
Light-SPD: A Platform to Prototype
Secure Mobile Applications

Sileshi Demesie Yalew†‡, Gerald Q. Maguire Jr.†, Miguel Correia‡

†School of Information and Communication Technology, KTH Royal Institute of Technology, Sweden
‡INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

sdyalew@kth.se maguire@kth.se miguel.p.correia@ist.utl.pt

ABSTRACT
Securely storing sensitive personal data is critical for pro-
tecting privacy. Currently, many persons use smartphones
to store their private data. However, smartphones suffer
from many security issues. To overcome this situation, the
PCAS project is designing a secure personal storage device
called the Secure Portable Device (SPD), to be attached to
a smartphone for securely storing sensitive personal data.
However, this device is unavailable, closed, and expen-
sive to deploy for prototyping applications. We propose
a platform that emulates the SPD and the smartphone
using a board with an ARM processor with the TrustZone
security extension. This platform is open, inexpensive, and
secure. A payment application is used as an example to
show the platform’s capabilities. As a proof-of-concept,
we implemented this platform and provide a performance
evaluation using a i.MX53 board.

CCS Concepts
•Security and privacy → Tamper-proof and tamper-
resistant designs; Mobile platform security;

Keywords
Mobile Computing; Privacy; Hardware Security; Trusted
Computing; ARM TrustZone

1. INTRODUCTION
In order to protect privacy, many believe that individuals

should control their own personal data and take respon-
sibility for how this data is accessed. For this reason,
many people carry their personal digital data with them.
Increasingly, people rely on smartphone applications to store
sensitive private data (e.g., passwords, contact information,
and credit card numbers). Unfortunately, smartphones
suffer from many security issues that can put this data in
jeopardy [41, 13, 22]. Moreover, the increasing popularity of
smartphones coupled with the fact that these devices store
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a large amount of sensitive personal data has made them
an attractive target for malware writers, other attackers,
and even law enforcement. Researchers have shown that
Android-based mobile devices are vulnerable to a number of
different attacks: malicious applications and libraries that
misuse their privileges [17, 42]; root exploits that extract
sensitive data [41]; exploit of unprotected interfaces [8, 39];
confused deputy attacks [9]; and collusion attacks [25].

To improve this situation, the Personal Centralized Au-
thentication System (PCAS) project1 is developing a trust-
worthy environment for secure storage and management
of personal data. PCAS proposed a secure hardware
component called the Secured Portable Device (SPD) that
aims to be attached to a smartphone as if it was a sleeve
to physically protect the device [34, 33].2 This SPD can
securely store privacy-critical data, such as personal medical
records and financial data. It has also biometric sensors
to authenticate its owner. The SPD is connected to the
smartphone via an USB connection.

The ARM TrustZone is a hardware security extension
incorporated into recent ARM processors [5]. This extension
compartmentalizes the device in two worlds (or zones) and
provides isolated execution of applications and secure stor-
age. Specifically, the secure world runs trusted applications
on top of a small trusted operating system (OS), whereas
the normal world runs normal applications on top of a
mobile OS, such as Android. The secure world’s memory,
peripherals, and interrupts are isolated from the mobile OS
in order to ensure that the trusted application and the secure
storage are protected from software attacks.

This paper presents the design of a platform called Light-
SPD, that allows to prototype (experiment with) appli-
cations for the PCAS environment (i.e., for smartphones
with SPDs), providing some degree of security to allow
real deployment if that is desired. Light-SPD leverages a
prototyping board with an ARM processor with TrustZone.
The SPD is emulated in the secure world, whereas the
smartphone’s functionalities run in the normal world.

The original SPD is proprietary, only a few prototypes
exist, and they are unavailable to the research community.
In contrast, Light-SPD is open and easy to deploy, as it is
implemented with readily available boards, such as the NXP
Semiconductors (formerly Freescale Semiconductor) i.MX53
Quick Start Board (QSB). Moreover, Light-SPD is secure, so

1https://www.pcas-project.eu
2The market of sleeves for smartphones and tablets is huge
today. The SPD is expected to be cheaper than some of
these sleeves that can cost hundreds of euros.



private data is protected from software and hardware attacks
to the extent provided by the underlying secure hardware.
The Light-SPD is less secure than the original SPD that aims
to resist strong attacks such as using side-channels or X-rays
to steal encryption keys. However, the purpose of Light-
SPD is to provide a prototyping platform for developing
applications rather than a physically secure product.

We demonstrate the capabilities of our design with a
payment application in which persons use their smartphone
to make payments at a point of sale (POS). This application
leverages the SPD to make payments securely, despite the
operating systems of the buyer’s smartphone or of the POS
being malicious. The SPD authenticates the owner and
communicates securely with the backend application.

The contribution of this paper is the design, implementa-
tion, and experimental evaluation of a platform for secure
mobile applications that emulates PCAS’s SPD working
together with a smartphone. The platform is open, inex-
pensive, and secure. An example payment application is
presented and evaluated experimentally.

2. BACKGROUND
This section provides background information about the

technologies underlying the design and implementation of
Light-SPD.

