
M
ID

D
LE

W
A

R
E

 F
O

R
 M

U
LT

IC
LO

U
D

74 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y 2 3 2 5 - 6 0 9 5/ 1 7/$ 3 3 . 0 0 © 2 0 1 7 I EEE

On the Design of
Resilient Multicloud
MapReduce

Pedro A. R. S. Costa and Fernando M. V. Ramos, LaSIGE, Faculdade de
Ciências, Universidade de Lisboa
Miguel Correia, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Faced with the challenge of dependability, we have

recently explored multicloud solutions to increase

the resilience and availability of MapReduce. Based

on this experience, we present system design guide-

lines that allow the scaling out of MapReduce com-

putation to multiple clouds to tolerate arbitrary and

malicious faults, as well as cloud outages. Crucially,

the techniques we introduce have reasonable costs

and do not require changes to MapReduce or to the

users’ code, enabling immediate deployment.

J U LY/A U G U S T 2 0 1 7 I EEE CLO U D CO M P U T I N G 7 5

loud computing has emerged as the
paradigm for outsourcing computa-
tion. Cloud service providers have
been building massive data centers
that are distributed over several
geographical regions to efficiently

meet the demand for this service. These data centers
typically contain tens of thousands of commodity
servers and use virtualization technology to do provi-
sioning of computing resources. Clouds are starting
to be used together, forming multiclouds.1 When the
combination of clouds is created by users inconspicu-
ously to the cloud providers, such multiclouds can
be called clouds-of-clouds.2 The purposes of using
several clouds vary, but common goals are increasing
performance and reducing costs.

Dependability problems in cloud services can
cause great losses to its users and are becoming
increasingly common. Hardware components are
prone to soft and hard failures that reduce their reli-
ability and the availability of the cloud service, with
impact on the software running atop. Studies made
at Google and Microsoft concluded that errors in
the DRAM, chipset, and CPU of commodity serv-
ers are more prevalent than previously believed.3,4
Therefore, fault tolerance in cloud computing plat-
forms and applications is a crucial issue to the users,
not to mention the cloud providers themselves.

Cloud computing has enabled computation of
massive volumes of data that traditional database and
software techniques had difficulty processing in an
acceptable amount time.5 One of the most popular
distributed data-processing systems for analyzing big
data in cloud environments is Hadoop MapReduce,
an open-source platform based on Google’s MapRe-
duce paradigm.6,7 The popularity of this framework
made the MapReduce model prevalently used for
critical applications, such as medical research and
finance, where outputting wrong results and service
unavailability may be unacceptable. Unfortunately,
Hadoop does not deal with arbitrary and malicious
faults and does not scale the computation out to mul-
tiple clouds to deal with availability issues.

In this article, we give an overview of our recent
research on scaling out Hadoop to multiple clouds
for tolerating arbitrary faults, malicious faults, and
cloud outages (unavailability of entire data centers).
This contrasts with previous work on multicloud

MapReduce (e.g., G-Hadoop) that has not considered
resilience, having focused exclusively on scalability
of computation.8 The design guidelines we propose
include two additional goals to foster adoption: the
overhead should be acceptable, and no changes to
Hadoop nor to the user’s code should be required.

To address these challenges, the design we pro-
pose for resilient MapReduce systems is based on
three core ideas. The first consists of performing
replication of the processing in a set of clouds. Using
replication may be considered expensive, but cloud
outages are becoming so common that even cloud pro-
viders are exploring this approach (Amazon recently
launched the Cross-Region Replication service).9–11
Importantly, our solution minimizes the replication
overhead (see the section “Just Enough Replication”).
The second idea is to leverage the diversity provided
by a multicloud environment in the design of context-
based scheduling schemes that distribute the process-
ing across clouds in such a way that performance is
improved (see the section “Context-Based Schedul-
ing”). Third, the solution should include fine-grained
replication (at the task level) to achieve quick recov-
ery in case of a fault. This can be achieved without
modifying the Hadoop source code by means of a new
abstraction we propose: the logical job (see the section
“Fine-Grained Replication”).

