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Faced with the challenge of dependability, we have 

recently explored multicloud solutions to increase 

the resilience and availability of MapReduce. Based 

on this experience, we present system design guide-

lines that allow the scaling out of MapReduce com-

putation to multiple clouds to tolerate arbitrary and 

malicious faults, as well as cloud outages. Crucially, 

the techniques we introduce have reasonable costs 

and do not require changes to MapReduce or to the 

users’ code, enabling immediate deployment.
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loud computing has emerged as the 
paradigm for outsourcing computa-
tion. Cloud service providers have 
been building massive data centers 
that are distributed over several 
geographical regions to efficiently 

meet the demand for this service. These data centers 
typically contain tens of thousands of commodity 
servers and use virtualization technology to do provi-
sioning of computing resources. Clouds are starting 
to be used together, forming multiclouds.1 When the 
combination of clouds is created by users inconspicu-
ously to the cloud providers, such multiclouds can 
be called clouds-of-clouds.2 The purposes of using 
several clouds vary, but common goals are increasing 
performance and reducing costs.

Dependability problems in cloud services can 
cause great losses to its users and are becoming 
increasingly common. Hardware components are 
prone to soft and hard failures that reduce their reli-
ability and the availability of the cloud service, with 
impact on the software running atop. Studies made 
at Google and Microsoft concluded that errors in 
the DRAM, chipset, and CPU of commodity serv-
ers are more prevalent than previously believed.3,4 
Therefore, fault tolerance in cloud computing plat-
forms and applications is a crucial issue to the users, 
not to mention the cloud providers themselves.

Cloud computing has enabled computation of 
massive volumes of data that traditional database and 
software techniques had difficulty processing in an 
acceptable amount time.5 One of the most popular 
distributed data-processing systems for analyzing big 
data in cloud environments is Hadoop MapReduce, 
an open-source platform based on Google’s MapRe-
duce paradigm.6,7 The popularity of this framework 
made the MapReduce model prevalently used for 
critical applications, such as medical research and 
finance, where outputting wrong results and service 
unavailability may be unacceptable. Unfortunately, 
Hadoop does not deal with arbitrary and malicious 
faults and does not scale the computation out to mul-
tiple clouds to deal with availability issues.

In this article, we give an overview of our recent 
research on scaling out Hadoop to multiple clouds 
for tolerating arbitrary faults, malicious faults, and 
cloud outages (unavailability of entire data centers). 
This contrasts with previous work on multicloud 

MapReduce (e.g., G-Hadoop) that has not considered 
resilience, having focused exclusively on scalability 
of computation.8 The design guidelines we propose 
include two additional goals to foster adoption: the 
overhead should be acceptable, and no changes to 
Hadoop nor to the user’s code should be required.

To address these challenges, the design we pro-
pose for resilient MapReduce systems is based on 
three core ideas. The first consists of performing 
replication of the processing in a set of clouds. Using 
replication may be considered expensive, but cloud 
outages are becoming so common that even cloud pro-
viders are exploring this approach (Amazon recently 
launched the Cross-Region Replication service).9–11 
Importantly, our solution minimizes the replication 
overhead (see the section “Just Enough Replication”). 
The second idea is to leverage the diversity provided 
by a multicloud environment in the design of context-
based scheduling schemes that distribute the process-
ing across clouds in such a way that performance is 
improved (see the section “Context-Based Schedul-
ing”). Third, the solution should include fine-grained 
replication (at the task level) to achieve quick recov-
ery in case of a fault. This can be achieved without 
modifying the Hadoop source code by means of a new 
abstraction we propose: the logical job (see the section 
“Fine-Grained Replication”).

The core techniques introduced in our design 
emanate from our experience in building two resil-
ient multicloud MapReduce solutions—Medusa 
(code available at https://bitbucket.org/pcosta_pt/
medusa) and Chrysaor (code available at https://
bitbucket.org/pcosta_pt/chrysaor)—and one ear-
lier solution that performs replication in a single 
cloud.12–14 We evaluated our solutions in a real tes-
tbed, considering several MapReduce applications, 
to assess the performance in different scenarios (see 
the “Evaluation” section). The main result is that, 
by applying the proposed techniques it is possible to 
scale out Hadoop MapReduce to multicloud envi-
ronments to tolerate the above-mentioned classes of 
faults at reasonable costs, while requiring minimal 
modifications to the users’ jobs, and in a way that 
is compatible with any Hadoop Map Reduce version.

