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Abstract—The paper presents DYNIDS, a network intrusion
detection approach that flags malicious activity without previous
knowledge about attacks or training data. DYNIDS dynamically
defines and extracts features from network data, and uses clus-
tering algorithms to aggregate hosts with similar behavior. All
previous clustering-based network intrusion detection approaches
use a static set of features, restricting their ability to detect certain
attacks. Instead, we use a set of features defined dynamically, at
runtime, avoiding that restriction without falling into the curse
of dimensionality, something that we believe is essential for the
adoption of this kind of approaches. We evaluated DYNIDS
experimentally with an evaluation and a real-world dataset,
obtaining better F-Score than alternative solutions.

Index Terms—network intrusion detection, clustering, feature
engineering, security analytics

I. INTRODUCTION

The unstoppable growth of cyberattacks [1], raises the need
for research in new methods for intrusion detection. Interest-
ingly companies take many days to detect some attacks, e.g.,
roughly 58 days [2]. This number shows that the large variety
of real-time prevention (e.g., packet filters of different sorts)
and detection (e.g., malware detectors) mechanisms deployed
do not provide enough protection. Hence, organizations have
to dig into traffic and logs to search for anomalous patterns in
larger windows of time.

Most approaches for configuring intrusion detection systems
(IDS), more specifically network intrusion detection systems
(NIDS) that are the focus of this work, require either knowledge
about attacks (to define signatures/rules) or clean training data
(to configure anomaly detectors) [3]. The first tends to be
incomplete, whereas the second is hard to obtain in systems
in production. Moreover, the constant evolution of attacks and
the inherent dynamism of computer networks create severe
difficulties for traditional NIDSs, letting them unable to detect
novel attacks, or generating a high number of false positives.

A more recent approach to intrusion detection uses machine
learning (ML) techniques, clustering or outlier detection, to
identify entities – typically users or hosts – that have an
anomalous behavior in a period of time, unobservable in real-
time [4]–[14]. This approach is interesting because it does
not require knowledge about attacks (signatures/rules) or clean
training data. However, most of these approaches suffer from

two serious flaws not yet investigated: (1) they consider a static
group of features; and (2) they consider few features when, in
practice, many relevant features can be derived from network
traffic, e.g., those related to service/ports. In the following two
paragraphs, we consider each of these aspects in turn.

In relation to (1), in the related work that uses clustering
techniques for network intrusion detection – summarized in
Table I –, the feature engineering process defines a set of static
features, e.g., the sum of packets sent to port 22-SSH or to
port 194-IRC. Then, in every clustering iteration, at runtime,
the predefined set of features is used. The choice of the features
is based on knowledge of the domain, such as knowledge of
TCP/UDP ports commonly associated with security problems
(e.g., port 22-SSH is often brute-forced). However, this feature
pre-selection clearly limits the system’s ability to detect attacks
that are not related to those features (e.g., brute forcing an SSH
server listening on a non-standard port).

Concerning (2), none of the related work uses more than 52
features (see table). Some mention that it is possible to increase
the number of features, but none explores further that possibility
and assesses the impact on performance. Moreover, selecting a
broader range of port-based features is problematic as there are
around 1000 system ports (also known as well-known ports)
plus 10000 user ports assigned (also known as registered ports)
[15], [16]. In fact, simply increasing the number of features is
far from innocent as it may lead to a phenomenon called the
curse of dimensionality [17]–[20]: with many features, typically
more than 1000, clustering no longer works as expected as
relevant features are masked by others and geometry behaves
nonintuitively in high dimensions [18], [19], [21]. This issue

TABLE I
COMPARISON OF RELATED APPROACHES

Reference #features #ports Definition Algorithms
BotMiner [4] 52 0 static X-Means
Yen et al. [7] 9 0 static PCA, K-Means

NADO [5] 41 0 static K-Means
Bhuyan et al. [6] 50 0 static TreeCLUS

UNIDS [8] 9 0 static SCC with DBSCAN
FIRMA [10] 11 0 static FIRMA
Beehive [9] 8 0 static K-Means

Gonçalves et al. [11] 34 0 static EM
Bhuyan et al. [12] 25 0 static TCLUS
FlowHacker [13] 17 5 static K-Means

OutGene [14] 26 4 static K-Means
DynIDS 400+ 100 dynamic K-Means, Agglomerative, DBSCAN978-1-7281-8326-8/20/$31.00 ©2020 IEEE



prevents, e.g., having features for all ports, as they are many
more than 1000. Hence, most works use generic features, e.g.,
overall sum of bytes sent, disregarding valuable port-based
features, e.g., bytes sent on a specific port (see table).

We propose a method to define features at runtime, dynam-
ically, according to data analyzed in each time window. That
is, our approach defines which features should be used in the
clustering process, by analyzing the network data corresponding
to a specific period time (e.g., 60 minutes). The idea is novel
and appealing: dynamically defining traffic features based on
network flows (that we will designate netflow after the original
Netflow [22], although there are now several others [23], [24]),
within a specific time period.