The core techniques introduced in our design
emanate from our experience in building two resil-
ient multicloud MapReduce solutions—Medusa
(code available at https://bitbucket.org/pcosta_pt/
medusa) and Chrysaor (code available at https://
bitbucket.org/pcosta_pt/chrysaor)—and one ear-
lier solution that performs replication in a single
cloud.12–14 We evaluated our solutions in a real tes-
tbed, considering several MapReduce applications,
to assess the performance in different scenarios (see
the “Evaluation” section). The main result is that,
by applying the proposed techniques it is possible to
scale out Hadoop MapReduce to multicloud envi-
ronments to tolerate the above-mentioned classes of
faults at reasonable costs, while requiring minimal
modifications to the users’ jobs, and in a way that
is compatible with any Hadoop Map Reduce version.

Background
MapReduce was originally designed by Google for
calculating web search indexes and running other

76 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

M
ID

D
LE

W
A

R
E

 F
O

R
 M

U
LT

IC
LO

U
D

large-scale data processing jobs.7 Hadoop Map Reduce
is an open implementation that appeared a few years
later and that is currently the most adopted.6

The term MapReduce denominates both a pro-
gramming model and the corresponding runtime
environment. As the name indicates, MapReduce
involves two functions: map and reduce. The unit of
execution is the job, which is typically broken into one
phase that executes map tasks and another that exe-
cutes reduce tasks (each task runs the map or reduce
functions once). Figure 1 shows a generic example of
the execution of a job. The input data is split into files
called splits. When a job starts running, each split is
processed by the map function in a map task (map
phase). Then, the result of the tasks is partitioned,
transferred, and sorted (shuffle & sort phase). In the
end, the reduce tasks process the partitioned data
using the reduce function (reduce phase). This sim-
ple model can express many real-world applications.7

The main components of Hadoop are the Hadoop
MapReduce and Hadoop Distributed File System
(HDFS) (see Figure 2). In Hadoop, Map Reduce jobs
are submitted to and managed by a central compo-
nent called resource manager. The resource manager
assigns map and reduce tasks to node managers, mon-
itors these nodes, and tracks the progress of the job
execution. The node manager is responsible for man-
aging containers where tasks run. Although the fig-
ure shows a single node manager, typically there are
many of those, as they are the components that do
the (large-scale) data processing. A Hadoop MapRe-
duce runtime works in a single data center. HDFS
is the default file system for Hadoop MapReduce.
It stores files broken into blocks that are replicated
in different servers (data nodes) for fault tolerance.
HDFS can handle many servers for scalability.

Hadoop was designed to be fault-tolerant as, with
thousands of devices (computers, network switches,

routers, and power units), component failures are
necessarily frequent. Hadoop tolerates faults using
two techniques: i) monitoring and restarting tasks
when servers, node managers, or the tasks crash; and
ii) adding checksums to the files in HDFS to detect
data corruption in disks. However, these mechanisms
only work in a single cloud, cannot deal with cloud
outages, and only tolerate crash faults—not arbitrary
or malicious errors.

In this paper, we consider that MapReduce
tasks, both map and reduce, can suffer arbitrary
faults, often called Byzantine faults. These tasks
may for instance stop or produce wrong results. To
deal with these faults we execute two or more repli-
cas of each task. We assume that there are limits on
the number of faulty replicas and clouds (including
resource managers), and that there is a proxy that
does not fail (details next).

In the following sections, we describe the three
key techniques we propose as guidelines for the
design of multicloud resilient Hadoop MapReduce
frameworks.

Just Enough Replication
Replication is a common strategy to ensure the
integrity and availability of distributed services in
which individual components may fail due to crash
faults or arbitrary faults.

Replication for MapReduce
There are many algorithms to tolerate Byzantine
faults in the literature, but only one that does so in
the context of MapReduce.14 That framework is a
modified Hadoop MapReduce that essentially repli-
cates map and reduce tasks (i.e., runs several copies
of each), then compares the results obtained by rep-
licas to detect Byzantine faults. The main challenge
of this solution is the efficiency of replication. This
is achieved by requiring only f 1 1 replicated tasks to
tolerate f faults in case there are no faults, instead of
the 3f 1 1 replicas the typical Byzantine fault-tolerant
state machine replication algorithms would require.15
However, this solution works only in a single data
center and as such does not tolerate cloud outages.

