as the training data has been used for model validation (i.e., production of error
rates on data not used in model building). A value of maximum value for k of 15 has
been chosen from which an optimal value of 5 was derived. A number of kernels has
been tested from which the triangular kernel was chosen as best.

The algorithm has been tested against a set of possible kernel types, namely tri-
angular, rectangular and epanechnikov, and optimal with kmax of 15 and distance of
3. Kernel methods introduce non-linearities through implicit non-linear or linear trans-
forms, often local in nature. The main objective is to facilitate separability, i.e. the closer
two points are, the larger the kernel value. In general terms and therefore in the KNN
algorithm, a kernel transformation of the mentioned types takes place before the model
is processed.

Experimental results. The results for the KNN algorithm optimization phase run over
the training data are presented in Table 3. From this optimization test, a triangular kernel
with k=6 has been run with the results depicted in Table 4.

Mean Error MSE Best kernel Best k
0.003 0.003 triangular 6

Table 3. Results for KNN algorithm optimization phase run over the training data

MSE RMSE RSE R Square
0.228 0.447 0.929 0.071

Table 4. Results for KNN

Decision Trees. Decision Trees (DTs) are a non-parametric supervised learning method
used for classification and regression. The goal is to create a model that predicts the
value of a target variable by learning simple decision rules inferred from the data fea-
tures. The deeper the tree, the more complex the decision rules and the fitter the model.

Experimental results. An rpart algorithm has been tested against the training set. Pre-
diction values have been extracted with the test set. The results are in Table 5.

Support Vector Machines. SVMs are a group of classifiers usually considered to be
one of the best out of the box methods. There are several types of SVMs. The simplest is
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MSE RMSE RSE R Square
0.200 0.447 0.817 0.094

Table 5. Results for Rpart decision tree

the maximal margin classifier (MMC). Though the MMC is elegant and simple, it can-
not be applied to most data sets, since it requires the classes to be separable by a linear
boundary. The support vector classifier is an extension of the maximal margin classifier,
and can be applied in a broader range of cases. However, better yet, the support vector
machine is a further extension to accommodate non-linear class boundaries.

SVM tuning Using the tune.svm primitive of the e1071 R package, a tuning phase took
place in order to optimize SVM performance over the choice of the best choices for the
Cost and Gamma values, sweeping a range of values for gamma from 10−6 to 10−3
and the value for Cost from 101 to 103. Optimal values for Cost around 1000 and for
gamma around 0.0001 have been found (Fig. 2).
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Fig. 2. SVM optimization graph with gradient values for Gamma and Cost

Experimental results. SVM exhibited a strong trade-off between the number of sup-
port vectors and the training error with a marked difficulty in this tuning process if not
assisted by a tuning phase. Optimal values of C=1000 and gamma=0.0001 have been
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used. In the training phase it has become evident, in particular for the optimized pa-
rameters used, the extreme inefficiency of the SVM algorithm as the training time was
measured in hours, incomparably longer than in the comparative cases. Results in Table
6.

MSE RMSE RSE R Square
0.200 0.447 0.817 0.0948

Table 6. Results for SVM

3.2 Advanced algorithms

Improved predictive power has allowed Deep Learning to be considered as a valu-
able machine learning technique. Unlike the neural networks of the past, modern Deep
Learning has improved training stability, generalization and scale on big data and is
quickly becoming the algorithm of choice for high-level predictive accuracy.

The most popular deep learning algorithms are Deep Boltzmann Machine (DBM),
Deep Belief Networks (DBN), Convolutional Neural Network (CNN) and Stacked Auto-
Encoders.

Generalized Linear Models. Generalized linear models (GLM) are a generalization of
linear regressions. Linear regression models the dependency of response y on a vector
of predictors x(y ∼ xTβ + β − 0). The models are built with the assumptions that
y has a Gaussian distribution with a variance of σ2 and the mean is a linear function
of x with an offset of some constant beta − 0, i.e. y = N (xTβ + β − 0;σ2). These
assumptions can be overly restrictive for real-world data that do not necessarily follow
have a Gaussian distribution. GLM generalizes linear regression in the following ways:

– adds a non-linear link function that transforms the expectation of response variable,
so that link (y) = xTβ + β − 0

– allows variance to depend on the predicted value by specifying the conditional dis-
tribution of the response variable or the family argument.

Experimental results. Results extracted with the h2o.glm function of the H2O package
can be found in Table 7. Performance indicators have been extracted with the training
data and with a different test data.

Gradient Boosting Machines. Gradient Boosting Machines (GBM) is an algorithm
designed to produce a prediction model in the form of an ensemble of weak prediction
models. It encloses the concepts of Gradient Descent and Boosting; hence the name.
It builds the model in a stage-wise fashion and is generalized by allowing an arbitrar-
ily differentiable loss function. GBM fits consecutive trees where each solves for the
net error of the prior. The idea of gradient boosting originated in the observation by
Breiman [5] that boosting can be interpreted as an optimization algorithm on a suitable
cost function.
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Performance metrics Results with training data Results with test data
MSE 0.040 0.038
R Square 0.840 0.844
Mean Residual Deviance 0.040 0.039

Table 7. Results for GLM

Experimental results. Results extracted with the h2o.gbm function of the H2O package
are in Table 8. Number of folds for cross-validation: nfolds=10. Performance indicators
have been extracted with the training data and with a different test data.

Performance metrics Results with training data Performance results with test data
MSE 0.041 0.169
R Square 0.836 0.310
Mean Residual Deviance 0.041 0.170

Table 8. Results for GBM

Deep Learning. H2O Deep Learning in unsupervised mode currently only supports
(deep) autoencoding, where all layers are trained at once, just like a regular feed-
forward neural net with features output neurons and using the MSE loss function to
attempt to train the identify function.