Background
MapReduce was originally designed by Google for 
calculating web search indexes and running other 
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large-scale data processing jobs.7 Hadoop Map Reduce 
is an open implementation that appeared a few years 
later and that is currently the most adopted.6

The term MapReduce denominates both a pro-
gramming model and the corresponding runtime 
environment. As the name indicates, MapReduce 
involves two functions: map and reduce. The unit of 
execution is the job, which is typically broken into one 
phase that executes map tasks and another that exe-
cutes reduce tasks (each task runs the map or reduce 
functions once). Figure 1 shows a generic example of 
the execution of a job. The input data is split into files 
called splits. When a job starts running, each split is 
processed by the map function in a map task (map 
phase). Then, the result of the tasks is partitioned, 
transferred, and sorted (shuffle & sort phase). In the 
end, the reduce tasks process the partitioned data 
using the reduce function (reduce phase). This sim-
ple model can express many real-world applications.7

The main components of Hadoop are the Hadoop 
MapReduce and Hadoop Distributed File System 
(HDFS) (see Figure 2). In Hadoop, Map Reduce jobs 
are submitted to and managed by a central compo-
nent called resource manager. The resource manager 
assigns map and reduce tasks to node managers, mon-
itors these nodes, and tracks the progress of the job 
execution. The node manager is responsible for man-
aging containers where tasks run. Although the fig-
ure shows a single node manager, typically there are 
many of those, as they are the components that do 
the (large-scale) data processing. A Hadoop MapRe-
duce runtime works in a single data center. HDFS 
is the default file system for Hadoop MapReduce. 
It stores files broken into blocks that are replicated 
in different servers (data nodes) for fault tolerance. 
HDFS can handle many servers for scalability.

Hadoop was designed to be fault-tolerant as, with 
thousands of devices (computers, network switches, 

routers, and power units), component failures are 
necessarily frequent. Hadoop tolerates faults using 
two techniques: i) monitoring and restarting tasks 
when servers, node managers, or the tasks crash; and 
ii) adding checksums to the files in HDFS to detect 
data corruption in disks. However, these mechanisms 
only work in a single cloud, cannot deal with cloud 
outages, and only tolerate crash faults—not arbitrary 
or malicious errors.

In this paper, we consider that MapReduce 
tasks, both map and reduce, can suffer arbitrary 
faults, often called Byzantine faults. These tasks 
may for instance stop or produce wrong results. To 
deal with these faults we execute two or more repli-
cas of each task. We assume that there are limits on 
the number of faulty replicas and clouds (including 
resource managers), and that there is a proxy that 
does not fail (details next).

In the following sections, we describe the three 
key techniques we propose as guidelines for the 
design of multicloud resilient Hadoop MapReduce 
frameworks.

Just Enough Replication
Replication is a common strategy to ensure the 
integrity and availability of distributed services in 
which individual components may fail due to crash 
faults or arbitrary faults.

Replication for MapReduce
There are many algorithms to tolerate Byzantine 
faults in the literature, but only one that does so in 
the context of MapReduce.14 That framework is a 
modified Hadoop MapReduce that essentially repli-
cates map and reduce tasks (i.e., runs several copies 
of each), then compares the results obtained by rep-
licas to detect Byzantine faults. The main challenge 
of this solution is the efficiency of replication. This 
is achieved by requiring only f 1 1 replicated tasks to 
tolerate f faults in case there are no faults, instead of 
the 3f 1 1 replicas the typical Byzantine fault-tolerant 
state machine replication algorithms would require.15 
However, this solution works only in a single data 
center and as such does not tolerate cloud outages.

Figure 3 generically presents our approach of 
replicating MapReduce in a set of clouds, i.e., in a 
multicloud. The proxy is the central component to 
which the client submits a MapReduce job (note 
that this is transparent to the client—she does not 
need to be aware of the presence of a proxy). The 
proxy is an intermediate component between the 
user and the Hadoop resource managers installed 
in different clouds. In this example, each cloud con-
tains one Hadoop runtime, and the proxy interacts 
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FIGURE 1. Execution of a MapReduce job. HDFS is Hadoop Distributed 
File System.
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with the several runtimes by sending them Hadoop 
commands (e.g., instructing to start a job) over a 
secure channel.

