

An Infrastructure for Adaptive Fault Tolerance on FT-CORBAΨ

Lau Cheuk Lung1, Fabio Favarim2, Giuliana Teixeira Santos1, Miguel Correia3

1Graduate Program in Applied Computer Science- PPGIA
Pontifical Catholic University of Paraná – PUCPR - Curitiba - Brazil

2DAS/UFSC – Department of System Automation – Federal University of Santa Catarina – UFSC
Campus Universitário, Caixa Postal 476 – CEP 88040-900 – Florianópolis – SC – Brazil

3LASIGE, Faculdade de Ciências da Universidade de Lisboa
Bloco C6, Campo Grande, 1749-016 Lisboa – Portugal

e-mail: lau@ppgia.pucpr.br, fabio@das.ufsc.br, gtsantos@hsbc.com.br, mpc@di.fc.ul.pt

Ψ This work is supported by CNPq (Brazilian National Research Council) and FA (Fundação Araucária) through processes
481523/2004-9, 506639/2004-5 and FA-6651/04.

Abstract

The fault tolerance provided by FT-CORBA is
basically static, that is, once the fault tolerance
properties of a group of replicated processes are
defined, they cannot be modified in runtime. A support
for dynamic reconfiguration of the replication would
be highly advantageous since it would allow the
implementation of mechanisms for adaptive fault
tolerance, enabling FT-CORBA to adapt to the
changes that can occur in the execution environment.
In this paper, we propose a set of extensions to the
FT-CORBA infrastructure in the form of interfaces
and object service implementations, enabling it to
support dynamic reconfiguration of the replication.

1. Introduction

Fault tolerance support for applications developed
under the CORBA distributed object model is
specified in the Fault-Tolerant CORBA (FT-CORBA)
standard [19]. This specification defines a set of
service interfaces for the implementation of reliable
applications. Fault tolerance in distributed and
heterogeneous environments is usually achieved using
replication techniques. The object services that
provide the basic functionalities for building fault-
tolerant distributed applications in FT-CORBA are the
Replication Management Service, the Fault
Management Service and the Logging and Recovery
Service.

Even though availability and reliability are vital
requirements for critical applications, the use of
adaptive techniques in fault-tolerant systems is quite
recent [14][7][6]. When these techniques are applied,
the resource management of the computational system

is significantly improved. The main idea of the
adaptive approach is to provide mechanisms to the
fault-tolerant system that allow it to obtain
information about the execution environment; using
this information, the system can adapt itself to the
environment variations. Adaptations allow the system
to maintain the levels of reliability and availability
using only the resources necessary for the attainment
of the desired requirements. The usual manner to
support adaptation is the implementation of
mechanisms to support dynamic reconfiguration.

The fault tolerance provided by FT-CORBA is
basically static, i.e., the fault tolerance properties
cannot be modified in runtime. Moreover, the system
cannot be reconfigured to change the replication
technique used. Support for dynamic reconfiguration
of the replication mechanisms would be highly
advantageous since it would allow the FT-CORBA
infrastructure to cover these requirements. This
support would allow the implementation of
mechanisms for adapting the system to changes in the
execution environment. These changes are related to
the frequency/class of faults and the load of replicated
components (for load balance).

In this paper, we propose a set of extensions, such
as interfaces and service object implementations [19],
to the FT-CORBA infrastructure to provide support
for dynamic reconfiguration of replication. With this
approach, the dynamic reconfiguration is entirely
transparent to the application. Moreover, the model
presents practical solutions to integrate requirements
of Quality of Service (QoS) [23]. QoS must guide the
choice of the replication technique. In this way,
different levels of QoS can be specified to match
different requirements of fault tolerance. We include
in the Adaptive GroupPac mechanisms to identify the

necessity to reconfigure and to accomplish changes in
the system with the objective of attending the QoS
requirements without compromising aspects of
performance and stability.