Figure 3 generically presents our approach of
replicating MapReduce in a set of clouds, i.e., in a
multicloud. The proxy is the central component to
which the client submits a MapReduce job (note
that this is transparent to the client—she does not
need to be aware of the presence of a proxy). The
proxy is an intermediate component between the
user and the Hadoop resource managers installed
in different clouds. In this example, each cloud con-
tains one Hadoop runtime, and the proxy interacts

Map task

Input Splitting Map Shu�e & sort Reduce Final result

Output
data

Output
data

Output
data

Reduce
task

Reduce
task

Reduce
task

Input
data

Split 0

Split 1

Split 2

Map task

Job execution

Map output

Map output

Map output

Map task

FIGURE 1. Execution of a MapReduce job. HDFS is Hadoop Distributed
File System.

J U LY/A U G U S T 2 0 1 7 I EEE CLO U D CO M P U T I N G 7 7

with the several runtimes by sending them Hadoop
commands (e.g., instructing to start a job) over a
secure channel.

Consider that f is the maximum number of task
replicas and clouds that may fail (we normally con-
sider these two thresholds separately, but we are
simplifying here). When a job is submitted by the
client, our solution involves executing f 1 1 replicas,
one per cloud. In the figure, we consider f 5 1, so
the proxy selects two clouds—A and B—to execute
the replicas. During the execution, each task rep-
lica will produce an output and the respective digest
(a collision-resistant hash, calculated, e.g., using
SHA-256). The digests will be compared to check if
the result is correct: if there are f 1 1 equal outputs
then that output is correct as at most f replicas may
produce wrong results. Otherwise, a new replica is
executed. If a cloud stops responding a new one is
selected (Cloud C in the figure).

We have developed two solutions that follow the
generic scheme of Figure 3: Medusa and Chrysaor.
Their main difference is that they work at differ-
ent levels of granularity: Medusa deals with faults
at the job level, whilst Chrysaor deals with faults at
the task level. Sections “Replication in Medusa” and
“Replication in Chrysaor” describe these solutions.

Replication in Medusa
Medusa replicates full jobs and compares only their
final outputs, more precisely, their digests. If it
obtains f 1 1 identical digests, then the outputs are

2: get new job ID Resource
manager

4: submit job

3: copy job
resources

Client JVM

Map reduce
program

Client Node

Job client
1: run job

6: retrieve
input splits

7: heartbeat

8: retrieve job
resources

9: launch

Node manager

Container

Map task
or

Reduce task

Node 2 Node 3Node 1

HDFS

Data node Data node Data node

Secondary
name node

Name
node

Node 1 Node 2

5: initialize
job

FIGURE 2. Architecture of Hadoop MapReduce.

Connection to the clouds

Input data

Output data

Actions:
1. Client submits the job

2. Job is launched

Hadoop MapReduce
runtime

Client

Proxy

2.

1.

MM

R

Cloud BCloud A Cloud C

MM

R

FIGURE 3. Proxy executing a job in two clouds without faults (f 5 1).

78 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

M
ID

D
LE

W
A

R
E

 F
O

R
 M

U
LT

IC
LO

U
D

equal, as digests are collision-resistant (no two dif-
ferent outputs can produce the same hash). Other-
wise, the proxy cannot identify which of the replicas
is faulty and it will react accordingly; it only knows
that there is a disagreement on the result.

Medusa can deal with three faulty scenarios:
i) with accidental faults, ii) with malicious faults, and
iii) with cloud outages. Initially, Medusa will launch
f 1 1 replicas of the job in distinct MapReduce run-
times, running in different clouds. When these jobs fin-
ish executing, Medusa will validate the computation by
comparing the digests of their outputs. Medusa deals
with accidental faults by reexecuting the same faulty
job in the same clouds until it obtains equal results.
The rationale for reexecuting in the same clouds is that
accidental faults are inherently intermittent, so it is to
expect they will eventually no longer affect the same
job. This is in contrast with malicious faults or cloud
outages, that require reexecutions in an extra cloud. In
the former case, because one of the clouds cannot be
trusted. In the latter, due to one of the clouds being
no longer available. In any of these cases the frame-
work reexecutes the faulty job in another cloud until
it obtains f 1 1 equal results. In the malicious case,
if the reexecution ends correctly it is possible not only
to validate the results but also to find which cloud is
compromised. The execution aborts if no final result is
obtained and no more clouds are available.

