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Abstract—Although graph-databases have been assuming an increas-
ing relevance in applications that exhibit strong dependability require-
ments, including tolerance to malicious faults, few works have addressed
Byzantine fault tolerance in this particular context, and previous at-
tempts suffer from lack of flexibility and poor performance. This pa-
per describes and evaluates Fireplug, a flexible architecture to build
robust geo-replicated graph databases. Fireplug can be configured to
tolerate from crash to Byzantine faults, both within and across differ-
ent datacenters. Furthermore, Fireplug is robust to bugs in existing
graph database implementations, as it allows to combine multiple graph
database instances in a cohesive manner. Thus, Fireplug can support
many different deployments, according to the performance/robustness
trade-offs imposed by the target application. Our evaluation shows that
Fireplug is able implement Byzantine fault tolerance without penalty
when compared to the built-in replication mechanism of Neo4j, which
only supports crash faults. Additionally, performance optimizations intro-
duced by Fireplug improve the overall performance by up to 900% in
geo-replicated scenarios.

Index Terms—Graph databases, Geo-replication, N-version program-
ming, Byzantine faults.

1 INTRODUCTION

Graphs offer an elegant data representation for problems
that would not be easily expressed otherwise. In fact, many
areas benefit from the use of graphs, including social and
natural sciences, engineering, and economics [1]. Unsurpris-
ingly, the increasing number and relevance of applications
using graphs as a data model spurred the development of
several graph databases which are optimized to support
graph storage and query. Examples include Neo4j [2], Ori-
entDB [3], and TAO [4]. These specialized databases can
outperform classical relational databases to support graph
processing: for instance, Neo4j was shown to be 3x faster
than MySQL on several tasks, such as graph traversal [5].

Interestingly, some of the applications that leverage
graph databases often require simultaneously strong consis-
tency, security, and scalability [6]. For instance, Neo4j and
OrientDB customers include security firms, investigation
units, media companies (Sky, Comcast, Warner), and trade
companies (Ebay or Global 500 Logistics), which use graph
databases to offer real time product routing and delivery
to their clients [6], [7]. Therefore, deriving solutions that
can replicate graph databases in an efficient and robust

manner, is a challenge not only of technical interest but also
of practical relevance.

Despite the facts above, and somehow surprisingly, very
few works have addressed Byzantine fault tolerance in this
particular context. Furthermore, as we will discuss in the
related work section, the few works that have attempted
to do so either offer inflexible, non-customizable, solutions,
present poor performance, and are prone to attacks that
exploit vulnerabilities on the underlying graph-database
software (see §2). In this paper, we describe the design
and implementation of Fireplug, an efficient architecture to
build robust geo-replicated transactional graph databases,
that aims at filling this gap.

Fireplug can be configured to tolerate faults on individ-
ual machines and/or faults that compromise (or disconnect)
an entire datacenter. Further, Fireplug can be configured
to tolerate different types of faults, from crash faults to
arbitrary faults (also known as Byzantine faults). Tolerating
Byzantine faults is key to build a dependable system as
the causes for both natural and human-driven Byzantine
faults are becoming more prevalent, including for instance,
the increasing gate density in silicon and the threat of
cyber-criminality. Furthermore, Byzantine faults can cause
serious revenue loss, e.g., the Stuxnet worm [8], identified
in 2010, caused substantial delays in nuclear research at Iran.
More recently, the attack on the Linux Mint distribution in
2016 [9], in which a corrupted version was uploaded to their
site, compromised users that installed it. Similar attacks
could be made on graph databases, for instance, to disable
fraud detection systems.

Since a vulnerability in the codebase of a given graph
database can expose all running instances to correlated
faults, Fireplug supports software diversity and imple-
ments N-version programming, letting different replicas
deploy different graph databases [10]. This shields Fireplug
from bugs and attacks on vulnerabilities of specific graph
databases’ implementations: code made by independent
teams, even using different programming languages, that
goes through different release procedures, is less likely to
suffer from the same bugs. Graph databases are large open
source projects, where it is hard to eliminate all vulnerabili-
ties that can be exploited by attackers (via buffer overflows,
query language attacks, etc.). In 2016 only, a long list of
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open-source software with critical security flaws has been
identified [11]. Examples include vulnerabilities in the glibc
Linux library, in MySQL, and in OpenJDK. Fireplug cur-
rently supports 4 graph databases: Neo4j, OrientDB, Titan,
and Sparksee. This makes attacks such as Stuxnet much
harder against Fireplug that attackers would need to com-
promise different systems, using different vulnerabilities, to
be successful. Furthermore, they would need to activate the
attack simultaneously on different locations, to avoid the
fault to be detected by the voting mechanisms that Fireplug
uses.

From the algorithmic and system’s implementation per-
spective, Fireplug makes the following contributions:
• Fireplug offers a common interface for multiple graph

databases; this interface, that we have named GRADAM,
augments the underlying implementation with multi-
versioned data. Multi-versioning shields read-only
transactions from aborting due to concurrent update-
transactions. It is key to ensure efficient reads even when
stronger guarantees are provided.

• Fireplug supports both intra- and inter-datacenter repli-
cation. Thus, it tolerates both errors that are com-
mon when using commodity hardware and natural or
human-caused disasters. Replication also has the poten-
tial to reduce latency by letting clients interact with the
closest datacenter(s), and to enhance scalability under
read-dominated workloads.

• Fireplug implements novel variations of Byzantine fault-
tolerant algorithms to implement both read-only and
update transactions. These variations, that we named
Graph-DUR, are based on the deferred update approach
[12], a fault tolerance technique that has proved to be
effective for supporting database replication. The imple-
mentations of these variants coexist in the system, and
can be selected depending on the characteristics of the
underlying infrastructure and of the system workloads.

• Fireplug’s architecture is flexible. The goal is to allow
a variety of configurations of the system such that ap-
plication fault tolerance and performance requirements
are met. For instance, N-version programming can be
used to make each datacenter Byzantine fault-tolerant
and then just assume crash faults at the level of an
entire datacenter, making inter-datacenter replication
more efficient. However, if one is concerned with at-
tacks that can compromise an entire datacenter, one can
also make the inter-datacenter operation Byzantine fault-
tolerant. Fireplug can also be configured to run in a
single datacenter and to tolerate only crash faults; this is
interesting because Fireplug has no overhead compared
to the native replication scheme protocols of the graph
databases even though it provides stronger consistency
and tolerates Byzantine failures, as these rely on single
master algorithms and do not leverage the availability of
multiple replicas.