This paper is organized as follows: Section 2
presents an overview of OMG’s FT-CORBA
specifications. Section 3 presents the concepts related
to adaptive fault tolerance. Section 4 shows the
Adaptive FT-CORBA architecture (AFT-CORBA)
implemented in the Adaptive GroupPac. Section 5
discusses issues related to the implementation. The
model’s performance assessment is shown in Section 6
and, lastly, Section 7 is the conclusion of the paper.

2. The FT-CORBA Specification

The FT-CORBA [20] architecture (implemented in
GroupPac [2]) has three basic modules: Replication
Management Service (RMS), Fault Management
Service (FMS) and Logging and Recovery Service
(LRS), beyond the definitions for interoperability in
the CORBA architecture. Each module is composed by
a set of services (Figure 1).

RMS interacts directly with the Object Group
Management Service [20], acting dynamically in the
join and leave of replicated objects. In the process of
creation and removal of replicas, the object Generic
Factory [20] is used for interacting with the Local
Factory objects responsible for the creation and
removal of replicas at the machines comprising the
distributed system. The Property Management Service
is responsible for defining the fault tolerance
properties for each object group. This service defines
the way in which each group is managed by the RMS.
The Property Management Service defines, for
instance, the replication technique implemented in a
group, such as [20]: Cold Passive, Warm Passive and
Active replication [22].

The Fault Management Service implements the
interfaces of the Fault Monitoring (detection) and
Notification services. Fault detection is carried out in
three levels: server, object and process. These
detectors are based on timeout mechanisms. The host
detector is replicated to guarantee the continuity of
service even when host failures occur. The Fault
Notification Service performs the function of
informing RMS of the faults detected by the detectors.
With this notification, RMS keeps a consistent list of
group members. FT-CORBA assumes perfect fault
detectors [5].

The main objective of the Recovery and Logging
Service is to register requests received by the server,

keep the state of the replicas consistent, and carry out
recovery procedures on faulty replicas. This service
acts in the failure of the primary object and in the
inclusion of a new member in a group. For example,
when the primary object fails, the Recovery Service
sends to the new elected primary the requests sent to
the previous primary since the last checkpoint.

The communication between the object is carried
out through the Object Request Broker (ORB), in
some cases with the aid of a group communication
system. The group communication system supplies the
CORBA middleware with mechanisms for reliable
group communication. These mechanisms are used to
support the replication techniques, providing some
guarantee of atomicity and order in the delivery of
messages.

3. Adaptive Fault Tolerance

Fault tolerance in distributed systems has been
typically provided using a combination of
software/hardware redundancy, which in most cases
has been statically configured. Considering the
dynamic characteristics of distributed systems, like the
current tendency to increase in scale, the fixed and
established coordination of these models of
redundancy can be quite inefficient. Static
mechanisms of redundancy also have a high cost
because the resources need to be allocated considering
the most critical level of faults, i.e. the worst case.

Adaptive software allows its configuration to be
modified to attend changes in its execution
environment. In the context of adaptive fault
tolerance, the environment changes can be, for
example, changes in the communication standards,
frequency of partial failures, types of faults, or new
application requirements [11]. Adaptive fault
tolerance is obtained with mechanisms that satisfy
varied fault tolerance requirements dynamically
through the efficient use of a limited and changeable
amount of processing resources [14]. Adaptive
software can involve the exchange of algorithms in
execution time to attend the changes of the
environment [6].

The main goal of adaptive fault tolerance is to
allow that a system maintains its level of reliability
and availability, through adaptation and
reconfiguration in response to changes in its
environment of execution or to changes in the
reliability policies. With the use of static polices, the
level of reliability supplied for the system will always
be limited to the use of the pre-established redundant

resources. With a configurable reliability policy, the
system can allocate dynamically the resources
necessary to get the desired reliability. In this way, it
is possible to optimize the resources usage and to
reduce the cost without affecting the system
performance.