Replication in Chrysaor
Unlike Medusa, Chrysaor replicates tasks, not
jobs. All map and reduce tasks produce a digest of
their output and the proxy compares the digests of
every set of replicas. This allows the identification
of which tasks have produced different results and
to reexecute them immediately after they finish,
instead of having to wait for the end of the job and
to reexecute it fully (as in Medusa). Faults in the
map phase must be dealt slightly differently from
faults in the reduce phase (this will be made clearer
in the section “Fine-Grained Replication”).

Similar to Medusa, when Chrysaor is in the
presence of a fault, it cannot identify which of the
replica(s) is (or are) faulty. When dealing with acci-
dental faults, Chrysaor has the ability to reexecute
the task for which there was no f 1 1 identical digests
in the same clouds, until it obtains f 1 1 equal results.

When dealing with malicious faults or cloud
outages, it is necessary to execute the tasks in an
extra cloud, for the same reasons as above. If the
system is dealing with a fault in a map task, Chrys-
aor executes the faulty tasks in another cloud until
it obtains f 1 1 equal results. If the reexecution of
the map tasks has ended correctly, the solution has

the capability to validate the results and find which
cloud is compromised and exclude it from the rest of
the execution. If a malicious fault or cloud outages
have happened during the execution of the reduce
tasks, it is necessary to run a new full job in a new
cloud, and then validate the output. The execution
aborts if no correct result is obtained and no more
clouds are available to reexecute the tasks.

Note that we explained the difference between
handling accidental faults and malicious faults as if
the system was able to distinguish them, which is
not the case. In practice, the system is configured
with a threshold on the number of times it tries to
handle faults as if they were accidental, then consid-
ers them malicious (i.e., starts using a new cloud).

Context-Based Scheduling
When we are dealing with several cloud providers,
we are facing heterogeneity in the server machines
and the network. Choosing the best clouds is critical
to gain in performance. Notice that we do not mean
the “best cloud” per se, but the cloud with more
resources available to the user at the moment of sub-
mitting a MapReduce job. Naturally, if a job runs in
a particular cloud with high computational power
and is connected by high-bandwidth links, it ought
to take relatively shorter time for the job to finish.
On the contrary, if a cloud has low bandwidth links
and low computational power, or if it is overloaded,
it might take longer for the job to complete.

Devising a context-based scheduler that distrib-
utes replicated tasks across different clouds based
on network throughput and computational power
requires predicting which clouds (and which con-
nections) will be the fastest. This prediction needs to
consider both the historical performance as well as
the current status of each cloud, allowing us to incor-
porate the heterogeneity of the clouds into the sched-
uling decision. As a consequence, our scheduler is
split into two parts: one for estimating data transmis-
sion time and the other for estimating data processing
time. We detail each metric in the following:

Estimating data transmission time. The data
transmission time between two clouds depends on
i) its geographical distance, ii) the network through-
put, and iii) the size of the data to transfer. Consid-
ering that the throughput varies with respect to the
traffic load to other clouds (among other variables),
the framework needs to periodically monitor the
throughput for each pair of clouds in the system.

Estimating data processing time. The time for
completing a given MapReduce job mainly depends
on the following variables: i) the capacity of the cloud
running this job; and ii) the configuration of the job.

J U LY/A U G U S T 2 0 1 7 I EEE CLO U D CO M P U T I N G 7 9

For example, a high level of parallelization (i.e., a
large number of map and reduce tasks) for the same
job in the same cloud, and having tasks accessing
mostly local splits implies shorter data processing
times. As such, estimating the data processing time
involves having a scheduler that takes into consider-
ation three types of features: job configuration; cloud
capacity; and cloud overhead. We describe the repre-
sentative features for each type in the following:

• Job configuration features. Several variables
in the job configuration need to be considered
for the scheduler to predict the duration of the
next job execution. These include the size of
the input data, the number of map tasks, and
the number of reduce tasks. These variables are
known before the job starts. Clearly, large input
data and a small number of map and reduce
tasks imply long job completion times.