• An open-source implementation of the resulting proto-
type is available on github.1

The system has been extensively evaluated. We have
observed that Fireplug shows no overhead compared to the
native replication mechanism of Neo4j when tolerating not

1. https://github.com/Raycoms/fireplug

only crash faults (as Neo4j) but also Byzantine faults. Ad-
ditionally, our architecture shows significant performance
gains when compared to more traditional architectures.

2 RELATED WORK

Fault Tolerance. Fault tolerance is a fundamental property
of dependable systems [13]. In this paper we are mainly
concerned with tolerating two types of faults, namely crash
faults [14] and Byzantine faults [15], [16]. We say that a
node fails by crashing, if it operates correctly up to a point
where it stops functioning. On the opposite, a node subject
to a Byzantine fault can exhibit an arbitrary behaviour.
Byzantine faults may have natural causes but may also be
the result of a deliberate attack by a malicious intruder.
Database Replication. Many replication techniques lever-
age the existence of an atomic broadcast primitive like Paxos
[17]—and its variants—which is one of the most widely
used tools for tolerating not only crash faults but also Byzan-
tine faults. Not surprisingly, a number of previous works
have also considered the deployment of atomic broadcast
protocols across multiple datacenters [18], [19], [20]. These
protocols can be used to replicate databases in multiple
datacenters, at different locations [21], [22].

Among these techniques, Deferred Update Replication
(DUR) has been shown to be particularly effective [12]. In
DUR, a transaction is executed only against one local replica;
such that writes are locally cached, and reads are served
locally. At commit time, the transaction’s write and read
set are sent to other replicas for validation, by means of
an atomic broadcast primitive. If no conflicts are detected,
writes are atomically executed, otherwise writes are dis-
carded, and the transaction aborted. Of particular interest
to us is the work of [23], that introduces an implementation
of DUR able to tolerate Byzantine faults. Fireplug uses a
variant of this last protocol that, unlike previous solutions, is
specially designed for graph databases. The differences be-
tween our specialized DUR variant and [23] are twofold: our
implementation considers graph semantics; and we avoid
digital signatures for validating reads. Avoiding signatures
in this context is relevant, not only because they are compu-
tationally expensive but, above all, because they consume
additional storage. Since most objects in graph databases
are very small, the overhead of maintaining signatures can
increase the size of the database by an order of magnitude.

Some works have shown that it is possible to offer
semantics stronger than serializability by using special-
ized, highly precise, clock synchronization services, namely,
Spanner offers linearizability [22] and FaRM [24] offers
opacity. None of these systems has been designed for graph
databases or to tolerate Byzantine faults. The architecture
proposed here is more general and more robust, as it avoids
the use of clock synchronization to ensure safety properties,
which could be a liability in the Byzantine setting.
N-version Programming Research on N-version program-
ming, or software diversity, started in the 1970s and raised
considerable interest [25]. As discussed in [25], faults are
often caused by design flaws. N-version programming
aims at tolerating these design faults, using a range of
independently-designed software components, which has
also been shown to decrease the likelihood of malicious
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intrusions [26]. Unfortunately, due to the large deployment
effort required to combine enough distinct implementations,
N-version programming is—with a few exceptions [27]—
seldom used practice.

MITRA [28] is an example of the use of software diver-
sity to shield the system from Byzantine faults. Although it
is designed for relational databases, a similar approach may
be an asset when replicating graph databases.
Graph Databases. Graph Databases [29] are database man-
agement systems that have been optimized to store, query
and update graph structures. In graph databases relation-
ships are first-class citizens on the graph data model. This
is not true in other database management systems, where
relations between entities have to be inferred using other
abstractions such as foreign keys, making the task of query-
ing the graph an inefficient join-intensive procedure. To
avoid these limitations, graph databases store pointers in the
corresponding vertices and edges. Fireplug gathers a set of
features that make it unique when compared to other graph
databases. First, it efficiently tolerates not only crash faults
but also Byzantine faults. Many graph databases implement
a variant of semi-active replication for fault tolerance, but
they tolerates only crash faults; they do not consider Byzan-
tine faults. Finally, above all, it shields the system from
software vulnerabilities by relying on software diversity.
Graph Processing. There is a recent surge of interest in
large scale graph processing, starting with Google’ s Pregel
[30]. The objective is to process large graphs in parallel,
similarly to what MapReduce does for unstructured data.
Apache Giraph is an open source graph processing system
that tolerates node crashes like Pregel [31]. There are several
others that also tolerate crashes, such as PowerGraph [32]
and Trinity [33]. Greft, instead, tolerates Byzantine faults
[34]. Nevertheless, none of these systems uses replication
for fault tolerance. They use checkpointing mechanisms that
periodically save the state of processes in persistent storage,
allowing future recovery in case of failure.
Wide Area BFT. Our algorithms are based on atomic broad-
cast protocols for the Byzantine fault-tolerant model, also
known as BFT protocols [16]. A number of algorithms have
been proposed to implement BFT in the wide-area and our
work is inspired by these previous results. Most notably,
Steward [20] proposes an hierarchical BFT protocol, where
a node from each local group is elected to represent the
group in a global group. As it will be explained later, we use
the same general approach but a different implementation:
while Steward requires members from the local group to
sign all actions of the primary, to achieve better performance
in the common case, we let the primary proceed alone,
and use our knowledge about the application semantics
to validate its actions before applying any updates. Recent
work in the blockchain area has also started to address
the wide-area performance of consensus. However, most of
these works, such as [35], use dissemination strategies based
on gossip, that fail to guarantee deterministic termination.
Summary of Related Work. The importance of graph
databases has been growing and they are now used in appli-
cations that have strong reliability requirements. A frame-
work that can provide Byzantine fault tolerance in a scal-
able, flexible, and efficient manner is needed. Many of the

ingredients required to build such frameworks have been
previous explored in the literature. However, they need to
be adapted to operate efficiently with graph databases, and
need to be integrated with each other to build a coherent
whole.