4. Adaptive GroupPac Architecture

In the adaptive model, the main idea is that the
developer can specify the quality of service
requirements, defining the desired levels of
availability and performance for this service. The
adaptive model extends the FT-CORBA specifications
(Section 2) including new IDL interfaces and
mechanisms for dynamic reconfiguration of
replication techniques. In the FT-CORBA
architecture, presented in Figure 1, the services of
Adaptation Management and QoS Management have
been added. They are used to implement the necessary
configurations to attend to the specified requirements.
These services can also be replicated through the
Replication Management Service in order to increase
their availability.

In order to guarantee the system consistency
during the reconfiguration phase, replicas stay in a
suspended state. In this state, the Request Interceptors,
implemented in GroupPac, are in charge of
postponing the processing of client’s requests and
keeping them waiting until the system is able to
execute these requests [13]. Using this approach, no
requests are lost and the fault tolerance is improved.
The extensions made to the FT-CORBA infrastructure
are detailed bellow:

Replication Management (RM)

The original functionalities defined in the FT-CORBA
specification were kept. The new functionalities
included in this module allow the replication of the
Adaptation Management Service and the QoS
Management Service in order to increase the
availability of the two services. The replication of
these services is implicit in this module in order to
guarantee the standards adopted by FT-CORBA
specifications.

Adaptation Management (AM)

The function of Adaptation Management is to keep the
system configuration in accordance with the level of
QoS established for the application. Some aspects as

the number of replicas and the type of replication used
by the group are part of this configuration that is
directly related with the state machine defined by the
developer through the QoS Management Service.

In some situations, keeping the level of QoS
desired for the application will require the system
reconfiguration. The Adaptation Manager is
responsible for performing these changes that are
related with the join of new replicas, the exchange of
the replication technique, definition of the primary
member, change of the monitoring interval (of objects,
processes and/or servers) and change of the
checkpointing interval. In addition, there is the
possibility of exchanging the primary replica (for
passive and semi-active replication techniques [4][20])
in case the current primary is presenting a
performance below the expected (load balancing). For
example, the machine of the primary replica may be
overloaded with other tasks or the service denied.

To run in a dynamic way, the Adaptation Manager
monitors the Replication Management to detect
failures that can make the system fail to attain the QoS
level specified, requesting the system reconfiguration.
Adaptation Management also keeps the QoS
Management informed about the current system status.
This information is related with the amount of
replicas, the replication technique being used, the
monitor/checkpoint intervals, the statistics of failure
occurrence and the primary server performance (that
can be supplied by clients).

Quality of Service Management (QSM)

The QoS Manager is an interface in which the
developer or the administrator specifies the minimum
QoS requirements desired (Figure 4). These
requirements can be specified dynamically using a
state machine (Figure 2). Each state represents a level
of QoS with a configuration desired for the system,
such as number of replicas, replication technique, fault
monitoring intervals and checkpoint intervals (in the
case of passive replication [4]).

The transition between two states can take many
conditions into account, each one with a different
priority degree. This approach guarantees that no
more than one condition is satisfied at the same time.
A transition between two QoS levels happens when
the current QoS level does not attend the defined
reliability requirements, e.g., when there is a detection
of faults in replicas, faults in the Replication Manager
or even the absence of faults during a time interval.
Figure 2 presents a possible configuration of the state

machine with three levels QoS. Other combinations
are possible with the insertion of new states. When a
transition happens, a dynamic reconfiguration will be
executed by the Adaptation Manager in accordance
with the new QoS requirements. In case of change of
primary member or replication technique, the requests
sent during the transition phase will be kept waiting
until the system is able to receive and send them to the
replicated server.

Middle

High

1 failure

2 failure
after 15s

Without failure
after 60s

1 failure

Without failure
after 30s

Low

1 failure

2 failures
after 15s

Passive replication:
2 replicas

Active replication:
6 replicas

Semi-active replication:
4 replicas

Figure 2. State machine of the QoS Manager.

Afterwards, to define the new configuration that
will be implemented, the Adaptation Manager invokes
the Properties Manager object service (Figure 1) to
add the new fault-tolerant properties related with the
replicated group. All fault tolerance properties can be

modified dynamically. This characteristic differs from
the FT-CORBA specification.