• Cloud capacity features. Different clouds have
different characteristics, as they are composed
of diverse hardware infrastructure (number
and type of servers, etc.). Features of this type
include the clock speed and the number of
cores of the CPUs, the total memory capacity,
etc. These variables define the cloud capacity,
but they do not give evidence of the load of the
cloud in a particular moment.

• Cloud overhead features. These features assess
the load of the cloud at a specific time, in com-
parison to its base capacity (cloud capacity
features). For instance, if there is resource con-
tention in the cloud and there are jobs waiting to
be launched, most likely this cloud should not be
selected to execute the job. In contrast, if a cloud
has sufficient free resources, the scheduled job
can finish early, even if its capacity is relatively
low. The proposed scheduler uses the number of
MapReduce jobs that are currently running in
the cloud, the percentage of completion of the
running jobs, the number of jobs queued to run,
and the size of the input data of the running jobs
as features to measure the cloud overhead.

Figure 4 shows an example of our context-based
scheduler. In the figure, we have three clouds with
higher computational power (Cloud A, B, and D),
each with four machines with 4 GHz CPUs and 16
cores, and 16 GByte of RAM. Cloud C is less compu-
tationally powerful with 2.8 GHz CPUs with only 2
cores, and 2 GByte of RAM. Notice that Cloud D has
a high load in the MapReduce queue, which means
that there are several jobs waiting to execute. In terms
of the network connections between clouds, clouds A,

B, and C are interconnected with high-throughput
links (shown with the plain arrows). The remaining
clouds are either connected with low bandwidth links
or are overloaded with traffic (dashed arrows). In this
example, Cloud A and Cloud B seem the best option
to run the next MapReduce job replicas.

The goal of the scheduler is to take into account
both an estimation of the data transfer time and the
data processing time (considering both the job con-
figuration, the cloud capacity, and the cloud over-
head features) to choose the best cloud to run the
next job. The scheduler estimates the time to trans-
fer the data between clouds based on the historic
throughput measurements and the size of input data
to transfer. To estimate the data processing time, the
scheduler uses linear regression based on the job
and cloud features to obtain the weight factors that
are part of the next job prediction.

Fine-Grained Replication
Following our work in Medusa, the previous section
mainly considered replication of MapReduce jobs to
obtain fault tolerance and availability. In that section,
even if a single small task of a large job fails and pro-
duces a wrong output, then the whole job will pro-
duce a wrong output and will need to be reexecuted.

To improve the efficiency of the system, it would
be desirable to perform replication and reexecution
at the task level. However, this fine-grained form of
replication is a challenge, as it would require modi-
fying the Hadoop MapReduce source code. The
main reason of the problem is that the execution of
a job in Hadoop MapReduce cannot be interrupted
“externally”. The need to modify Hadoop is, how-
ever, problematic as it would require users to use our

Cloud A

CPU = 16 * 4 GHz

RAM = 16 GB

Cloud B

CPU = 16 * 4 GHz

RAM = 16 GB

MapReduce
queue load

High
bandwidth
links

Low bandwidth
links

Cloud D

CPU = 16 * 4 GHz

RAM = 16 GB

Cloud C

CPU = 2 * 2.8 GHz

RAM = 2 GB

FIGURE 4. Scheduling example.

80 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

M
ID

D
LE

W
A

R
E

 F
O

R
 M

U
LT

IC
LO

U
D

own version of the platform, hindering adoption (for
instance, users could not use publicly available ver-
sions, such as Amazon Elastic MapReduce).

We introduced a new abstraction in Chrysaor
to perform fine-grained replication without chang-
ing Hadoop: the notion of a logical job. From the
Hadoop viewpoint, each logical job is a complete
MapReduce job, but from the Chrysaor viewpoint,
there is one logical job to execute the map tasks
and another one to execute the reduce tasks (see
Figure 5). Moreover, if the replicas of a task pro-
duce different outputs, a new logical job is created
to reexecute only that task. The use of logical jobs
is transparent to the clients’ applications, which
request the execution of jobs as usual.