3 FIREPLUG OVERVIEW

Fireplug is a transactional graph database management
system. It is designed to run in one or more datacenters.
Each datacenter runs one or several nodes (or servers) and
each node runs a (potentially different) instance of the graph
database. We target a full replication scenario, where all
nodes maintain a full copy of the graph. Typically, the
latency among nodes residing within the same datacenter
is significantly smaller than the latency among nodes in
different datacenters. This may have an impact on the
performance of Fireplug but not on its correctness, as we
assume an asynchronous system model. Naturally, the cost
of coordinating replicas across multiple datacenters (in our
case, using atomic broadcast) may not be negligible (we dis-
cuss these costs in the evaluation section). Still, experience
with large-scale geo-replicated systems, such as Google’s
Megastore [21] and Spanner [22] has shown that several
application are willing to pay these costs to ensure liveness
in face of an outage that affects an entire datacenter.

Fireplug offers flexibility at multiple levels. (i) Each node
can be configured to run a different graph database. Cur-
rently, Fireplug supports Neo4j, OrientDB, Titan, and Spark-
see. These graph databases may be oblivious to the Fireplug
replication mechanisms but, still, the resulting assembly
behaves as a single, serializable, database. (ii) It permits
multiple fault models to coexist in a single deployment.
Note that in a system where all nodes must be configured
to tolerate the same type of faults, one may be forced to
choose the most restrictive model, unnecessarily degrading
the overall system performance.

Note that although Fireplug has been designed to lever-
age software diversity at the level of the graph database,
in the current prototype, the Fireplug middleware itself
runs a single implementation. In theory, one could also run
multiple implementations of our libraries in different nodes,
but the development effort to derive such versions is out of
the scope of our research project.

3.1 System Components
The main software components of Fireplug, depicted in
Figure 1, are the following:
• The application front-end machines (which we designate

by clients). We assume that clients receive end-user
requests and run the application.

• A middleware integration layer called the common
GRAph DAtabase replication Middleware (GRADAM). Its
goal is to support the inter-operation of multiple graph
databases in a cohesive environment by unifying their
interface, as each database is likely to offer a slightly
different interface.

• A proxy that provides a uniform interface to the graph
database so that GRADAM can abstract away these
details. The proxy augments the underlying database to
support multi-versioned data.
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Fig. 1: Fireplug architecture.

• Several variants of a new replication protocol, Graph-
DUR, that implements deferred update replication tol-
erant to Byzantine faults and specifically designed for
graph databases.

• As part of its replication protocol, Fireplug implements
Hierarchical BFT-SMaRt, an atomic broadcast abstraction
implemented as a hierarchical composition of multiple
instances of the BFT-SMaRt service [16]. An instance
of BFT-SMaRt that has members exclusively from the
same datacenter is denoted a local group. An instance of
BFT-SMaRt that has members from different datacenters
is denoted a global group (our architecture uses a single
global group).

3.2 Proxy
Due to the software diversity support by Fireplug, we
defined a common interface (access class) to be used by the
Fireplug clients. The interface defines the methods that each
individual access class has to implement in order to ensure
interoperability. The start and terminate methods are re-
quired to start a new instance of the database and terminate
it. The beginTransaction and endTransaction methods de-
limit a transaction. We support the most fundamental opera-
tions, namely create, read, update, and delete, to ensure that
the interface can be implemented by a wide range of graph
databases. Each of these operations has its corresponding
method in the common interface. These methods accept,
as a parameter, either a vertice or an edge object. Fireplug
requires an instance of GRADAM to be implemented for
each different graph database. We do not see this as an
impairment for adoption, because GRADAM is relatively
easy to implement. In our prototype, the implementation of
GRADAM for the different databases required the following
number of lines of code: 509 for Titan, 673 for Sparksee, 441
for OrientDB, and 738 for Neo4j.

3.3 System Operation
Clients connect to an instance of GRADAM, typically at the
closest server, and coordinate the execution of transactions
that are composed of several read and write operations.
Transactions are marked by the startTransaction and end-
Transaction delimiters. The responsibility of a GRADAM
instance is threefold: (i) it bridges local clients with the local
graph database replica, translating between the common
interface (the one exposed to clients) and each particular
graph database interface; (ii) it augments the underlying
databases with multi-versioning data; (iii) it interacts with
the remaining GRADAM instances, running on remote

replicas, to ensure that all transactions that commit are
serializable.

The communication among multiple GRADAM in-
stances running at different nodes is coordinated by our
own DUR protocol. For some operations, namely to im-
plement update-transactions, the explicit exchange of mes-
sages among instances is done using an atomic broadcast
abstraction. This can be configured to tolerate both crash
and Byzantine faults, and to offer different qualities of
service. As already mentioned, the atomic broadcast service
leverages BFT-SMaRt [16], an open source library that im-
plements Byzantine-tolerant state machine replication. Our
implementation uses a hierarchical combination of multiple
BFT-SMaRt groups and makes use of two broadcast ser-
vices offered by BFT-SMaRt, namely a (non-ordered) reliable
broadcast and a (totally ordered) atomic broadcast (later
detailed in §4.2).

4 GRAPH-DUR: REPLICATION IN FIREPLUG

Replication in Fireplug is managed using several variants
of the Byzantine-tolerant DUR proposed in [23]. We first
discuss the major differences between our variants (that we
have named Graph-DUR) and [23]. Then, we describe how
update and read-only transactions are processed. Finally, we
detail the implementation of the atomic broadcast primi-
tive integrated into Fireplug, a fundamental abstraction for
Graph-DUR.

4.1 Adaptation of DUR for Graph Databases

Semantic-Awareness. Graph-DUR considers the semantics
of the graph structure in an effort to reduce conflicts, a tech-
nique commonly used in both transactional memory [36],
[37] and geo-replicated distributed systems [38], [39].

First, clients can potentially merge updates before push-
ing them to Fireplug to reduce the number of operations
that need to be managed by the underlying databases. For
instance, updating a vertex can be merged with its preced-
ing vertex creation request, and deleting a vertex invalidates
preceding updates or creations on the same vertex.