Finally, when the new fault tolerance properties
have been modified the Object Group Manager acts in
the system to implement the new replication
technique. In this transitory state, the replicated server
does not execute any requests. The QoS Manager is
also used by the Adaptation Manager to inform the
programmer about the system status, when requested.

5. GroupPac Adaptive Implementation

The implementation of the Adaptive GroupPac system
was made using the Java programming language,
GroupPac [16][2][3] and JacORB version 1.4, which
follows the CORBA specification [20]. The class
diagram represented by Figure 3 shows the classes that
compose the QoS Management and Adaptation
Management.

The Adaptive Manager keeps the adaptive
structure of the system. This structure also contains
the current number of replicas, the replication
technique in use, among other information (Figure 4).
This data allows the system to be reconfigured,
making possible changes of some FT properties like
the number of replicas, replication technique,
checkpoint and monitoring intervals, membership
style, consistency style, etc [20].

H o s t 1 H o s t 3
P r o c e s s F a u lt

D e t e c to r

H o s t 2
P r o c e s s F a u l t

D e t e c t o r

R e p l ic a t io n M a n a g e r

G e n e r ic F a c to r y

P r o p e r ty
M a n a g e r

O b je c t G ro u p
M a n a g e r

F a u lt N o t i f i e r H o s t F a u l t D e t e c to r

i s _ a l i v e ()

P 2

F a c to r y

O R B

L o g g i n g
M e c h a n i s m

O b j e c t F a u l t
D e te c to r

R e c o v e r y
M e c h a n i s m

i s _ a l i v e ()

P r o c e s s P 1

O R B

C l i e n t

P 4

P 3

F a c to r y

O R B

L o g g in g
M e c h a n i s m

O b je c t F a u l t
D e te c to r

R e c o v e r y
M e c h a n i s m

i s _ a l i v e ()

G r o u p C o m m u n i c a t i o n S y s t e m

i s _ a l i v e () i s _ a l i v e ()

n o t i f ic a t i o n s

C r e a t e _ o b j e c t ()

S e r v e r
R e p l ic a 2

S e r v e r
R e p l ic a 1

Q o S
M a n a g e r

A d a p ta t i o n
M a n a g e r

R e q u e s t In te r c e p to r R e q u e s t In te r c e p to r

Figure 1. Adaptive Fault-Tolerant Architecture.

struct Transition {
 long TransitionName; long Priority;
 long Faults; long Seconds;
 string NextState;
};
typedef sequence <Transition>
 TransitionVector;
enum ReplicationTypeQoS{none, passive,
 semi-active, active};
struct StateQoS {
 string Name; boolean InitialLevel;
 replicationStyleQoS ReplicationStyle;
 long MinimumNumberReplicas;
 long CheckpointInterval;
 long FaultMonitoringIntervalAndTimeout;
};
typedef sequence <StateQoS> StateQoSVector;
interface AdaptiveManager {
 void set_QoS(in StateQoSVector states);
};

Figure 4. IDL Description of Adaptive GroupPac.

Figure 5 presents the graphical interface of the
QoS Manager. This interface is used to specify the
QoS system requirements, which will compose the
state machine illustrated in Figure 2.

Generic Factory

The generic factory (Figure 6) of the FT-CORBA

architecture is used in the adaptive GroupPac to create
or remove replicas according to the configuration
specified in the QoS Manager. A replicated object is
created using the method create_object, from the
TypeID, that identifies the object to be created by the
factory. This method returns a FactoryCreationId
identifier that can be used later to remove the object
using the method delete_object.

Figure 3. Class diagram of the QoS Manager and Adaptation Manager.

Figure 5. Graphical Interface of QoS Manager.