Unsupervised pre-training with RBMs to build a DBN is only required when you
have insufficient labeled data, but H2O’s Deep Learning was really designed for cases
where there are sufficient labels, similar to the other classifiers, such as RF/GBM/GLM,
so it performs best in fully supervised mode.

Experimental results. Results extracted with the h2o.deeplearning function of the h20
package are in Table 9. Performance indicators have been extracted with the training
data and with a different test data.

Performance metrics Results with training data Results with test data
MSE 0.041 0.169
R Square 0.836 0.310
Mean Residual Deviance 0.041 0.169

Table 9. Results for Deep Learning
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4 Analysis and Discussion

We summarize the experimental results in two tables: KNN, Decision Trees and Support
Vector Machines in Table 10, Deep Learning, GLM and GBM in Table 11. All results
are reproducible without need to establish seed values due to the algorithms stochastic
convergent behavior.

Predictive accuracy of the algorithms under study are the Error, the Root Mean
Squared Error (RMSE), Mean Square Error (MSE), Root Mean Square Error (RMSE),
Root Squared Error(RSE) and R Square (R2). Another metric applied to deep learning
is the Mean residual Deviance (MRD). All results reported are for the training set and
test set.

The predictive estimation results are summarized in Table 10 for KNN, Decision
Trees and SVMs. There is a obvious confluence of performance indicators among the
three types of algorithms. All the three show rather close figures for all the performance
indicators extracted. According to what could be expected all the three extract a model
that allows rather close predictions for the test data. In itself this is a good behavior that
justifies using the same algorithms comparatively.

Regression Metrics KNN Decision Tree SVMs
Mean Square Error 0.230 0.200 0.222
Root Mean Square Error 0.480 0.447 0.471
Root Square Error 0.940 0.817 0.906
R Square 0.186 0.094 0.094

Table 10. Summary of results for KNN, Decision Trees and Support Vector Machines

The predictive estimation results are summarized in Table 11 for GBM and Deep
Learning. The results are clearly better than the other table, with errors and higher
R Square. When comparing the predictive results for GBM and Deep Learning, it is
noticeable a degree of overfitting when the performance metrics are extracted over the
training data. This is expectable as the model is built on the same data.

Regression Metrics DL-Train DL-Test GLM-Train GLM-Test GBM-Train GBM-Test
Mean Square Error 0.041 0.169 0.040 0.040 0.005 0.168
R Square 0.836 0.310 0.840 0.844 0.979 0.316
Mean Residual Deviance 0.041 0.169 0.040 0.040 0.005 0.168

Table 11. Summary of results for the advanced algorithms tested
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5 Related Work

A number of anomaly detection techniques related with malicious activity have been
studied in the fields of computing, communications, and networking [18]. Some ex-
amples are: anomaly detection in data in computers and systems, anomaly detection in
network traffic, detection of network configuration and vulnerabilities, assessing net-
work and data integrity, recognition of attack patterns, tracking policy violations, and
analysis of abnormal activities in logs. A particularly exhaustive review has been done
by Shan et al. [22].

Anomaly detection systems were first described by Denning in her seminal work
on the host-based intrusion-detection expert system (IDES) that described a model of a
real-time expert system capable of detecting break-ins, penetrations, and other forms of
breach [8]. Denning’s model describes profiles for representing the behavior of subjects
with respect to objects in terms of metrics and statistical models, and rules for acquiring
knowledge about this behavior from audit records and for detecting anomalous behav-
ior. This model lay the ground on modeling data sets identifying anomalies to be used
for machine learning intrusion detection systems (IDS), NIDSs included. Subsequent
machine learning approaches have been tested against attacks and intrusions of several
types, e.g., attacks against web servers [12].

Deepa and Kavitha [7] surveyed a comprehensive set of machine learning approaches
for intrusion detection, namely association-rules, data clustering, Bayesian networks,
hidden Markov models, decision trees, support vector machines [11], genetic algo-
rithms and honey pots. Garcia-Teodoro et al. [10] have produced another survey of
anomaly-based intrusion detection techniques, outlining the main challenges facing
wide scale deployment of anomaly-based intrusion detectors, with special emphasis on
assessment issues. Sommer and Paxson [24] have noted a gap between the amount of
research papers and the number of implementations of IDSs based on machine learning
and identified several difficulties.

There is some preliminary work on applying deep learning to network intrusion
detection that achieved a detection accuracy of about 0.975 [2].

6 Conclusions

From the comparative analysis of the various algorithms tested the following conclu-
sions can be inferred.

The set of “classical" algorithms proves to convey equivalent results when the same
test conditions are essayed. This in itself supports the perspective conveyed by by Engen
at al. [9] regarding the quality of the NSL-KDD data set as successor of the KDD99. We
recall that one of the main objections regarding the value attributed to the KDD99 data
set was related to the disparity of results obtained. In this regard the results obtained for
the NSL-KDD data set seem to indicate a sustained similitude of results given the same
experimental conditions.

Again in itself this is a convenient property to use the given algorithms in an in-
terchangeable way for instance in ensemble arrangements. An over fitting phenomena
can be observed in GBM and Deep learning when testing with training data. This is
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a common property regarding learning algorithms pointing that in this particular case
and for algorithm evaluation purposes the best approach is to test the models obtained
with a distinct test set. Given the similar values for R2 and MSE obtained for GBM and
Deep Learning tested against the test set we may assume a good degree of similitude
for prediction between these two algorithms. Taken at face value the results seem to
indicate good adaptability for ensemble regression.

When compared with the classical cases we may notice a better performance judg-
ing from the values of MSE and R2 obtained: MSE is consistently lower for MSE and
Deep Learning and the bigger values of R2 obtained seem to indicate that the models
do a better job at assimilating the variance of the train data.
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