Second, the conflict detection algorithm has been
adapted to also take the semantics of graph operations into
account, in particular, we avoid flagging conflicts when
the operations are known to be commutative. For instance,
imagine two concurrent transactions attempting to remove
the same vertex from the graph. In a transactional NoSQL
database, the conflict detection algorithm would abort one
of the transactions, given that both transactions “update”
the same key. Our conflict detection algorithm takes into ac-
count that both operations commute, allowing both to com-
mit. In order to implement such conflict detection algorithm,
Graph-DUR requires clients to explicitly track not only reads
and writes, but also create and delete operations. Thus,
commutative operations can be efficiently spotted at the
certification phase and unnecessary aborts are precluded.

Signature-free Read Validation. In a Byzantine-tolerant set-
ting a single instance of the database cannot be trusted. If the
instance is faulty, it may return bogus or stale data. In [23]
this is addressed by having the servers sign every data item.
In the case of relational databases this is valid because it
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is possible to sign tables or sections. Nevertheless, when
using graph databases, this is not a viable option. Different
graph databases store their data in fairly independent nodes
and relationships. Therefore, implementing this mechanism
would imply signing every node and relationship in the
graph, adding a severe overhead. In fact, depending on
the size of the objects, adding signatures can increase the
size of the database and the correlated bandwidth cost by
an order of magnitude. The tradeoff is that we need to
validate read-only transactions by comparing the contents
of different instances. In order to decrease the complexity
and delay caused by global validation, we propose several
optimizations in §4.4.

4.2 Hierarchical Atomic Broadcast

Some variants of Graph-DUR require the execution of an
atomic (totally) ordered broadcast primitive across multiple
datacenters. We have implemented this primitive as a hier-
archical composition of multiple instances of BFT-SMaRt.

Specification. We assume a set of n processes, Π =
{p1, . . . , pn} which may fail by crashing, or by behaving
maliciously. If a process does not fail, we say it is a correct
process, and otherwise it is a faulty process.

Like other atomic broadcast primitives, our hierarchical
atomic broadcast is defined by the HAB-broadcast(m) oper-
ation, where m is the message to be broadcast. The HAB-
broadcast(m) operation may trigger the HAB-deliver(m)
event at a process. The hierarchical atomic broadcast primi-
tive satisfies the following properties:

Validity. If a process pi delivers a message m, some process
pj has broadcast m.

Integrity. Every process delivers a message at most once.

Agreement. If a correct process pi delivers a message m, then
all correct processes eventually deliver m.

Total order. If two correct processes pi and pj deliver two
messages m and m’, then pj delivers m before m’ iff pi
delivers m before m’.

Instantiation. The general architecture of the implementa-
tion is depicted in Figure 2. In each datacenter, we setup
an atomic broadcast group that coordinates all replicas
that reside in that datacenter. Then, one replica from each
datacenter is elected to participate in an inter-datacenter
atomic broadcast group—we refer to each of these nodes as
primary. Thus, instead of coordinating all replicas in a single
large atomic broadcast group—an approach that we refer
as flat, coordination is achieved by executing a sequence of
actions on the smaller intra-datacenter and inter-datacenter

atomic broadcast groups. We denote the inter-datacenter
group simply as the global group and the internal group
in datacenter i as locali. For liveness, we assume that the
system is augmented with an unreliable failure detector that
can trigger the change of a faulty or stalled primary [40].

The global group can be configured to tolerate f crash or
f Byzantine faults, requiring 2f + 1 or 3f + 1 participants
respectively. Note that if the global group is configured to
tolerate Byzantine faults and less than 3f + 1 datacenters
are available, then datacenters may have to participate in
the global group with more than one node. Local groups
can also be either crash- or Byzantine-tolerant, offering
extra flexibility when configuring the system to improve
performance. If the global group is configured to only
tolerate crashes, local groups will not be able to tolerate
Byzantine faults. The right configuration is scenario-specific,
and depends both on the user requirements and on the
estimated power of the adversary.

Operation. Hierarchical Atomic Broadcast is implemented
as follows. Clients initiate a HAB-broadcast by sending
messages directly to the global group. These messages are
then totally ordered by BFT-SMaRt (where consensus is used
to assign a sequence number to each message) and delivered
to all members of that group. Differently from the standard
BFT-SMaRt implementation, in the HAB-broadcast variant,
the message is delivered together with the signed votes from
a quorum of members of the global group. This quorum
of signatures certifies the sequence number that has been
assigned to the message (by the global group). Then, each
member of the global group broadcasts the message (along
with the corresponding set of signatures) to all members of
the local group. For this purpose, it uses the more efficient
unordered Byzantine broadcast service of BFT-SMaRt. This
ensures that if a correct member of the local group receives
the message, all members do receive the message. Messages
are delivered to the remaining members of each local group
in the order defined by the global group. Later in the
evaluation section we show that this strategy is much more
scalable than trying to perform atomic broadcast on a single
group that contains all replicas.

4.3 Update Transactions
Fireplug implements two different variations of the Graph-
DUR protocol. Both variants execute transactions against
a single replica and certify concurrent transactions in to-
tal order. However, each variant uses a different com-
munication pattern and a different set of replicas in-
volved in the certification. We have called these vari-
ants Hierarchical-Broadcast Global-Certification (HB) and
Hierarchical-Certification Global-Apply (HC) respectively.
Each of these variants represents a different trade-off be-
tween CPU and Network resource consumption. We explain
these variants in the following subsections.

4.3.1 Client Algorithm
The client algorithm is the same for both variants of Graph-
DUR and is presented in Algorithm 1. The clients maintains
a read-set (t.RS), a write-set (t.WS), a create-set (t.CS), and
a delete-set (t.DS), where it stores all the objects that have
been, respectively, read, updated, created, and deleted in the
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Algorithm 1 Client code
1: function BEGINTRANSACTION(t, transactionClass) . Start

Transaction
2: t.RS ← ∅ . Initialize read-set
3: t.WS ← ∅ . Initialize write-set
4: t.CS ← ∅ . Initialize create-set
5: t.DS ← ∅ . Initialize delete-set
6: t.server← best closest server(transactionClass) . Pick a server
7: t.ts← ⊥ . Transaction timestamp
8: end function
9: function READ(t,oid) . Read operation