We have made an initial experimental analysis in order to
understand which number of features is desirable and if there
are advantages in increasing the number of features (e.g., at
the limit having one feature generated for each port used in
a time period). For this purpose, we studied the theoretical
and experimental complexity of several clustering algorithms
in order to select those that could support the analysis of data
with higher dimensions (i.e., high number of features) and
more volume (characteristic of computer network data). The
algorithms we have chosen later proved to perform well in terms
of detection capability and complexity.

We present DYNIDS, a network intrusion detection approach
that can dynamically define and extract features from network
data, and uses a clustering ensemble to aggregate hosts with
similar behavior, analyzed in different time windows. Similarly
to Marchetti et al. [25], our approach searches for anomalous
behaviors submerged on the behavior of thousands of hosts,
e.g., among the hosts of a large organization. However, our ap-
proach derives features based on port/service communications
during the analyzed time windows. According to insights of
attacker techniques from MITRE’s Adversarial Tactics, Tech-
niques & Common Knowledge (ATT&CK) framework [26],
[27], we choose to define features based on the top-used ports
and less-used ports. More specifically, at runtime for each
analyzed period, we select not only ports/services that are
more often used (e.g., for detection of top talkers, vulnerability
scans or brute-force attacks) but also ports/services that are
less used (e.g., for detection of network recognition or vul-
nerability scans) or used by few machines (e.g., for detection
of command&control communications, Trojans). Regarding the
cluster ensemble, DYNIDS uses three different algorithms
based on different strategies: partition-based (K-Means), hi-
erarchical (Agglomerative), and density-based (DBSCAN). To
improve the performance of the proposed approach, we made
an ensemble of these algorithms calculating an outlier score
according to the interception results obtained.

We concluded that defining port-based features at runtime
and for each time-period analyzed provides a significant im-
provement in the detection of attacks that generate traffic
in different ports (e.g., scanning, brute-force or DoS). This
approach translates into an ability to detect unknown attacks,
i.e., attacks on which there is no signature, without training the
system, and without having to know in advance which features

are associated with that attack. Furthermore, our experiments
suggest that by increasing the number of features, we better
characterize the data, i.e., machines with similar behavior
are more precisely grouped (e.g., web servers, print servers,
department X, Y, Z machines). However, in some cases, it
becomes more challenging to obtain outliers using clustering
because the features that contribute to highlight the outlier lose
weight. We can conclude that if we want an outlier detector
based on clustering, the features used shall be related to the
anomalous behavior we want to find. Our dynamic feature
definition feature handles this.

We evaluated DYNIDS experimentally with a netflow dataset
publicly available (CIC-IDS-2018 [28]) and real traffic data
obtained at a large military infrastructure. The source code
is freely available for download1. Our approach achieved an
overall F-Score of 0.97 for the public dataset, which is an
excellent performance and outperforms related approaches from
the literature and alternative approaches. The evaluation with
the real-world dataset detected not only the emulated attacks
with high recall, but also unexpected anomalies that required
further investigation. We also compared DYNIDS with two re-
cent schemes: FlowHacker [13] and OutGene [14]. DYNIDS’s
F-Score was always better than the other two.

II. BACKGROUND

This section provides an overview of the clustering approach
for intrusion detection and explains how we have chosen the
algorithms to apply in DYNIDS.

A. Clustering approach

The amount of digital data is growing fast, mostly due to the
Internet of Things. Having so much data creates a great problem
for security systems and analysts since they must search through
a lot more data. Security data processing is often regarded as
a big data problem [29]. Managing such an amount of data is
beyond human capabilities, and the usage of machine learning
methods is becoming more useful to extract information from
vast and multi-dimensional data.

Machine learning techniques are commonly divided into two
main categories, although there are others [30]: supervised and
unsupervised learning. Supervised learning requires training
data, typically manually labeled by humans. Supervised learn-
ing has been used in some misuse-based NIDSs to classify
traffic in two classes: malicious or not. As humans label data,
this approach looks for previously known attacks.

On the other hand, unsupervised learning algorithms do
not require labeled data. Instead, they may be used to infer
unknown classes based on data similarity, a problem called
clustering. Typically, unsupervised learning methods used in
the security domain can be considered to be a sub-category of
anomaly-based intrusion detection [31], [32]. However, unlike
classical anomaly-based NIDSs, NIDSs based on clustering,
e.g., those in Table I, do not require clean training data.
Clustering algorithms are applied over feature vectors, each
vector representing, e.g., a machine or a user, and cluster

1https://github.com/a3ceProject/DynIDS



the entities (machines, users) with similar behavior, i.e., with
similar feature values. This is particularly useful when we
are trying to create a system to detect unknown attacks or
anomalous behavior. The key idea is that big clusters represent
normal behavior and the outliers (i.e., small clusters of entities
or noise) can correspond to anomalous behavior. However,
different clustering algorithms have different initializations and
produce different data partitions [33] according to the shape and
structure of data. One option to overcome the limitations of a
single clustering technique is to combine different clustering
techniques.