Consider that f is the maximum number of task 
replicas and clouds that may fail (we normally con-
sider these two thresholds separately, but we are 
simplifying here). When a job is submitted by the 
client, our solution involves executing f 1 1 replicas, 
one per cloud. In the figure, we consider f 5 1, so 
the proxy selects two clouds—A and B—to execute 
the replicas. During the execution, each task rep-
lica will produce an output and the respective digest  
(a collision-resistant hash, calculated, e.g., using 
SHA-256). The digests will be compared to check if 
the result is correct: if there are f 1 1 equal outputs 
then that output is correct as at most f replicas may 
produce wrong results. Otherwise, a new replica is 
executed. If a cloud stops responding a new one is 
selected (Cloud C in the figure).

We have developed two solutions that follow the 
generic scheme of Figure 3: Medusa and Chrysaor. 
Their main difference is that they work at differ-
ent levels of granularity: Medusa deals with faults 
at the job level, whilst Chrysaor deals with faults at 
the task level. Sections “Replication in Medusa” and 
“Replication in Chrysaor” describe these solutions.

Replication in Medusa
Medusa replicates full jobs and compares only their 
final outputs, more precisely, their digests. If it 
obtains f 1 1 identical digests, then the outputs are 
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manager

4: submit job
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resources
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Map reduce
program
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Job client
1: run job
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FIGURE 2. Architecture of Hadoop MapReduce.
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FIGURE 3. Proxy executing a job in two clouds without faults (f 5 1).
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equal, as digests are collision-resistant (no two dif-
ferent outputs can produce the same hash). Other-
wise, the proxy cannot identify which of the replicas 
is faulty and it will react accordingly; it only knows 
that there is a disagreement on the result.

Medusa can deal with three faulty scenarios:  
i) with accidental faults, ii) with malicious faults, and 
iii) with cloud outages. Initially, Medusa will launch 
f 1 1 replicas of the job in distinct MapReduce run-
times, running in different clouds. When these jobs fin-
ish executing, Medusa will validate the computation by 
comparing the digests of their outputs. Medusa deals 
with accidental faults by reexecuting the same faulty 
job in the same clouds until it obtains equal results. 
The rationale for reexecuting in the same clouds is that 
accidental faults are inherently intermittent, so it is to 
expect they will eventually no longer affect the same 
job. This is in contrast with malicious faults or cloud 
outages, that require reexecutions in an extra cloud. In 
the former case, because one of the clouds cannot be 
trusted. In the latter, due to one of the clouds being 
no longer available. In any of these cases the frame-
work reexecutes the faulty job in another cloud until 
it obtains f 1 1 equal results. In the malicious case, 
if the reexecution ends correctly it is possible not only 
to validate the results but also to find which cloud is 
compromised. The execution aborts if no final result is 
obtained and no more clouds are available.

Replication in Chrysaor
Unlike Medusa, Chrysaor replicates tasks, not 
jobs. All map and reduce tasks produce a digest of 
their output and the proxy compares the digests of 
every set of replicas. This allows the identification 
of which tasks have produced different results and 
to reexecute them immediately after they finish, 
instead of having to wait for the end of the job and 
to reexecute it fully (as in Medusa). Faults in the 
map phase must be dealt slightly differently from 
faults in the reduce phase (this will be made clearer 
in the section “Fine-Grained Replication”).

Similar to Medusa, when Chrysaor is in the 
presence of a fault, it cannot identify which of the 
replica(s) is (or are) faulty. When dealing with acci-
dental faults, Chrysaor has the ability to reexecute 
the task for which there was no f 1 1 identical digests 
in the same clouds, until it obtains f 1 1 equal results.