10: if (oid, v, ts)6∈ (t.RS ∪ t.WS ∪ t.CS ∪ t.DS) then
11: (oid,v,ts)← t.server.SERVER READ(oid)
12: t.Rs← (oid, v, ts)
13: if t.ts = ⊥ then
14: t.ts← ts
15: else if t.ts < ts then
16: abort
17: end if
18: end if
19: return v
20: end function
21: function CREATE(t,oid)
22: t.CS ← (oid) . Save in create-set
23: end function
24: function DELETE(t,oid)
25: t.DS ← (oid) . Save in delete-set
26: end function
27: function WRITE(t,oid, v)
28: t.WS ← (oidi, v) . Save in write-set
29: end function
30: function ENDTRANSACTION(t)
31: if HB-mode on then
32: HAB-BROADCAST(hb-validation, t, ts, t.RS, t.WS, t.DS,

t.CS) to all servers.
33: else . HC mode on
34: ABCAST(hc-validation, t, ts, t.RS, t.WS, t.DS, t.CS) to

servers in global group.
35: end if
36: wait for identical (t, outcome) from f + 1 servers
37: return outcome
38: end function

course of the transaction. Updates, deletions, and creations,
which are cached at the client, will only reach the servers on
commit. To make sure clients read the changes made during
the transaction, on each read the result will be matched with
the write-set and then updated accordingly. The client starts
by selecting a node against which it will execute the update
transaction optimistically.

The client also keeps a variable t.ts, that stores the
snapshot used for performing reads; all reads are consistent
with this snapshot. This variable is initialized with the
timestamp of the first object read by the transaction (line 14).
Additionally, on each read, the timestamp of the object in
the database has to be compared with the transactions snap-
shotId to guarantee the isolation property of the transaction.
If the timestamp corresponds to a transaction which has
been committed after the start of the current transaction, the
transaction will be aborted (line 16). Since GRADAM sup-
ports multi-versioning, the database will retrieve a version
matching the transactions snapshotId to avoid the abort.

From the client’s perspective, the only difference be-
tween running transaction on HB or HC mode is how the
validation of the transaction is requested when it attempts
to commit (line 31). In HB mode, the validation request is
sent to all replicas using the hierarchical atomic broadcast
primitive described before. In HC mode the validation re-

Algorithm 2 Certification Procedure
1: global ts = 0 . Initiate global snapshot Id
2: function GET SETVER TS
3: return global ts
4: end function
5: function SERVER READ(oid, snapshot)
6: (oid, v, ts)← RETRIEVE(oid, snapshot)
7: end function
8: function VALIDATE READSET(read set)
9: for ∀ (oid, v, ts) ∈ read set do

10: (oid, v’, ts’)← RETRIEVE(oid)
11: if v 6= v′ or ts 6= t′ then
12: return abort
13: end if
14: end for
15: end function
16: function VALIDATE UPDATESET(ts, w set, d set, c set)
17: for ∀ (oid, v) ∈ c set ∪ d set ∪ w set do
18: (oid, v’, ts’)← RETRIEVE(oid)
19: if ts < t′ then
20: return abort
21: end if
22: end for
23: end function
24: function VALIDATE TRANSACTION(ts, t.RS, t.WS, t.DS, t.CS) .

called in total order
25: result← VALIDATE READSET(t.RS)
26: if result = abort then
27: return abort
28: end if
29: result← VALIDATE UPDATESET(ts,t.WS, t.DS, t.CS)
30: return (result, global ts)
31: end function

quest is sent just to the members of the global group, using
the default atomic broadcast primitive of BFT-SMaRt.

4.3.2 Certification Algorithm
The certification algorithm is presented in Algorithm 2.
This algorithm can be executed by any server, as long as
certification requests are processed in total order. Each node
and relationship contain, additionally to the timestamp, the
hash of the node itself. This will be used to check whether
the server tries to send outdated, wrong or corrupted data to
the client. The certification check, for a transaction ts, may
be broken down into two fundamental steps:
• The validation procedures check if the transaction does

not violate serializability. For that, we check that no
transaction ts′ with an update set that overlaps with
ts update set or with ts read set has committed after ts
started (lines 8–15 and 16–23);

• The validation procedures checks that the values that
have been returned to the client by the delegate replica
match the values stored locally. For this purpose, the
procedures check if all hashes h′ ∈ v′ ∈ t.rs are equal
to their corresponding values and hashes h ∈ v in the
database.

If the transaction passes both checks it can be committed.
Otherwise it needs to be aborted.

4.3.3 Hierarchical-Broadcast Global-Certification
The Hierarchical-Broadcast Global-Certification (HB) vari-
ant of Graph-DUR is the one closer to the classical DUR.
In this variant, update transactions are executed following
the DUR algorithm: optimistically against a single replica
(typically the closest one) and validated in parallel by all
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Algorithm 3 Hierarchical-Broadcast Global-Certification
(HB)
1: function HAB-DELIVER(hc-validation, ts, t.RS, t.WS, t.DS, t.CS)

from client c . called in total order by all replicas
2: (result, global ts) ← VALIDATE TRANSACTION(ts, t.RS, t.WS,

t.DS, t.CS)
3: send result to client c
4: if result = commit then
5: APPLY UPDATES(global ts, t.WS, t.DS, t.CS)
6: end if
7: end function

replicas in total order, to ensure serializability. As a result of
this algorithm, all correct replicas certify the same sequence
of transactions, in the same order. Thus, all correct replicas
will reach a consistent decision regarding the commit or
abort of the transaction.

The pseudo-code is given in Algorithm 3. When the vali-
dation request is received in total order from the hierarchical
broadcast protocol, all nodes apply the validation procedure
described before and inform the client of the outcome. Addi-
tionally, if the transaction commits, the update set is applied
to the local database. HB requires a single execution of the
totally ordered broadcast algorithm at commit time. This is
used to ensure that all replicas can certify the transaction in
exactly the same order. This ensures that the certification,
that is deterministic, yields exactly the same results at all
correct replicas. The drawback of this approach is that it
suffers from redundant CPU consumption, as all replicas
perform essentially the same work every time an update
transaction attempts to commit.

4.3.4 Hierarchical-Certification Global-Apply
The Hierarchical-Certification Global-Apply (HC) variant
of Graph-DUR aims at trading processing time for com-
munication. In this variant, a transaction is just certified
by the nodes in the global group. These nodes produce a
signed proof of the transaction outcome. Then, the updates
associated with a transaction are broadcast together with the
proof that the associated transaction was serializable and
can be committed, and applied to the local datastore by all
nodes without the need of going through local certification.