B. Clustering algorithms

The clustering algorithms we considered can be classified as
partition-based, hierarchical, and density-based.

K-Means [34] is a landmark in clustering [33], [35] and the
most popular partition-based clustering algorithm. It is known
to produce good results in the context of intrusion detection [9],
[13], [14], as in many other areas [33], [35]. K-Means clusters
are represented by a central vector (cluster mean). Consider
n the number of d-dimensional vectors (to be clustered), k
the number of clusters and i the number of iterations needed
until convergence. To find the global optimum of K-Means is
considered an NP-Hard problem. Hence, the practical approach
is to find a local optimum, which takes linear time O(nkdi).
Hence, in practice, K-Means has linear complexity.

For hierarchical algorithms we use an algorithm that we
designate Agglomerative clustering, although the term is some-
what generic [36]. This class of algorithms is not as far as
popular as K-Means but has been shown to provide good
results with large numbers of data items (our case) and clusters
(not our case) [37], [38]. The algorithm starts with each
object being considered a cluster. Then, it computes pairwise
distances of n data-points and links those together according to
a linkage function (e.g., minimum distance). The results can be
represented by a dendrogram where the root node represents
the whole dataset (single cluster) and each leaf node is a data
object. The complexity of the algorithm is O(n2), mainly due
to the cost of computing all pairs of distances.

Regarding density-based clustering, both Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN [39]) and
Ordering Points To Identify the Clustering Structure (OPTICS
[40]) are well-known. We selected DBSCAN for reasons ex-
plained below. DBSCAN has been shown to be efficient [39],
then criticized [41]; currently it is known to be able to perform
well but to be somewhat sensitive to proper configuration [42].
For each point of the dataset, DBSCAN groups together points
with many nearby neighbors and marks as outlier points that lie
alone (i.e., appear in low-density regions). It takes as inputs the
epsilon-neighborhood (the radius) and MinPts (the minimum
quantity of points within radius) parameters. In short, DBSCAN
generates a new cluster from a data point by absorbing its
neighborhood. OPTICS is heavily inspired in DBSCAN , but
does not explicitly segment the data into clusters. Instead,
it produces a visualization of reachability distances and uses
this visualization to cluster the data. OPTICS overcomes the
problem of DBSCAN’s poor performance when clusters have

TABLE II
CLUSTERING ALGORITHMS COMPLEXITY

Algorithm Method Complexity Ref.
K-Means Partition O(nkdi) [39]
Agglomerative Hierarchical O(n2) [36]
DBSCAN Density O(n× log(N)) [39]
OPTICS Density O(n2) [40]

varying density. DBSCAN and OPTICS have time complexity
of O(n× log(N)) and O(n2) respectively.

In Table II we summarize the studied algorithms. For further
details, Xu et al. [43], [44] provide a survey of clustering
algorithms describing the theoretical time complexity of each
clustering algorithm. They refer that K-Means and DBSCAN
perform well on large-scale data. Our experimental evaluation
of clustering algorithms is according to these theoretical results.

a) Experimental analysis: To decide which algorithms
to use, we tested the most commonly used algorithms in
each category (partition-based, hierarchical and density-based).
The criteria used to choose the most appropriate clustering
algorithms were:
• Performance with data with a high number of features (i.e.,

high dimensional data);
• Ability to identify an attacker in a (labeled) dataset as an

outlier (i.e., isolating the attacker IP as a single cluster).
These initial experiments allowed us to evaluate the perfor-

mance of several algorithms with high-dimensional data and
their efficiency in identifying attacks. For the first criteria,
we used a benchmark from the hdbscan clustering Python
library [45], adapted in order to test the algorithms in terms
of performance against large datasets. For the second criteria,
we used a private labeled dataset, from a real administrative
network, known to produce good results with K-Means in a
previous work [14]. The labeled dataset contains network traffic
flows from one day. This day contains flows from 4616 entities,
one of which is an attacker that performed a port scan and a
dictionary attack.

Most of the algorithms used were those provided by the
scikit-learn Python library [46]: K-Means, DBSCAN, Agglom-
erative, and OPTICS. We tested the algorithms, with the default
configuration and using the data and features from [14], in order
to understand the algorithms ability to detect attacks. From the
algorithms evaluated, we shortlisted K-Means, Agglomerative,
and DBSCAN, as they performed much better than the rest.
Given these results we decided to use an ensemble of K-Means,
Agglomerative, and DBSCAN in DYNIDS.

III. DYNIDS OVERVIEW

Inspired in previous works, DYNIDS does not rely on
knowledge about what is bad behavior, as in signature-based
methods, or what is good behavior, as in typical anomaly
detection. As in previous works, DYNIDS uses clustering to
group entities (e.g., hosts) with similar behavior. That behavior
is characterized by features extracted from netflow [22]). In
DYNIDS the entities are hosts, identified by an IP address.

As explained in the introduction, there is a set of literature
that follows generically our approach, summarized in Table I.