Request Interceptors

During the reconfiguration process, no client request
can be processed, otherwise the application could
become inconsistent. For example, during the
change of the replication technique from passive to
semi-active, a reading operation could cause the
reading of incorrect data if the replicas are not
synchronized. Moreover, it is necessary to assure
that all client requests had been answered before the
beginning of the reconfiguration, leaving the system
in a consistent state [14]. We use the CORBA
interceptors to make this sort of admission control.
The interceptor acts as a plug-in mechanism witch
can be placed in the server side as well as in the
client side. There are several possible functions
regarding this mechanism [20]. In our case, it is
used in the client side aiming to block the execution
of the client requests during the reconfiguration
process.

Figure 7 presents a reconfiguration of replication
technique, from passive to active, where the client
sends a request M2. In the first attempt, the request
M2 is sent to server 1 (primary replica), and its
interceptor verifies if the system is in the
reconfiguration state. In the affirmative case, an
exception is returned to the client.

To guarantee the transparency in the client side
(it does not need to receive the exception), the
interceptor gets the exception and makes new
attempts until a new primary server has been chosen
and installed (when the replication technique keeps
unchanged) or the replication technique has been
changed. In this case, the client interceptor gets the

new group reference IOGR (Interoperable Object
Group Reference [20]) and it is informed by the
Replication Manager that the technique is active
replication.

module FT {
 interface GenericFactory {
 typedef any FactoryCreationId;
 Object create_object(in TypeId
 type_id, in Criteria the_criteria,
 out FactoryCreationId
 factory_creation_id)
 raises (NoFactory, ObjectNotCreated,
 InvalidCriteria, InvalidProperty,
 CannotMeetCriteria);
 void delete_object(in FactoryCreationId
 factory_creation_id)
 raises (ObjectNotFound);
 };
};

Figure 6. IDL Description of the Generic Factory.

 Legend
 Request

 Reply

 Refused

Client Server 2 Server 1

Passive
Replication

Changing the
Replication
Technique

Active
Replication

M1

Checkpoint

M2

M2

M2

M2

Figure 7. Interceptor actions during reconfiguration.

6. Performance Evaluation

In order to verify the performance of the
implementation of the Adaptive GroupPac, some tests
(obtained from the average of 1000 executions) were
executed on a testbed composed by 5 Pentium IV
2.6Ghz computers with 256Mb of memory, running the
Linux Mandrake 10.2 operating system and Java 1.4.2,
connected by an Ethernet 100Mbps local network. All
replicas were running the Generic Factory service and
in one of them it was instantiated the complete system
(Replication Manager, Adaptive Manager, Fault
Detector, Generic Factory, Name Service and HTTP
Service).

The tests were executed aiming to measure the
overhead generated with the addition of the adaptive
module to GroupPac. The test was executed aiming to

measure the elapsed time the system needs to recover
from a fault intentionally generated. The system
recovery after a fault consists of the following tasks:
1) Fault detection and its notification to the
Replication Manager; 2) Depending on the
replication technique, an action needs to be executed,
e.g., in case of passive replication, if the fault was in
the primary server, the election of a new primary
server for the group will be necessary; 3) If the
minimum number of requested replicas is more than
the current number of replicas after the fault, it will
be necessary to create a new replica for the faulty
group, i.e., to make the adaptation in the system.
Figure 8 illustrates the elapsed time to recover the
system from a fault.

FT-CORBA (FT) x AFT-CORBA (AFT)

0

200

400

600

800

1000

1200

1400

1600

FT 2 AFT 2 FT 3 AFT 3 FT 4 AFT 4 FT 5 AFT 5

Number of Replicas

Ti
m

e
(m

s)

Fault Detection Primary Election System Adaptation

 Figure 8. Performance of the Adaptive
GroupPac (AFT-CORBA) and FT-CORBA.

Figure 8 shows that when the adaptive module
was used, the system did not incur in additional
overhead in relation to the FT-CORBA standard
[20], which is a good result. This is due to the
dynamic reconfiguration task, that consists of
modifying the properties of the group according to
the transitions between the states that define the QoS
level and the creation or removing replicas in the
faulty group, it is completed before the task executed
by the Replication Manager in the fault treatment is
finished.