The pseudo code is given in Algorithm 4. In detail, when
a client finishes a transaction containing update requests,
it broadcasts the transaction to the global group only. The
transaction is delivered in total order to the members of the
global group that perform the certification (line 2), sign the
result, and broadcast the result to the global group, using the
unordered Byzantine tolerant primitive (line 3). Addition-
ally, the servers send the result to the client (line 4). If the
certification fails the transaction is aborted and no further
steps are required. If the transaction commits, each member
of the global group collects f +1 identical commit messages
(line 6). If no quorum can be achieved, the transaction is
aborted. If a quorum is achieved, the update set is applied
locally and sent to all members of the local group (lines 8
and 9). Finally, when the values are received by the members
of the local group, each member checks if the f + 1 commit-
votes are valid and then applies the update set in the order
defined by global ts (line 15).

Note that, given that f + 1 votes to commit the trans-
action are enough to certify that the transaction validation

Algorithm 4 Hierarchical-Certification Global-Apply (HC)
1: function ABCAST-DELIVER(hb-validation, ts, t.RS, t.WS, t.DS,

t.CS) from client c . called in total order by replicas in the global
group

2: (result, global ts)← VALIDATE TRANSACTION(ts, t.RS, t.WS,
t.DS, t.CS)

3: RBCAST(hc-result, ts, result) to servers in global group.
4: send result to client c
5: if result = commit then
6: result-set← collect f+1 RBCAST-DELIVER(hc-result, ts, com-

mit) from other servers in the global group
7: if |result-set| ≥ f + 1 then
8: APPLY UPDATES(global ts, t.WS, t.DS, t.CS)
9: RBCAST(global-apply, ts, result-set, global ts, t.WS,

t.DS, t.CS) to all server of my local group
10: end if
11: end if
12: end function
13: function ABCAST-DELIVER(global-apply, ts, result-set, global ts,

t.WS, t.DS, t.CS)
14: if result-set is valid then
15: APPLY UPDATES(global ts, t.WS, t.DS, t.CS)
16: end if
17: end function

succeeded, it is not strictly required that all members of
the global group certify the transaction. Therefore, in the
most common case (i.e, when no Byzantine faults occur) it
is possible to load balance the work of certifying the trans-
actions among the members of the global group. It is clear
that HC, even with this optimization, requires significantly
more communication than HB, given that f+1 votes need to
be collected before the update set can be applied. However,
instead of requiring all nodes to validate the transaction,
with HC only a quorum of nodes need to perform this task.
In scenarios where capacity of nodes is very heterogeneous,
HC can bring advantages since it is possible to offload the
validation work to the more powerful machines.

4.4 Read-only Transactions
To improve performance, read-only transactions are exe-
cuted differently from classical DUR. Fireplug supports
read-only transactions with several different resilience lev-
els. One dimension of resilience is concerned with the ge-
ographical scope of the fault: locally-safe reads, that cross
check the results using two nodes of the same datacenter
and; globally-safe reads, that cross check the results using
nodes of different datacenters (globally-safe reads should
be used if there is the threat of an entire datacenter be-
coming compromised). The other dimension of resilience is
concerned with the database instance: version-unaware reads
do not care about the database instance when validating
reads and version-aware reads always validate read trans-
actions using different graph databases (in order to resist
to vulnerabilities that compromise all instances of the same
graph database).

Furthermore, Fireplug considers 3 different implemen-
tations of each resilience level, namely: pessimistic read-
only transactions (PR), optimistic latency-driven read-only
transactions (OR-L), and optimistic throughput-driven read-
only transactions (OR-T). We describe the three different
implementations below:
• Pessimistic read-only transactions are executed as these

were update transactions by broadcasting them, in
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total order, to all replicas in the global cluster. Thus,
pessimistic read-only transactions are as expensive as
update transactions. Nevertheless, this implementation
has some advantages when compared to the other two
implementations described below. First, it guarantees
that all replicas have a state consistent with the local
replica when validating the read transaction. This en-
sures that, if the local replica is correct, the validation
of the read transaction always succeeds. Second, even
if the local replica is faulty, the fault is always detected.

• Optimistic latency-driven also broadcasts the read-only
transaction to all replicas, but use the unordered broad-
cast primitive instead. Therefore, when remote nodes
attempt to validate the transaction, they may not have
an up-to-date state. Nodes that are up-to-date (i.e., that
have already installed the snapshot that was used for
the client when executing the read transaction), can
validate the transaction and send the result back to the
client. The client can continue as soon as it received
f additional validation confirmations from the desired
set of replicas (the exact set depends on the desired
resilience). This ensures a quicker validation, although
it still requires global communication.

• Finally, optimistic throughput-driven reads is the least
expensive implementation. The read transaction is
broadcast to f other nodes with the desired resilience
properties using point-to-point communication. This
avoids global communication. Unfortunately, if the se-
lected targets are not up-to-date, the client may be
forced to select additional targets, which may increase
the latency of reads.

In both optimistic executions if the read transaction
returns an abort, read transactions are re-executed in pes-
simistic mode since the client cannot be sure if he read
wrong or just outdated data. Although this may cause
additional overhead in the worst case, given that workloads
in graph databases are typically read-dominated [4], in most
of the cases, the validation will succeed without requiring
the execution of a totally ordered broadcast. This brings
significant performance gains in the most frequent case.

4.5 Configuring Graph-DUR
As described before, Graph-DUR must be configured dif-
ferently depending on the type of failures one wants to
tolerate. In this section, we discuss how Graph-DUR should
be configured to tolerate three types of failures: crash faults,
Byzantine nodes, and Byzantine datacenters. We also briefly
discuss how Graph-DUR can detect these failures and how
to recover from them.

4.5.1 Crash Faults
When a node crashes or is suspected, if that node is not a
primary, no special action is performed since it is transpar-
ently handled by the atomic broadcast protocol. But, if the
node is a primary (member of the global group), corrective
measures need to be performed. First a new primary is
elected from the local group of the faulty node. If the old
primary is still active (and was just slower), it will remove
itself from the global group. If the old primary crashed,
the new primary of the local group pro-actively joins the

global group, obtains the delivery log of the global group,
and reliably broadcasts to the local group all messages that
have not been propagated to the local group by the faulty
primary.