Most works aim to provide general-purpose NIDSs, but they
have all the limitation of defining the features (some related to
ports) in advance, i.e., before runtime, and in small numbers.
For example, in [14], a set of 16 predefined port-based features
was used, specifically for ports: 80-HTTP, 194-IRC, 25-SMTP
and 22-SSH. For each port, four features were created: count
of packets sent and received in each port, as the source or
destination host. Notice that used ports are very interesting
features, as they are used in various ways, notably: as endpoint
process identifiers and as application protocol identifiers [15].

Instead of having predefined features, we explore the idea
of having different port-based features according to the traffic
in each analysed time window. Our key ideas that go beyond
related work are: (1) by choosing specific port features we are
limiting the system’s ability to detect attacks related only to that
port; (2) the use of certain ports/services can vary over time
and this information can be extracted from the traffic itself;
(3) often the services or attacks may be running in different
ports than standard or known ones; (4) besides observing and
deriving features from frequently used ports, it should also be
interesting to derive features from less frequently used ports. As
an example, adversaries may conduct command&control (C2)
communications over a non-standard port [47] or may attempt
to get a listing of services running on remote hosts [26].

Hence, our intuition is that we should define which features
to extract dynamically, at runtime, both to consider all relevant
ports and to avoid considering too many ports, which would
lead to the curse of dimensionality. In the case of netflow
events, our insight is that for each time window analyzed there
are at least three types of different port-based features, derived
from: (1) much used ports, or that are used a lot (e.g., brute
force, DoS); (2) uncommon ports, i.e., ports that are used by
few hosts (e.g., can reveal worm propagation, reconnaissance
activities or botnet communication); (3) ports that appear in
very few flows (e.g., detecting probes to non-existent services).
This same idea can be applied to other types of data sources,
such as Windows OS events. In this case, we could use features
derived from eventID (i.e., less frequent eventID in addition to
the most frequent). However, in the paper we focus in network
flows.

Another key challenge that DYNIDS addresses, is that dif-
ferent clustering algorithms produce different partitions of data
[8]; even different initialization or parameters can give different
results for the same algorithm. To avoid the limitations of a
single algorithm, we propose combining a set of clustering
algorithms. The partial results of each algorithm are translated
into a scoring scheme that we detail in the next section.

IV. DYNIDS DESIGN

This section presents the details of DYNIDS design and
some implementation aspects. As already mentioned, DYNIDS
extracts features from netflow data to group hosts based on
their traffic characteristics. Hence, the approach is divided into
feature engineering, dynamic feature definition, normalization
& parameter inference and clustering ensemble and outlier
scoring. Each of these aspects will be described next.

TABLE III
THE fixed features WITH SOURCE IP AS AGGREGATION KEY

Feature Description
SrcIPContacted # of different IPs contacted by an entity
SrcConnMade # of flows where the entity is the source
SrcPortUsed # of different src ports used by an entity
SrcPortContacted # of different dst ports contacted by an entity
SrcTotLenRcv Sum of total packets length received by an entity
SrcTotLenSent Sum of total packets length sent by an entity

A. Feature engineering

Each flow is analyzed using as an aggregation key either the
source IP (SrcIP) or the destination IP (DstIP). The idea is to
capture 1-to-1 (e.g., authentication brute-forcing), 1-to-N (e.g.,
probe, worm), and N-to-1 (e.g., DDoS, botnet C2) anomalies.
As an example, consider a feature that counts the number
of different ports contacted. This feature would highlight an
attacker executing a port scan [48] as SrcIP (i.e., contacted
many ports). On the other hand, the victim would be highlighted
by other features as DstIP (i.e., received contacts to many
ports).

DYNIDS extracts a set of 12 fixed features and a set with
a variable number of dynamically defined port-based features
proportional to the number (x) of selected ports. The first half
of the 12 fixed features, with source IP as the aggregation key,
is shown in Table III. These fixed features describe general
network activity of an entity (i.e., IP address). The other 6 are
similar but for the destination IPs, thus beginning with Dst.

In addition to the fixed features, DYNIDS dynamically
defines 4 features for each selected port. To improve explain-
ability, each port-based feature is tagged with a: T (Top) for
most used ports; M (Min) for the least used ports; and U
(Uncommon) for ports used by few hosts. For example, consider
that port 80 is the port with the highest packet count (i.e.,
number of packets sent to, or received from, port 80) from
all flows for a given time window being analyzed. Hence, port
80 is a T-top port and would be selected to define 4 features: (1)
T80SrcFrom, # of packets sent from port 80; (2) T80SrcTo, #
of packets sent to port 80; (3) T80DstTo, # of packets received
on port 80; (4) T80DstFrom, # of packets received from port
80. This variable set of features (4 for each selected port) is
obtained with different port selection algorithms that we define
next.

B. Dynamic feature definition

DYNIDS extract features from netflow data in multiple time
windows, following OutGene [14]. The idea is to analyze the
stream of events in different time windows, at different time
scales, so that we can detect attacks independently of the pace
at which they are executed (e.g., avoiding evasion techniques
such as a slow network scan). For example, an attack may be
detected if we analyze traffic at the scale of one hour, but not at
the scale of one day or one minute. Hence, the approach can be
executed on a base time window of duration B (see Figure 1).