When dealing with malicious faults or cloud 
outages, it is necessary to execute the tasks in an 
extra cloud, for the same reasons as above. If the 
system is dealing with a fault in a map task, Chrys-
aor executes the faulty tasks in another cloud until 
it obtains f 1 1 equal results. If the reexecution of 
the map tasks has ended correctly, the solution has 

the capability to validate the results and find which 
cloud is compromised and exclude it from the rest of 
the execution. If a malicious fault or cloud outages 
have happened during the execution of the reduce 
tasks, it is necessary to run a new full job in a new 
cloud, and then validate the output. The execution 
aborts if no correct result is obtained and no more 
clouds are available to reexecute the tasks.

Note that we explained the difference between 
handling accidental faults and malicious faults as if 
the system was able to distinguish them, which is 
not the case. In practice, the system is configured 
with a threshold on the number of times it tries to 
handle faults as if they were accidental, then consid-
ers them malicious (i.e., starts using a new cloud).

Context-Based Scheduling
When we are dealing with several cloud providers, 
we are facing heterogeneity in the server machines 
and the network. Choosing the best clouds is critical 
to gain in performance. Notice that we do not mean 
the “best cloud” per se, but the cloud with more 
resources available to the user at the moment of sub-
mitting a MapReduce job. Naturally, if a job runs in 
a particular cloud with high computational power 
and is connected by high-bandwidth links, it ought 
to take relatively shorter time for the job to finish. 
On the contrary, if a cloud has low bandwidth links 
and low computational power, or if it is overloaded, 
it might take longer for the job to complete.

Devising a context-based scheduler that distrib-
utes replicated tasks across different clouds based 
on network throughput and computational power 
requires predicting which clouds (and which con-
nections) will be the fastest. This prediction needs to 
consider both the historical performance as well as 
the current status of each cloud, allowing us to incor-
porate the heterogeneity of the clouds into the sched-
uling decision. As a consequence, our scheduler is 
split into two parts: one for estimating data transmis-
sion time and the other for estimating data processing 
time. We detail each metric in the following:

Estimating data transmission time. The data 
transmission time between two clouds depends on 
i) its geographical distance, ii) the network through-
put, and iii) the size of the data to transfer. Consid-
ering that the throughput varies with respect to the 
traffic load to other clouds (among other variables), 
the framework needs to periodically monitor the 
throughput for each pair of clouds in the system.

Estimating data processing time. The time for 
completing a given MapReduce job mainly depends 
on the following variables: i) the capacity of the cloud 
running this job; and ii) the configuration of the job. 
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For example, a high level of parallelization (i.e., a 
large number of map and reduce tasks) for the same 
job in the same cloud, and having tasks accessing 
mostly local splits implies shorter data processing 
times. As such, estimating the data processing time 
involves having a scheduler that takes into consider-
ation three types of features: job configuration; cloud 
capacity; and cloud overhead. We describe the repre-
sentative features for each type in the following:

• Job configuration features. Several variables 
in the job configuration need to be considered 
for the scheduler to predict the duration of the 
next job execution. These include the size of 
the input data, the number of map tasks, and 
the number of reduce tasks. These variables are 
known before the job starts. Clearly, large input 
data and a small number of map and reduce 
tasks imply long job completion times.

• Cloud capacity features. Different clouds have 
different characteristics, as they are composed 
of diverse hardware infrastructure (number 
and type of servers, etc.). Features of this type 
include the clock speed and the number of 
cores of the CPUs, the total memory capacity, 
etc. These variables define the cloud capacity, 
but they do not give evidence of the load of the 
cloud in a particular moment.

• Cloud overhead features. These features assess 
the load of the cloud at a specific time, in com-
parison to its base capacity (cloud capacity 
features). For instance, if there is resource con-
tention in the cloud and there are jobs waiting to 
be launched, most likely this cloud should not be 
selected to execute the job. In contrast, if a cloud 
has sufficient free resources, the scheduled job 
can finish early, even if its capacity is relatively 
low. The proposed scheduler uses the number of 
MapReduce jobs that are currently running in 
the cloud, the percentage of completion of the 
running jobs, the number of jobs queued to run, 
and the size of the input data of the running jobs 
as features to measure the cloud overhead.