4.5.2 Tolerating Byzantine Nodes

A Byzantine node can be a non-primary or a primary. If
it is a non-primary, any misbehaviour will be detected by
a client, that will not be able to validate the result of the
transaction executed against the faulty node. The client
simply selects another server (the client may also report
the fault, such that the server is eventually replaced). If the
faulty node is a primary we need to consider two scenarios,
namely, the faulty node can misbehave in the global group
or in the local group (or in both). We discuss these two
scenarios below.

If a faulty primary misbehaves in the global group in
a manner that prevents the global group to make progress
(for instance, it it is the global group’s primary), it will be
suspected by the correct nodes in the global group, forcing a
view change. The correct members of the global group will
then report this fact to the affected local group, such that a
new primary is elected. A faulty primary may also behave
correctly in the global group but fail to forward transactions
to its local group. To detect this scenario, clients expect
a confirmation that a write transaction has been applied
from f + 1 members of each local group. Failure to collect
such quorum from a given local group will also lead to the
corresponding primary being suspected and to the election
of a new primary.

4.5.3 Tolerating Byzantine Datacenters

Fireplug can also be configured to tolerate faults at the level
of an entire datacenter, as long as the deployment includes
at least 3f+1 datacenters or the datacenter offering multiple
replicas to the global cluster is not faulty. In fact, the protocol
described in the previous section tolerates the failure of f
entire datacenters or of f machines in one of the datacenters.

5 EVALUATION

In this section, we present the results of an experimental
study of Fireplug. We answer the following questions: What
are the differences in performance among the two update
protocols (HB and HC) and how these compared with
classical DUR based on a flat group? What is the impact
of multi-versioning? How do the different read-only pro-
tocols perform? How well does Fireplug perform in terms
of throughput when compared with the native replication
schemes of the underlying graph databases?

The evauation shows not only the absolute performance
of Fireplug but also its overhead with regard to differ-
ent baselines: §5.1 compares the performance against non-
hierarchical protocol, § 5.5 compares with the native repli-
cation scheme of Neo4j, and § 5.3 shows the overhead of the
multi-version features.

In the experiments we use five different work-
loads: Read-only (100% Reads), Read-heavy (0.2% Writes),
Conflict-prone (5-20% Writes), Balanced (25-75% Writes),
and Write-only (100% Writes).
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All workloads are based on real usage of graph
databases (such as Facebook’s TAO [4]) just varying the dif-
ferent write levels. The dataset has been synthetically gen-
erated using gMark, a well-founded approach for schema-
driven generation of graphs and query workloads [41]. It
represents a social-network and has 100,000 vertices and ap-
proximately 230,000 edges. Each experiment was executed
three times in order to avoid statistical errors, and the results
presented are the means of the throughput (operations per
second) observed on all servers during a 6 minutes execu-
tion interval. We discarded the first and the last minute of
each experiment, to avoid effects of the warm-up and cool-
down periods.

The experiments were carried out in the Grid’5000
testbed [42]. Each database replica runs on a separate ded-
icated machine with 64GB RAM and eight 2.0GHz cores.
Client instances were started on the same physical ma-
chines as the server they connect to. Some scenarios use
multiple data centers: scenarios with 8 servers use two
data centers, each with 4 servers each (2 representatives
in the global group) and scenarios with 12 servers use 4
data centers each with 3 servers (one representative in the
global group). Because the latency among Grid’5000 clusters
is very small, we emulated larger geo-replicated scenarios
by using netem [43] to add a 20ms delay in the links that
connect machines from different datacenters.

5.1 Update Transactions: HB Flat vs HB Hieraquical
To compare the performance of the different protocols used
to process update transaction we use a write-only workload
and assess what is the maximum throughput achievable
with each protocol in different scenarios. We set the percent-
age of writes to 100%, to assess the load writes impose on the
system in both configurations. We gradually increased the
number of clients until the throughput reached a plateau,
to capture the maximum capacity of that configuration: for
the flat configuration the max-throughput was achieved by
using 5 to 60 clients depending on the number of servers; for
the hierarchical configuration the number of clients ranged
from 30 to 60. The results are depicted in Figure 3, showing
the difference in percent of both approaches for different
numbers of nodes. As it can be observed, the advantage of
Fireplug increases significantly with an increasing number
of servers up to 900% with 12 servers. This is due to the
fact that the message complexity of the algorithms grows
quadratically with the number of members in each group.
We chose to display the difference in performance in per-
cent to highlight the increasing difference between both
approaches with an increasing number of servers.

5.2 Update Transactions: HB vs HC
We now compare HB with Hierarchical-Certification Global-
Apply (HC). As discussed in § 4.3, HB is expected to have
an advantage over HC in most execution cases since the
primaries do not have to calculate extra signatures and also
do not have to exchange them before sending them to the
local replicas. Nevertheless, HB puts more load on the local
(non-primary) replicas than HC, given that with HB local
replicas also have to execute and verify the transactions.
Following our analysis, the time to execute and verify a
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Fig. 4: Comparison between HC and HB’s throughput.

transaction takes, on average, more than twice the time it
takes to do the verification only. This means that with HB
local replicas are subject to approximately twice the load
than local replicas running HC (for each write transaction).

From the discussion above, one can reason as follows.
If the system is not overloaded, HB is expected to perform
better, because it requires a smaller number of communi-
cation and processing steps. If the system is overloaded
and machines are homogeneous, the performance of both
HC and HB will fall. However, it is possible to sustain
more load by upgrading only machines in the global cluster
and switching from HB to HC, given that HC alleviates
the burden on the local replicas. Our experimental results,
confirm this analysis.