DYNIDS dynamically defines which port-based features
(four to each selected port) to extract at runtime. The algorithm,
which we name DYN3 x, serves as the basis for this dynamic



Fig. 1. Flowchart of the dynamic feature definition process

Fig. 2. Flowchart of the clustering process

definition of port-based features. This algorithm derives features
from the most and least used ports and the ports used by fewer
machines. To compare with other approaches and show the
benefits of the chosen one, we define three variants:
• TOP x: features based on the x ports that appear in more

flows;
• DYN2 x: features based on the x/2 ports that appear in

more flows and the x/2 ports that appear in fewer flows;
• DYN3 x (the DYNIDS algorithm): features based on the

x/3 ports that appear in more flows, the x/3 ports that
appear in fewer flows, and the x/3 ports used by fewer
machines.

The idea of having different algorithms is to explore different
strategies to generate features in order to understand the ad-
vantages and limitations of each one through the experimental
analysis (see Section V). Also, the variable x, allow exploring
the effects of decreasing/increasing the number of features.
However, in runtime, only one of these algorithms should be
used with a fixed x.

Next, we define the search space for selecting the port-
based features. According to RFC 6335 [15], port numbers are
assigned in various ways, based on three ranges: System Ports
(0-1023), User Ports (1024-49151), and Dynamic and/or Private
Ports (49152-65535). The first two groups are available for
service identifier and assignment through IANA, although many
are not currently assigned [16], while the later must not be used
as a service identifier. Having this in mind, we limit our search
space for the most used ports and uncommon ports, within the
range of System and User Ports (0-49151). The search space
for less frequently used ports was limited to System Ports (0-
1023) only, the range more prone to probes and scans. It is
worth to refer that we tried other alternatives (e.g., using the
entire port range for all types of port-based features), although
with less success.

C. Normalization and parameter inference

The extracted features for each B time window must be
normalized before being given to the clustering algorithms,
as their values can vary significantly (see Figure 2). For
example, if we chose Euclidean distance as a distance measure
for clustering, normalization can assure that every feature
will contribute proportionally to the final distance. In order
to perform normalization, min-max scaling has to be used:

x′ = (x −min(x))/(max(x) −min(x)), where min(x) and
max(x) represent range values. This method returns feature
values within range [0,1]. The most obvious alternative would
be to use logarithmic scaling, but it would mitigate the differ-
ences between values, making detection harder (we observed it
experimentally).

After normalization, a critical decision is to select the pa-
rameters of the clustering algorithms correctly, e.g., the K for
K-Means, a non-trivial task [49]. Since each time window can
have a different number of entities and features, data can vary
significantly. Thus, fixing the number of clusters (for K-Means
and Agglomerative) or epsilon (for DBSCAN) would not be a
good choice since it could be unfit to that specific data. To solve
this problem, we propose applying the elbow method to each
time window. The idea of this method is to test various numbers
of clusters in order to achieve the optimal number of clusters,
i.e., to choose a number of clusters K such that adding another
cluster does not improve much better the total within-clusters
sum-of-squares (WCSS). In the case of the DBSCAN epsilon
parameter, the distances between each entity and its neighbors
are calculated and sorted. A suitable value for epsilon is where
the change is most pronounced [50]. All clustering algorithms
were set to use Euclidean distance.

D. Clustering ensemble and outlier scoring

The goal of using clustering is to group machines with sim-
ilar behavior. The behavior is defined by the 12 fixed features
and the port-based features, which are defined dynamically
from network traffic in each time window, by inspecting the
flows observed in that window. The assumption that is made
is that machines that behave differently from the majority
are anomalous. This anomaly can indicate the machine is
suffering or performing an attack. Hence, we use clustering to
detect anomalies in an unsupervised way. However, besides the
possibility of producing different results, the various clustering
algorithms deal differently with different shapes of data [33].
To avoid the lack of robustness of a single clustering algo-
rithm, we propose combining the results of different algorithms
(K-Means, Agglomerative and DBSCAN) based on multiple
clustering strategies (partition, hierarchical and density-based).
Several classification methods can be used and, if needed,
manual inspection can be performed by a security analyst,
starting with the smallest clusters. However, to automate the
identification of anomalies, we consider an outlier as an entity
that is isolated in a cluster itself. The disadvantage of this
approach is that this method does not work when there are
several machines with the same anomalous behavior (i.e., they
are isolated in a cluster with more than one entity).

Finally, a score is assigned to every outlier. The score can
have 3 weights: (1) very high confidence, when the same outlier
is given by all the three algorithms; (2) high confidence, if the
outlier is given by two algorithms; and (3) low confidence,
when the outlier is given by only one algorithm. The human
analyst may intervene or not according to the priority given to
outliers. Trivially, if no algorithm produces outliers, no action
is required.