The FT-CORBA already incurs in a decrease of
performance in the replica creation, maintenance
and removal. As AFT-CORBA uses all the
infrastructure of FT-CORBA, it implies that, for
example, the time to create a replica in AFT-
CORBA is the same that in FT-CORBA. However,
the advantage is that AFT-CORBA takes dynamic
decisions that allow a better use of the system
resources.

Moreover, it can be observed that in a group with
only 2 replicas, the elapsed time to recover a failure in
relation to the groups with more replicas (3, 4 and 5
replicas) did not increase considerably.

The reconfigurations performed by the Adaptive
Manager in the groups when no faults happen in a
determined time interval normally consist only in
removing replicas and changing the properties of the
group. These changes do not cause instability in the
system execution.

We have also measured the average time to change
the replication technique. In this experiment, the
average time to stabilization between passive replication
and semi-active replication was approximately 360 ms
and the average time to stabilization between semi-
active and active replication was approximately 390 ms.

7. Related Work

There exists a considerable amount of literature about
the introduction of fault tolerance techniques in
CORBA. These works can be classified in three
approaches: integration [17][12], service [9] and
interception [18][15]. These works focus basically in
keeping performance and portability requirements.
Conside-rations on interoperability were limited because
these works had been done before the standardization of
the FT-CORBA specification by the OMG.

The AQuA architecture (Adaptive Quality of Service
Availability) [7] aims to supply adaptive fault tolerance
for distributed applications. AQuA allows application
developers to specify the desired levels of dependability,
which are reached through the configuration of the
system in accordance with the availability of resources
and the faults occurred. AQuA uses QuO to specify QoS
requirements at application level, and the Proteus
dependability manager [21] to configure the system in
response to faults and availability requirements.
Ensemble [10] is also used by AQuA in order to provide
group communication services. QuO and AQuA need
QoS requirements to be defined at compile time, while
AFT-CCM [8] allows QoS requirements to be modified
at execution time. As the AQuA was developed before
FT-CORBA, its architecture is not compatible with this
specification.

Chameleon [1] is an adaptive infrastructure that
provides different levels of availability through an
architecture composed of ARMORs (Adaptive,
Reconfigurable, and Mobile Objects for Reliability).
Chamaleon can select different combinations of
ARMORs in order to provide different availability
levels. Besides providing a highly specialized fault-
tolerant environment, ARMORS are also location

independent, i.e., they can execute these actions in
any node in a heterogeneous network. ARMORs also
allow functionalities to be introduced incrementally
in the system.

8. Conclusion

In this paper, we present a set of extensions to the
FT-CORBA architecture so that applications can be
dynamically reconfigured according to the conditions
of the execution environment. This reconfiguration
is implemented using the standard mechanisms
provided in CORBA [19] and FT-CORBA [20].

Although adaptive techniques are also supported
in several previous works in the literature to enforce
fault tolerance requirements, these works are not
based totally on the FT-CORBA standard. Tests
performed with a prototype have shown that the
adaptation mechanisms do not cause more overhead.
Aiming to provide adaptation not only at the level of
crash faults, we intend to add support to other fault
classes in the future.

References

[1] Bagchi, S., et al., The Chameleon Infrastructure for
Adaptive, Software Implemented Fault Tolerance, 17th
IEEE Symposium on Reliable Distributed Systems –
SRDS’99, pp. 261–267, West Lafayette, USA, Oct. 1998.

[2] Bessani, AN., Fraga, JS., Lung, LC., Alchieri, EAP.,
Active Replication in CORBA: Standards, Protocols and
Implementation Framework. 6th Int. Symp. on Distributed
Objects and Applications – DOA’04, LNCS vol 3291,
Larnaca, Cyprus, Oct., 2004.

[3] Borusch, D., Lung, LC., Bessani, AN., Fraga, JS.,
Integrating the ROMIOP and ETF Specifications for
Atomic Multicast in CORBA, 7th Int. Symposium on
Distributed Objects and Applications – DOA’05, LNCS
vol. 3760, pp. 680-697, Agia Napa, Cyprus, Oct., 2005.