Figure 4 shows an example of our context-based 
scheduler. In the figure, we have three clouds with 
higher computational power (Cloud A, B, and D), 
each with four machines with 4 GHz CPUs and 16 
cores, and 16 GByte of RAM. Cloud C is less compu-
tationally powerful with 2.8 GHz CPUs with only 2 
cores, and 2 GByte of RAM. Notice that Cloud D has 
a high load in the MapReduce queue, which means 
that there are several jobs waiting to execute. In terms 
of the network connections between clouds, clouds A, 

B, and C are interconnected with high-throughput 
links (shown with the plain arrows). The remaining 
clouds are either connected with low bandwidth links 
or are overloaded with traffic (dashed arrows). In this 
example, Cloud A and Cloud B seem the best option 
to run the next MapReduce job replicas.

The goal of the scheduler is to take into account 
both an estimation of the data transfer time and the 
data processing time (considering both the job con-
figuration, the cloud capacity, and the cloud over-
head features) to choose the best cloud to run the 
next job. The scheduler estimates the time to trans-
fer the data between clouds based on the historic 
throughput measurements and the size of input data 
to transfer. To estimate the data processing time, the 
scheduler uses linear regression based on the job 
and cloud features to obtain the weight factors that 
are part of the next job prediction.

Fine-Grained Replication
Following our work in Medusa, the previous section 
mainly considered replication of MapReduce jobs to 
obtain fault tolerance and availability. In that section, 
even if a single small task of a large job fails and pro-
duces a wrong output, then the whole job will pro-
duce a wrong output and will need to be reexecuted.

To improve the efficiency of the system, it would 
be desirable to perform replication and reexecution 
at the task level. However, this fine-grained form of 
replication is a challenge, as it would require modi-
fying the Hadoop MapReduce source code. The 
main reason of the problem is that the execution of 
a job in Hadoop MapReduce cannot be interrupted 
“externally”. The need to modify Hadoop is, how-
ever, problematic as it would require users to use our 
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FIGURE 4. Scheduling example.
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own version of the platform, hindering adoption (for 
instance, users could not use publicly available ver-
sions, such as Amazon Elastic MapReduce).

We introduced a new abstraction in Chrysaor 
to perform fine-grained replication without chang-
ing Hadoop: the notion of a logical job. From the 
Hadoop viewpoint, each logical job is a complete 
MapReduce job, but from the Chrysaor viewpoint, 
there is one logical job to execute the map tasks 
and another one to execute the reduce tasks (see 
Figure  5). Moreover, if the replicas of a task pro-
duce different outputs, a new logical job is created 
to reexecute only that task. The use of logical jobs 
is transparent to the clients’ applications, which 
request the execution of jobs as usual.

During the first logical job execution, each map 
task creates a digest of the map output. In the figure, 
the output data is represented as the squares exiting 
each map task. The digests will be fetched and com-
pared by Chrysaor to check if all map task replicas 
produced equal results. This is the case in the exam-
ple (we are considering no faults), and so the second 
logical job is launched. The second logical job can-
not start from the reduce tasks (a MapReduce job 
always starts from a Map function). To solve this 
issue, we start this job with an identity map task, a 
simple task that outputs the input without modifica-
tion. The second logical job will then read the data 
that was stored previously using identity map tasks, 
and perform the “shuffle & sort” phase before the 
reduce tasks start. Each reduce task will produce 

the final output and the system will compare the 
results. In the example, as there are no faults, the 
results are equal and the job execution terminates 
successfully. If that was not the case, a new logical 
job would be created to reexecute only that task.

With the use of logical jobs, it is thus possible to 
have a finer-grained control of the map or reduce tasks.

Evaluation
We evaluated the two systems that form the basis 
of our multicloud resilient MapReduce design—
Medusa and Chrysaor—experimentally, by running 
the two prototypes using several nodes in different 
regions of the Amazon EC2 service. We ran several 
real-world applications (available with Hadoop). In 
this article, we focus on the comparison of the two 
replication approaches—job replication (Medusa) 
and task replication (Chrysaor) —between them-
selves and with the original Hadoop. We consider 
two applications: one communication-bound (CB) 
and the other computationally-intensive (CI). We 
present the results in Table 1. We invite the inter-
ested reader to obtain further information on the 
evaluation, including a detailed analysis on its sev-
eral results, in the paper that proposed Chrysaor.13

Comparison with the original Hadoop. One of 
our goals was to have an acceptable performance 
overhead, so the table shows average times for the 
execution of the original Hadoop in the clouds con-
sidered. Our job and task replication solutions have 
an overhead, as seen in the table, but it is reason-
ably low (between 16% and 39%). An overhead was 
unavoidable, as we are doing more computation: this 
is the price to pay for the benefit of tolerating severe 
faults. The overhead is limited mainly due to the 
principle of just enough replication explained in the 
section “Just Enough Replication”.