TABLE IV
METRICS USED IN THE EVALUATION

Metric Meaning/Formula
True Positives (TP) entities correctly classified as outliers
False Positives (FP) entities wrongly classified as outliers
True Negatives (TN) entities correctly classified as inliers
False Negatives (FN) entities wrongly classified as inliers
Precision (PRE) TP / (TP+FP)
Recall (REC) TP / (TP+FN)
F-Score 2 × PRE × REC / (PRE+REC)

V. EXPERIMENTAL EVALUATION

To develop and implement DYNIDS for evaluation, we used
Python (v3) [51]. Additionally, we used well-known libraries
such as Pandas [52] for data manipulation, scikit-learn [46]
for data processing and clustering algorithms, and matplotlib
[53] to get heatmaps to aid visualization of features that are
relevant in identifying outliers. All the experiments, were done
in commodity hardware (Intel(R) Core™ i7-8750H CPU @
2.2GHz with 16GB RAM).

The focus of the experiments is: (1) the analysis of results
when increasing number of features; (2) the comparison of
different approaches for the dynamic feature definition; (3)
the improvements obtained by the cluster ensemble; (4) and
performance evaluation.

a) Evaluation Metrics: We consider an outlier to be a
host, identified by an IP address, isolated in a cluster (one entity
cluster). The expressions in Table IV can be translated into:
(1) Precision the fraction of outliers that are real (i.e., true
positives); (2) Recall the fraction of outliers that are correctly
classified as such by the detector; and (3) F-Score a global
detection score. Another metric, accuracy, is frequently used
in this context, but it is misleading with unbalanced datasets,
which are essentially all realistic cases. Therefore, we avoid
using accuracy, and we privilege F-Score, which summarizes
the overall performance.

The results presented in the following sections, consider the
outliers with very high confidence, i.e., those flagged by all
the three clustering algorithms (see Section IV-D). Although
we did experiments with other time windows, we present the
results only for 10 and 60 minutes for lack of space. Moreover,
regarding the CIC-IDS-2018 dataset, we have made feature
extraction and the clustering process with both internal and
external entities as aggregation keys. However, for simplicity,
we considered for evaluation only the results for the internal
machines, which are the ones we are interested in protecting.

A. Dataset characterization

We used two datasets containing netflow events for the
experimental evaluation: a public synthetic dataset provided by
the Canadian Institute for Cybersecurity (CIC-IDS-2018 [28])
and real traffic flows (private and confidential) obtained at a
large military infrastructure. The information about the datasets
is summarized in Table V. The public dataset was used for
a comprehensive evaluation that we describe next, while the
real dataset was used to validate the approach in a real-world
scenario.

TABLE V
SUMMARY OF THE DATASET CHARACTERISTICS

Dataset Size Num. events Num. hosts
CIC-IDS-2018 5.7GB 82,108,448 450 (internal)
Military 160 GB 5,500 (internal)

TABLE VI
SUMMARY OF THE ATTACKS FOR THE CIC-IDS-2018 DATASET

Day Attacks (duration) Pattern
Day1 Brute force to FTP & SSH (90min each) 1-to-1
Day2 DoS GoldenEye & Slowloris (40min each) 1-to-1
Day3 Brute Force to FTP & DoS Hulk (60min + 35min) 1-to-1
Day4 DDoS LOIC-HTTP (60min) N-to-1
Day5 DDoS LOIC-UDP & HOIC (30+60min) N-to-1
Day6 Brute force Web/XSS & SQL inj. (60min+40min) 1-to-1
Day7 Brute force Web/XSS & SQL inj. (60min+70min) 1-to-1
Day8 Infiltration & port scan (70+60min) 1-to-1
Day9 Infiltration & port scan (60+90min) 1-to-1

Day10 Botnet (80+90min) 1-to-N

a) CIC-IDS-2018: This dataset was developed to pro-
vide data to analyse, test and evaluate NIDSs. To generate
such a dataset, its authors developed a systematic approach
in order to produce a diverse and comprehensive benchmark
dataset. In their approach, they created user profiles with
abstract representations of activity seen on typical networks.
The benign behavior of each machine was generated using CIC-
BenignGenerator [28], which is a tool to generate B-Profiles,
i.e., realistic benign behaviors of a network. The tool uses
machine learning and statistical analysis techniques to generate
network events as if users in a typical network produced them.
The network topology represents a typical medium company,
with six subnets, deployed on the AWS computing platform.

This dataset includes seven different attack scenarios: Brute-
force, Heartbleed, Botnet, DoS, DDoS, Web attacks, and in-
filtration of the network from inside. The ten days of normal
activity and attacks performed are shown in Table VI. In the
table, it is shown which attacks were conducted each day and
what was the duration. In all days (except day 4) the attacks
occurred in two distinct periods (one attack at a time). The
rightmost column indicates the relation between the number of
attackers and victims. The attacks were performed from one or
more machines, using Kali Linux, in a specific network (within
public IPs range) created only to attacker machines. Some of the
tools used were Patator for brute force, Ares botnet, Selenium
and Heartleech for web testing, Hulk, GoldenEye, Slowloris,
Slowhttptest for DoS, and Low Orbit Ion Canon (LOIC) for
DDoS.

b) Military dataset: The dataset of the military infras-
tructure was obtained from the Security Information and Event
Management system (SIEM) [54] in production in that network,
which collects netflow events from internal routers. These flows
can give insights into misbehavior of internal hosts, undetected
by deployed security systems. The dataset corresponds to a full
month, with approximately 5,500 computers and 160 GB of
size.