[4] Budhiraja, N., Marzulo, K., Schneider, FB., Toueg,
S., The Primary-Backup Approach, Distributed Systems,
chapter 4, Addison Wesley, Second edition, 1993.

[5] Chandra, T., Toueg, S., Unreliable failure detectors
for reliable distributed systems, Journal of the ACM,
43(2):225 267, Mar. 1996.

[6] Chen, WK., Hiltunen, MA., Schlichting, RD.,
Constructing Adaptive Software in Distributed Systems,
21st Int. Conference on Distributed Computing Systems,
pp. 635–643, Mesa, USA, Apr., 2001.

[7] Cukier, M. et al., AQuA: An Adaptive Architecture
that Provides Dependable Distributed Objects, 17th IEEE

Symposium on Reliable Distributed Systems, pp. 245–253,
West Lafayette, USA, Oct. 1998.

[8] Favarim, F., Adaptive Fault-Tolerant CORBA
Components, Master Dissertation, Centro Tecnológico,
UFSC, Florianópolis – Brazil, Mar. 2003.

[9] Felber., P., Narasimhan, P., Experiences, Strategies, and
Challenges in Building Fault Tolerant CORBA Systems, IEEE
Transactions on Computers, 53(5):497–511, 2004.

[10] Hayden, MG., The Ensemble System, Ph.D. thesis,
Cornell University, USA, 1998.

[11] Hiltunen, M., Schlichting, R., Adaptive Distributed and
Fault-Tolerant Systems, Int. Journal of Computer Systems
Science and Engineering, 11(5):125–133, 1996.

[12] Isis Distributed Systems Inc, IONA Technologies, Ltd.
Orbix+Isis Programmer’s Guide, Doc D070-00, 1995.

[13] Kramer, J., Magee, JA., Model for Change Management,
IEEE Int. Workshop on Future Trends in Distri-buted
Computing Systems, pp. 296-300, Hong Kong, 1988.

[14] Kim, KH., Lawrence, T., Adaptive Fault Tolerance:
Issues and Approaches, 2nd IEEE Work. on Future Trends of
Distributed Computing Systems. 38–46, Cairo, Egypt, 1990.

[15] Lung, LC., Fraga, JS., Farines, JM., Ogg, M., Ricciardi,
A, CosNamingFT– A Fault-Tolerant CORBA Naming
Service, 18th IEEE Symposium on Reliable Distributed
Systems – SRDS’99, Lausanne, Switzerland, 1999.

[16] Lung, LC., Padilha, R., Souza, L., Fraga, JS.,
Implementing the FT-CORBA Specification, Tech report,
LCMI-DAS-UFSC (www.das.ufsc.br/grouppac), 2001.

[17] Maffeis, S., Run-Time Support for Object-Oriented
Distributed Programming, Ph.D. Thesis, University of Zurich,
Zurich, Switzerland, 1995.

[18] Moser, LE., Melliar-Smith, M., Narasimhan, P.,
Consistent Object Replication in the Eternal System, Theory
and Practice of Object Systems, 4(2): 81-92, 1998.

[19] OMG, The Common Object Request Broker Architecture
v3.0., OMG Document 02-06-33, 2002.

[20] OMG, Fault-Tolerant CORBA Spec. V1.0, OMG Doc:
ptc/2000-04-04, Apr. 2000.

[21] Sabnis, C. et al., Proteus: A Flexible Infrastructure to
Implement Adaptive Fault Tolerance in AQuA, 7th IFIP Int.
Work. Conf. on Dependable Computing for Critical
Applications, pp. 137-156, S. Jose, USA, Jan. 1999.

[22] Schneider, FB., Implementing Fault-Tolerant Service
Using the State Machine Approach: A Tutorial, ACM
Computing Survey, 22(4):299-319, 1990.

[23] Zinky, JA., Bakken, DE., Schantz, RE., Architectural
Support for Quality of Service for CORBA Objects, Theory
and Practice of Object Systems, 3(1):53–73, 1997.