Performance without faults. The approach fol-
lowed by Medusa of replicating jobs achieves slightly 
better performance when compared with task rep-
lication for the CB application. The reason is the 
main overhead introduced by the required logical job 
abstraction: the identity map tasks require additional 
computational time. This additional computational 
time came from the fact that the output produced by 
the map tasks are larger than the input data. Overall, 
the characteristics of the CB application have brought 
a penalty to the new abstraction. Interestingly, the 
results are inverse with the CI application. As the 
application is computationally intensive, the relative 
cost of the identity maps is less pronounced. In addi-
tion, one optimization allowed by the Chrysaor design 
(namely, the generation of digests while the output is 
being produced) overcomes the logical job overhead.

Input data Output data

Map tasks

Identity
map tasks

M M

Mid

Reduce
tasks

1st logical
job

2nd logical
job

R

FIGURE 5. Logical MapReduce job.
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Conclusion
In the era of cloud computing, Hadoop MapReduce 
has emerged as a popular tool for processing big data 
in a distributed way. The MapReduce framework 
is prepared to tolerate crash faults by reexecuting 
tasks, but other faults that can affect the correct-
ness of results are known to happen and will prob-
ably happen more regularly in the future. Moreover, 
the design of MapReduce is targeted to a single data 
center (a single cloud), which makes this framework 
vulnerable to cloud outages, which are also common.

Based on our recent experience in building such 
systems, in this article, we present three techniques 
to assist in the design of multicloud resilient MapRe-
duce systems. Namely, minimizing the required 
replication; applying context-based job schedul-
ing, based on cloud and network conditions; and 
performing fine-grained replication. Put together, 
these techniques offer resilience at reasonable cost, 
and they are immediately deployable using existing, 
unmodified Hadoop MapReduce solutions. 
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grained replication at the task level allows the sys-
tem to react immediately when a fault happens in 
the map tasks, which explains why task replication 
was always the fastest solution in this case. When 
a fault happens in the reduce tasks the result is 
different. As in the case without faults, in the CB 
application, the reexecution of identity tasks makes 
the overall solution slower than job replication. In 
the CI application task replication was always faster 
than job replication, for the same reasons as before.

Performance with malicious faults. The conclu-
sions of these experiments are similar to the previ-
ous case. As before, replication at the task level was 
always the fastest when tolerating faults in the map 
tasks. However, task replication was slower when 
dealing with faults at the reduce side in comparison 
with job replication when the job was not computa-
tionally-intensive, again due to the need to execute 
identity map tasks in the second logical job.

In summary, the main conclusions that can be 
drawn from our experiments are that task replica-
tion is favorable for workloads that are i) more com-
putationally-intensive and ii) centered in map tasks. 
For (i), in this sort of application, the relative over-
head of the logical job abstraction is low. For (ii), 
and independently of the nature of the application, 
a fault in a map is always handled more efficiently 
with Chrysaor fine-grained replication scheme. 
Importantly, in most MapReduce jobs the number 
(and size) of map tasks is much larger than the num-
ber (and size) of reduce tasks, which means that in 
the common case the benefits of a fine-grained solu-
tion will outweigh the overhead introduced to guar-
antee transparency.

TABLE 1. Performance of job replication vs. task replication (in seconds, considering a 4 GB input).

CB Application No Faults Arbitrary Faults Malicious Faults

Map Reduce Map Reduce

Original Hadoop 379 not tolerated

Job Replication 438 823 1,008 

Task Replication 516 547 1,053 547 1,054

CI Application No Faults Arbitrary Faults Malicious Faults

Map Reduce Map Reduce

Original Hadoop 557 not tolerated

Job Replication 926 1,831 1,831

Task Replication 777 816 1,438 816 1,438
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