Figure 4 shows the performance of HB vs HC in two
scenarios: a scenario where all machines have high capacity
(homogeneous) and a scenario where only the machines in
the global cluster have high capacity, and the local replicas
have lower capacity (half the capacity of primaries). With
25% writes, the local replicas are not overloaded in any of
the scenarios, thus HB performs much better than HC (al-
most 40% better). However, with 50% writes, in the scenario
where local replicas are less powerful, they can no longer
keep-up with the load, thus HC outperforms HB (by almost
20%). Finally, with 75% writes, even when all machines have
high capacity, HC performs better. In this case, the amount
of writes saturates even the more powerful machines but,
since local replicas have less work in HC, they have some
free cycles to serve read transactions improving the overall
throughput. In summary, HB should be used in steady state
(we assume the system is provisioned to avoid overload in
normal operation) and HC can be used to mitigate the effects
of workload peaks. A fully discussion of self-adaptation
mechanisms for Fireplug is out of the scope of this paper.
We just point out that we also implemented sensors on each
replica that monitor the size of the request queues and that
allow to detect when nodes are overloaded.
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5.3 Impact of Multi-Versioning Features
The graph databases we use do not natively support multi-
versioning. However, our middleware enhances these graph
databases with the multi-versioning features. We now study
the impact of these extensions. On one hand, these features
introduce additional complexity in the GRADAM layer, thus
they have the potential to slowdown the performance of
Fireplug in contention-free scenarios. On the other hand,
multi-versioning shields read-only transaction from aborts,
so it may offer improvements in scenarios where contention
exists. In particular, read transactions can read from a con-
sistent snapshot, defined at the time the transaction starts,
even if other transactions update the graph concurrently.
This allows read transactions to commit in scenarios where
a single-version database would cause them to abort.

We assess this by running our hierarchical framework
with a total of 8 replicas with increasing write-load (1-20%)
in two different settings: With multi-versioning enabled
and without multi-versioning. Additionally, we query only
10% of the dataset to increase contention. The results are
presented in Figure 5. It can be seen that, with very little
writes multi-versioning adds an overhead of over 20% to the
system. However, with an increasing percentage of writes
the advantages of multi-versioning start to compensate this
overhead. In the case of 10% of writes multi-versioning
already increases the performance of the system by 5%.
Increasing the writes 20% further increases the advantage
of multi-versioning to 15%, as expected.

5.4 Read-only Transactions
In order to show the differences between the proposed
read-modes, we performed experiments using both a single
group and an hierarchical setup with 4 datacenters, each one
with 4 servers.

For the single group scenario, we experimented two
different deployment scenarios: a deployment that uses
multiple implementations of the database (namely Neo4j
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Fig. 7: Throughput for read-modes with 12 servers

and OrientDB) where the average latency among servers
was 20ms (dubbed ”mixed/wide-area” setup) and a de-
ployment with a single database (Neo4j) and an average
latency among servers of 1ms (dubbed ”mixed/local-area”
setup). In both cases we executed 100% reads. The results
of these experiments are depicted in Figure 6. As expected,
the unsafe execution shows the highest throughput of all
four alternatives and shows no significant difference in the
single or mixed database setup. Also, as expected the pes-
simistic (ordered) verification shows the worst performance
and greatly varies between the single database and mixed
database setup. This happens since in the single database
setup we only use the fastest database implementations and,
therefore, the performance bottleneck is still in the network,
while in the mixed setup the performance bottleneck shifts
to the slowest database as it has to verify all messages as
well. For the same reason the unordered and random access
executions show a slightly improved performance in the sin-
gle database setup. Interestingly, both show almost identical
performance, as the unordered execution has the advantage
of having only to wait for f + 1 equal responses, while the
random verification eventually hits a slower database and
has to wait for its response.

For the hierarchical scenario with 12 servers, depicted
in Figure 7, we set the latency among members of the
local groups to 1ms and the latency among members of
the global group to 20ms. As before, we used scenarios
with a single database implementation (Neo4j) and with
multiple implementations (Neo4j and OrientDB). Finally, we
subjected both scenarios to a read-only workload and to a
read-heavy workload. The results follow the trend observed
in the single group case. As expected the unsafe execution
shows a better performance in almost all cases. Only in
the mixed setup with 0.2% the pessimistic execution shows
a small disadvantage since OrientDB is unable to handle
as many write requests early in the execution and ends
up falling behind significantly. Additionally, as depicted,
the overall performance depends heavily on the database
setup (single vs mixed) and on the write levels (0% vs
0.2%). We considered very low write levels since the focus
of this experiment was to measure the the performance of
the system in a read-dominated setting similar to values
observed by Facebook in [44].

The pessimistic (ordered) execution performance drops
heavily when introducing writes into the system as ex-
pected, since reads are now queued behind the writes which
leads to a strong performance toll. Additionally, in this setup
the difference between the local and global verification is
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stronger than in Figure 6 since in the previous experiment
the global cluster received only requests from the one local
cluster and not from multiple local clusters, but in the
current execution, the global cluster has to handle requests
from multiple datacenters which results in a bottleneck.

5.5 Fireplug against Native Replication

Finally, we compare the performance of Fireplug against the
best performing native replication system of all databases
we used. In particular we compared a deployed of a single
group running 4 replicas of Neo4j (Neo4j-HA) and a similar
cluster running an homogeneous deployment of Fireplug.
We compared the Byzantine-tolerant version of Fireplug.
Since the treatment of write-transactions is the main dif-
ference between Neo4j-HA and Fireplug we executed the
experiments with 100% writes.

Results are depicted in Figure 8. As shown in the bar
graph, Fireplug shows a 2% performance advantage over
Neo4j considering 100% writes even though Fireplug has
been configured to tolerate Byzantine failures and Neo4j
only tolerates crash faults. Additionally, due to the total
order and deferred update replication, Fireplug provides
serializability while Neo4j provides only snapshot isolation.
This happens since Neo4j relies on a single master repli-
cation scheme and has a complicated locking mechanism
which results in a lot of transactions running into deadlocks
which then have to be aborted. Fireplug avoids this issue
by executing the transactions in total order, aborting only
when conflicts arise, which has a lower impact on the system
performance.

6 CONCLUSION

We presented Fireplug, a flexible architecture to build robust
geo-replicated transactional graph databases. Fireplug com-
bines in a novel way ideas from N-version programming,
a hierarchical Byzantine-tolerant state-machine replication,
and a deferred update transactional protocol specialized
for graph databases to build a cohesive, flexible replicated
graph database that can be configured to tolerate different
threats. Our hierarchical architecture shows better perfor-
mance and scalability when compared to more traditional
architectures such as flat and single-master. Our evaluation
also shows that the optimistic read modes bring significant
performance gains by slightly weakening consistency.

Future work includes the integration of self-adjusting
mechanisms such as a load-balancer to dynamically adjust
the load depending on the instantiated databases. We also
plan on studying whether our techniques could be applied
under partial replication, a more scalable setting.
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