We emulated 4 attacks in that network to serve as ground
truth when evaluating DYNIDS. The attacks were stealth dic-
tionary attacks (against SSH and RDP) preceded by port scans



Fig. 3. HeatMap of DYN3 100 (top) and OutGene (bottom) approaches for SSH brute force attack of day1 (CIC-IDS-2018 dataset). Red and blue arrows on
the left represent TP and FP, respectively. White surrounded features are equivalent between heatmaps. The red surrounded features are features corresponding
to source ports used by the attacker.

(1-to-N and 1-to-1) at a slow pace (1 and 5-second interval).
The main reasons for choosing these attacks were: (1) to have
attacks that go unnoticed by traditional protection systems; (2)
to capture internal reconnaissance activities (e.g., port scans)
and slow dictionary attacks used by attackers with privileged
information.

B. Increasing the number of features

This section shows the impact of increasing the number of
features. For that purpose, we tested DYN2 x varying x from
10 to 100.

Recall that DYN2 x consists in dynamically defining port-
based features by selecting the x/2 ports in more flows and
the x/2 ports in less flows (Section IV). Also, notice that for
each selected port, four different features are derived from the
traffic analyzed in each time window, so we used at most 412
features (12 fixed, 400 for 100 ports).

We also compare with OutGene [14] and FlowHacker [13],
both recent related work that only use fixed features and a
single clustering algorithm, K-Means. Note that both OutGene

Fig. 4. Effect of increasing the number of features (w/CIC-IDS-2018 dataset).

and FlowHacker also consider IP addresses as the aggregation
key. OutGene builds a single vector calculating features (count-
based) depending on whether the IP address is source or
destination. FlowHacker constructs two feature vectors (statistic
and count-based) using IP addresses as a source or destination
aggregation key and processes both keys independently, so we
present results for both, which we denominate FlowHacker



(src) and FlowHacker (dst). We used Python to implement the
feature extraction and clustering process of both approaches,
using the same libraries we used to implement DYNIDS. We
selected OutGene and Flowhacker because they are recent; we
do not compare with more solutions as they would be older
and no implementations are available.

In Figure 4, F-Score results are represented for all the attacks
of the CIC-IDS-2018 dataset, only for the 10-minute and 60-
minute time windows for lack of space. We can observe that by
increasing the number of features, we get better F-Score values,
e.g., 0.48, 0.56, 0.64, and 0.86 respectively for DYN2 10,
DYN2 20, DYN2 40, and DYN2 100, with B = 60min. The
explanation for this is that with the increase in the number of
features, we have more information to discriminate behaviors,
namely anomalous behaviors. For example, excellent results are
achieved in the detection of brute-force attacks.

To illustrate this example and to help understanding the
meaning of outliers, we show heatmaps with the most relevant
features, i.e., with the features with highest variance between
clusters. Figure 3 shows two heatmaps (both DYN3 100 and
OutGene) for the clustering for day one, when there was an SSH
brute-force attack (see Table VI). Features are at the bottom
(x-axis), clusters on the left (y-axis), the color represents the
value of each feature for each cluster (the lighter, the higher).
The comparison allows us to see how more features can reduce
FPs and give more information about which attack is being
performed. In this case, OutGene produces 1 TP along with 2
FPs, whereas DYN3 100 only produces the expected TP.

Something unexpected is that the approaches with less dy-
namic features (DYN2 10 and DYN2 20) performed worse
than OutGene that uses a fixed set of features. What happens
is that DYN2 x not always selected the features necessary
to detect some of the attacks. OutGene, on the contrary, was
configured with the necessary features by coincidence.

We also tested values of x > 100 but we found that the
performance does not increase, as no further insight about
attacks is gained by inspecting the activity on more ports.

C. Comparison of different approaches

This section compares the different approaches to dynamic
feature extraction (see Section IV). Contrary to what could be
intuitive at first, defining dynamic features solely based on
the most used ports (i.e., TOP x) is not the approach that
guarantees the best results. This is observable on Figure 5, e.g.,
on the graph of the left, where TOP 100 has worse F-Score
(0.72) than DYN3 100 (0.8/0.97 for B = 10 and B = 60min.)
and DYN2 100 (0.78/0.86 for the same windows) that use
exactly the same number of features (412). The main reason
is that the least used ports are also important for detecting the
type of attacks. Consider an example of network reconnaissance
directed to well-known ports (i.e., 0 to 1023); features would
be generated from these connection attempts, including less
used ports with low traffic volume. A set of port-based features
would be generated, where only the entity that made the port
scan and the victim, the only with traffic in these ports, would
have features with maximum values; all the other entities would
have those same features at zero. Thus, we end up having a

sparse matrix, where those features will only be relevant for
attackers/victims related to network recognition. However, for
all IPs that have those features at zero, the Euclidean distance
to all the other entities does not change, making it irrelevant to
have those features when comparing those entities with all the
others (besides attacker and victim). Another example is the
detection of unauthorized software, easily unveiled by features
based on ports used by a few machines, regardless of traffic
volume. However, it is not trivial to see that this type of feature
allows the detection of attacks, such as brute force, that generate
many requests sequentially with several different source ports
(e.g., see features surrounded in red in Figure 3).