During the first logical job execution, each map
task creates a digest of the map output. In the figure,
the output data is represented as the squares exiting
each map task. The digests will be fetched and com-
pared by Chrysaor to check if all map task replicas
produced equal results. This is the case in the exam-
ple (we are considering no faults), and so the second
logical job is launched. The second logical job can-
not start from the reduce tasks (a MapReduce job
always starts from a Map function). To solve this
issue, we start this job with an identity map task, a
simple task that outputs the input without modifica-
tion. The second logical job will then read the data
that was stored previously using identity map tasks,
and perform the “shuffle & sort” phase before the
reduce tasks start. Each reduce task will produce

the final output and the system will compare the
results. In the example, as there are no faults, the
results are equal and the job execution terminates
successfully. If that was not the case, a new logical
job would be created to reexecute only that task.

With the use of logical jobs, it is thus possible to
have a finer-grained control of the map or reduce tasks.

Evaluation
We evaluated the two systems that form the basis
of our multicloud resilient MapReduce design—
Medusa and Chrysaor—experimentally, by running
the two prototypes using several nodes in different
regions of the Amazon EC2 service. We ran several
real-world applications (available with Hadoop). In
this article, we focus on the comparison of the two
replication approaches—job replication (Medusa)
and task replication (Chrysaor) —between them-
selves and with the original Hadoop. We consider
two applications: one communication-bound (CB)
and the other computationally-intensive (CI). We
present the results in Table 1. We invite the inter-
ested reader to obtain further information on the
evaluation, including a detailed analysis on its sev-
eral results, in the paper that proposed Chrysaor.13

Comparison with the original Hadoop. One of
our goals was to have an acceptable performance
overhead, so the table shows average times for the
execution of the original Hadoop in the clouds con-
sidered. Our job and task replication solutions have
an overhead, as seen in the table, but it is reason-
ably low (between 16% and 39%). An overhead was
unavoidable, as we are doing more computation: this
is the price to pay for the benefit of tolerating severe
faults. The overhead is limited mainly due to the
principle of just enough replication explained in the
section “Just Enough Replication”.

Performance without faults. The approach fol-
lowed by Medusa of replicating jobs achieves slightly
better performance when compared with task rep-
lication for the CB application. The reason is the
main overhead introduced by the required logical job
abstraction: the identity map tasks require additional
computational time. This additional computational
time came from the fact that the output produced by
the map tasks are larger than the input data. Overall,
the characteristics of the CB application have brought
a penalty to the new abstraction. Interestingly, the
results are inverse with the CI application. As the
application is computationally intensive, the relative
cost of the identity maps is less pronounced. In addi-
tion, one optimization allowed by the Chrysaor design
(namely, the generation of digests while the output is
being produced) overcomes the logical job overhead.

Input data Output data

Map tasks

Identity
map tasks

M M

Mid

Reduce
tasks

1st logical
job

2nd logical
job

R

FIGURE 5. Logical MapReduce job.

J U LY/A U G U S T 2 0 1 7 I EEE CLO U D CO M P U T I N G 8 1

Conclusion
In the era of cloud computing, Hadoop MapReduce
has emerged as a popular tool for processing big data
in a distributed way. The MapReduce framework
is prepared to tolerate crash faults by reexecuting
tasks, but other faults that can affect the correct-
ness of results are known to happen and will prob-
ably happen more regularly in the future. Moreover,
the design of MapReduce is targeted to a single data
center (a single cloud), which makes this framework
vulnerable to cloud outages, which are also common.

Based on our recent experience in building such
systems, in this article, we present three techniques
to assist in the design of multicloud resilient MapRe-
duce systems. Namely, minimizing the required
replication; applying context-based job schedul-
ing, based on cloud and network conditions; and
performing fine-grained replication. Put together,
these techniques offer resilience at reasonable cost,
and they are immediately deployable using existing,
unmodified Hadoop MapReduce solutions.