A second conclusion is that increasing the size of the
analyzed time window, TOP x performs worse. That is, in a
larger time window, there is a broader set of used ports and
the probability of the TOP x approach select ports relative to
the attack decreases. On the other hand, this factor is beneficial
for the other two approaches because the less used ports end
up being more easily highlighted. This can be seen in Figure 5
by observing the F-Score values for each time window in the
different approaches, as previously mentioned.

In comparison, OutGene and FlowHacker performed worse
than all the approaches that use dynamic port-based features
in terms of F-Score, especially than Dyn3 100 that uses a
little more than 400 features (Figure 5). A few results for
FlowHacker aggregated by destination IP address provided very
good results, but the approach is prone to higher values of FP.

In summary, both DYN2 x and DYN3 x (DYNIDS) achieve
the best results, the latter being the best because that it aggre-
gates three different types of port-based features, thus obtaining
a better characterization of the data according to the factors
mentioned above. DYN3 x can detect all the dataset attacks,
except for the attack on day 10, when there are 10 victims
infected with a botnet (Zeus and Ares). The non-detection
is due to the classification method used – an outlier is an
entity isolated in a cluster– does not allow detecting groups of
victims with the same behaviors (10 in this case). This should
be addressed by an analyst, doing manual inspection of small
clusters. For this reason, this attack was not taken in account
for the evaluation metrics.

D. Performance of cluster ensemble

The evaluation of the cluster ensemble is presented in Figure
6. As can be observed, the K-Means and Agglomerative algo-
rithms have similar performances (F-Score on the left), whereas
DBSCAN has the highest Recall (i.e., is the most sensitive)
at the cost of generating the highest number of false posi-
tives (thus, the lowest Precision). The ensemble significantly
improves the individual results of each algorithm, in particular
those of DBSCAN. Notice also that Precision is what improves
the most with the use of the ensemble, because there is a high
reduction of the number of FPs.

Regarding the execution times, to calculate the total time
for the whole process, we have to add the time needed for
extracting the features from flow data, to the time needed for the
clustering process. The highest values we obtained were around
1% of the time window size itself. Overall, the cluster ensemble



Fig. 5. Comparison of the performance DYNIDS (DYN3 100 in the graphs), other approaches, OutGene and FlowHacker.

Fig. 6. Comparison of the overall performance of the different clustering algorithms and with the cluster ensemble (i.e., DYNIDS).

complexity is O(n2) due to the use of Agglomerative clustering
algorithm. The cost to extract features grows linearly with the
size of the input data, which depends on the size of the network,
the duration of the time window analyzed and the volume
of traffic and connections in that period. Considering we did
not implement parallel processing and have used commodity
hardware in the evaluation, we can say that the complexity
allows a practical implementation in real-world scenarios and
that our dynamic feature selection adds no significant delay to
the analysis.

E. Evaluation with a real-world dataset

We made a less detailed evaluation using the DYN3 x
approach and the military dataset, intending to show that
DYNIDS works with real-world data. DYNIDS was able to
reliably isolate both the attackers and the victims (in both
cases internal hosts), leading to no FPs. The port scan, even
at a very slow pace, generates port-based features based on the
least used ports. This allowed the detection of the attack. Table
VII summarizes the results for both days when the emulated
attacks occurred. The first day includes a 1-to-1 slow port scan
(5sec. pace) plus an SSH dictionary attack (2min. pace). The
second day includes a 1–to-N slow port scan (1sec. pace) plus
an RDP dictionary attack (30sec. pace).

TABLE VII
SUMMARY OF RESULTS WITH MILITARY NETWORK DATASET

Day F-Score Best window Comments
day1 1 10min no FP among 2332 entities
day2 1 10min no FP among 2112 entities

We also processed the days of the dataset with regular traffic
(i.e., with no attacks injected) and unexpectedly found some
anomalies indicating misconfigured devices or unauthorized

software, that we reported to the security operations team,
which in turn provided excellent feedback on DYNIDS.

In summary, the alerts raised by DYNIDS corresponded to a
real threat or anomaly. The fact that DYNIDS have not obtained
false positives, as it did in the public dataset, has to do with
the existence of more machines in the real-world data and,
consequently, larger groups with the same pattern, allowing to
isolate outliers in single clusters better. All in all, DYNIDS
proved to be useful in a practical setting without significant
effort to deploy since it just needs to be fed with netflow events.
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