Acknowledgments
This work was partially supported by European
Commission funds through the H2020 program,
namely by funding of the SUPERCLOUD project,
ref. H2020-643964, and by Portuguese national
funds through Fundação para a Ciência e a Tecno-
logia (FCT), namely by funding of LaSIGE Research
Unit, ref. UID/CEC/00408/2013, and INESC-ID,
ref. UID/CEC/50021/2013.

References
 1. M. Lacoste et al., “UserCentric Security and

Dependability in Clouds-of-Clouds,” IEEE Cloud
Computing, vol. 3, no. 5, Sep. 2016, pp. 64–75.

Performance with arbitrary faults. We tested
both solutions introducing arbitrary faults. The fine-
grained replication at the task level allows the sys-
tem to react immediately when a fault happens in
the map tasks, which explains why task replication
was always the fastest solution in this case. When
a fault happens in the reduce tasks the result is
different. As in the case without faults, in the CB
application, the reexecution of identity tasks makes
the overall solution slower than job replication. In
the CI application task replication was always faster
than job replication, for the same reasons as before.

Performance with malicious faults. The conclu-
sions of these experiments are similar to the previ-
ous case. As before, replication at the task level was
always the fastest when tolerating faults in the map
tasks. However, task replication was slower when
dealing with faults at the reduce side in comparison
with job replication when the job was not computa-
tionally-intensive, again due to the need to execute
identity map tasks in the second logical job.

In summary, the main conclusions that can be
drawn from our experiments are that task replica-
tion is favorable for workloads that are i) more com-
putationally-intensive and ii) centered in map tasks.
For (i), in this sort of application, the relative over-
head of the logical job abstraction is low. For (ii),
and independently of the nature of the application,
a fault in a map is always handled more efficiently
with Chrysaor fine-grained replication scheme.
Importantly, in most MapReduce jobs the number
(and size) of map tasks is much larger than the num-
ber (and size) of reduce tasks, which means that in
the common case the benefits of a fine-grained solu-
tion will outweigh the overhead introduced to guar-
antee transparency.

TABLE 1. Performance of job replication vs. task replication (in seconds, considering a 4 GB input).

CB Application No Faults Arbitrary Faults Malicious Faults

Map Reduce Map Reduce

Original Hadoop 379 not tolerated

Job Replication 438 823 1,008

Task Replication 516 547 1,053 547 1,054

CI Application No Faults Arbitrary Faults Malicious Faults

Map Reduce Map Reduce

Original Hadoop 557 not tolerated

Job Replication 926 1,831 1,831

Task Replication 777 816 1,438 816 1,438

82 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

M
ID

D
LE

W
A

R
E

 F
O

R
 M

U
LT

IC
LO

U
D

 2. A. Bessani et al., “DepSky: Dependable and Secure
Storage in a Cloud-of-Clouds,” Proc. 6th Conf.
Computer Systems (EuroSys), 2011, pp. 31–46.

 3. B. Schroeder, E. Pinheiro, and W.-D. Weber,
“DRAM Errors in the Wild: A Large-Scale Field
Study,” Proc. 11th Int’l Joint Conf. Measure-
ment and Modeling of Computer Systems, 2009,
pp. 193–204.

 4. E.B. Nightingale, J.R. Douceur, and V. Orgovan,
“Cycles, Cells and Platters: An Empirical Analy-
sis of Hardware Failures on a Million Consumer
PCs,” Proc. 6th Conf. Computer Systems (Euro-
Sys), 2011, pp. 343–356.

 5. C. Snijders, U. Matzat, and U.-D. Reips, “Big
Data: Big Gaps of Knowledge in the Field of
Internet Science,” Int’l J. Internet Science, vol. 7,
no. 1, 2012, pp. 1–5.

 6. T. White, Hadoop: The Definitive Guide, 1st ed.,
O’Reilly Media, Inc., 2009.

 7. J. Dean and S. Ghemawat, “MapReduce: Simpli-
fied Data Processing on Large Clusters,” Proc.
6th Symp. Operating Systems Design & Imple-
mentation, Dec. 2004.

 8. L. Wang et al., “G-Hadoop: MapReduce Across
Distributed Data Centers for Data-Intensive
Computing,” Future Generation Computer Sys-
tems, vol. 29, no. 3, Mar. 2013, pp. 739–750;
doi:/10.1016/ j.future.2012.09.001.

 9. C. Cerin et al., “Downtime Statistics of Current
Cloud Solutions,” The International Working
Group on Cloud Computing Resiliency, June 2013.

10. G. Clarke, “Microsoft Azure Was Most Fail-
Filled Cloud of 2014,” Jan. 2015; http://www.
theregister.co.uk/2015/01/16/microsoft_worst_
cloud_ uptime_2014/.

11. Amazon Web Services Inc, “Amazon S3 Introduces
Cross-Region Replication,” Mar. 2015; https://aws.
amazon.com/pt/about-aws/whats-new/2015/03/
amazon-s3-introduces-cross-region-replication/.

12. P.A.R.S. Costa et al., “Medusa: An Efficient
Cloud Fault-Tolerant MapReduce,” 16th IEEE/
ACM Int’l Symp. Cluster, Cloud and Grid Com-
puting (CCGrid), 2016, pp. 443–452.

13. P.A.R.S. Costa, F.M.V. Ramos, and M. Cor-
reia, “Chrysaor: Fine-Grained, Fault-Tolerant
Cloud-of-Clouds MapReduce,” 17th IEEE/ACM
Int’l Symp. Cluster, Cloud and Grid Computing
(CCGrid), 2017.

14. P. Costa et al., “On the Performance of Byzan-
tine Fault-Tolerant MapReduce,” IEEE Trans.
Dependable and Secure Computing, vol. 10,
no. 5, 2013, pp. 301–313.

15. M. Castro and B. Liskov, “Practical Byzantine
Fault-Tolerance and Proactive Recovery,” ACM

Trans. Computer Systems, vol. 20, no. 4, Nov.
2002, pp. 398–461.

PEDRO A. R. S. COSTA is a PhD student at
Faculdade de Ciências, University of Lisboa (ULis-
boa). He is a member of the Large-Scale Informat-
ics Systems Laboratory (LASIGE) laboratory and the
Navigators research group. Periods outside academia
include working as a researcher in Siemens, Yahoo,
and Nokia. He worked on several research projects,
including TCLOUDS (EC FP7) and SUPERCLOUD
project. His current research interests are concerned
with security and dependability, distributed systems,
distributed algorithms, and cloud computing. More
information about him can be found at: https://
www.linkedin.com/in/pedrosacosta/. Contact him at
palcosta@fc.ul.pt.

FERNANDO M. V. RAMOS is an assistant profes-
sor in the University of Lisboa. Previous academic
positions include those of teaching assistant (supervi-
sor) at the University of Cambridge, in the ISEL, and
in the University of Aveiro. Over the past 12 years he
has taught over a dozen courses: from physics (Elec-
tromagnetism) to EE (digital electronics, electric cir-
cuits, telecommunication systems and foundations)
to CS (operating and distributed systems, computer
networks, algorithms, programming languages). Peri-
ods outside academia include working as a researcher
in Portugal Telecom and in Telefonica Research. He
holds a PhD degree from the University of Cambridge
where he worked on IPTV networks. His current
research interests are: software-defined networking,
network virtualization, and cloud computing, with
security and dependability as an orthogonal concern.
Contact him at fvramos@ciencias.ulisboa.pt.

MIGUEL CORREIA is an associate professor at
Instituto Superior Técnico (IST) of Universidade de
Lisboa (ULisboa), in Lisboa, Portugal. He is a senior
researcher at INESC-ID in the Distributed Sys-
tems Group (GSD). He has been involved in several
international and national research projects related
to cybersecurity, including the SafeCloud, PCAS,
TCLOUDS, ReSIST, CRUTIAL, and MAFTIA
European projects. He has more than 100 publica-
tions and is a senior member of the IEEE. His main
research interests are: cyber-security, cloud comput-
ing, software security, big data analytics for security,
blockchain and distributed ledgers, machine learning
for security, intrusion tolerance, mobile security, and
distributed systems. More information about him can
be found at: http://www.gsd.inesc-id.pt/~mpc/. Con-
tact him at miguel.p.correia@tecnico.ulisboa.pt.