2.1 ARM TrustZone
ARM TrustZone is an extension supported by recent ARM

processors, including the ARM Cortex A8, A9, and A15 [5].
The TrustZone technology provides two trust domains. The
first is called the secure world and is supposed to contain
a small secure OS and security-critical services, whereas
the untrusted side or normal world executes a full-fledged
traditional OS (such as Android) and all user applications.
The secure world should not run arbitrary code (such as an
application downloaded from the Internet), hence a scheme
based on signatures and a public-key infrastructure might be
used to enforce this (e.g., a scheme similar to Java’s [31]).

The context switch between these two worlds is controlled
by a high privileged mode called TrustZone monitor mode
and by a special secure monitor call (SMC) instruction.
Each world has access to its own memory management unit
(MMU) that maintains separate page table translations.
Cache memories are TrustZone aware, thus the cache lines
are tagged as secure or non-secure. As a result access to
secure cached content from the normal world is denied.

Certain hardware peripherals and memory can be reserved
to be exclusively accessible by the secure world. As a
result, it is possible to secure peripherals such as memory,
keyboard, and screen to ensure they can be protected from
software attacks. The secure world provides code and data
integrity and confidentiality because untrusted code running
in the normal world cannot access protected resources,
devices, or memory pages within the secure world.

2.2 The PCAS SPD
The PCAS SPD is a secure hardware storage device

that works connected to a smartphone using USB [34, 33].
Currently, a few prototypes have been implemented, but it
is not a commercial product yet.

The SPD is essentially a system-on-chip with its own
battery. It has a large amount of memory so it can securely
store a considerable amount of personal data, e.g., personal

medical records. It has also biometric sensors, e.g., a front
camera to implement face recognition, to authenticate its
owner, in order to authorize access to the stored data on
the SPD and enforce secure communication with service
providers in the cloud when accessing and uploading data.
The SPD has no network interfaces so it cannot connect
to the Internet directly; instead it uses the smartphone’s
communication services (e.g., 3G or 4G) as a gateway. The
SPD has no screen, only a few LEDs.

The SPD is designed to allow the implementation of
several secure mobile applications. An example application
involves personal medical records, which may be stored in
the SPD for user convenience (e.g., to be able to provide
them to different hospitals). Another example that we
explore in the paper is a payment application. In this case,
a SPD acts as credit/debit card in transactions to purchase
products at POS or vending machines. In such a transaction,
the user passes the SPD connected to her smartphone in
front of an NFC reader, rather than using a credit card.
Next the SPD asks the user to authenticate herself and to
approve the amount to pay. The SPD contacts the backend
of the application in the cloud that deducts the amount from
the user’s account. Finally, after the backend confirms the
payment the vending machine releases the product.

3. LIGHT-SPD DESIGN
In this section, we describe the design of the Light-SPD

platform. The main idea is to emulate both the SPD and
smartphone system shown in Figure 1(a) using the virtual
system shown in Figure 1(b) by taking advantage of the
ARM TrustZone that provides a hardware-assisted isolated
environment.

Figure 1: System architecture: (a) the SPD
plus smartphone system; (b) the emulation system
(Light-SPD).

Figure 1(a) depicts a system in which the SPD is phys-
ically connected to a smartphone using a USB cable and



all data exchange between the two is carried over this
communication link. The smartphone communicates with
the cloud for backend processing. In Figure 1(b), a board
which supports ARM TrustZone extension is used to emulate
a smartphone. The smartphone’s OS and applications are
implemented in the normal world of the board, whereas the
SPD functionalities are emulated in the secure world. Note
that such a system might be implemented in smartphones
with an ARM processor with TrustZone, but these devices
are currently locked in such a way that it is not possible to
use the secure world (without special arrangements with the
device manufacturer). Samsung’s Knox technology might
also be used, but it is extremely hard to get access to it [3].
Therefore, we opted for an open board such as the i.MX53
QSB.

Figure 2 illustrates a more detailed architecture of the
Light-SPD platform. Light-SPD provides three execution
environments: (1) the normal world, an untrusted domain
for running the mobile’s OS and most applications’ graphical
user interface (GUI); (2) the secure world, a trusted domain
for running the trusted OS, security sensitive application
components (trustlets), and for storing security critical data
as does the original SPD; and (3) an application backend
where the core application services run. Sometimes we
will abuse the expression and use Light-SPD to mean the
software that emulates the SPD – the software inside the
secure world – instead of meaning the whole platform.

3.1 Threat Model and Assumptions
We assume that in the normal world the mobile OS and

the applications it executes are untrusted and potentially
malicious. In contrast, we assume that the software running
in the secure world is not compromised.

We leverage the ARM TrustZone hardware protection to
protect data and code residing in the secure world from the
potentially compromised mobile OS. Moreover, we assume
that only trusted code is executed in the secure world. In
order to reduce the size of the trusted computing base (TCB)
[29], we reduce as much as possible the software installed
in the secure world and, specifically, we do not include a
network stack. We also reduce the size of the API the secure
world exposes and carefully validate inputs to that API.

These two features make software attacks against the
secure world hard, so for the purposes of this paper we

assume they cannot be successful. We also assume that
hardware attacks cannot be successful due to the protection
provided by the TrustZone.

3.2 Light-SPD Components
As shown in Figure 2, the Light-SPD platform provides

the following main components.

TrustZone Driver.
The SPD is a passive device that is used by the smart-

phone. Therefore, in the Light-SPD platform the communi-
cation follows the same pattern and it is the normal world
that calls the secure world. This communication mechanism
is similar to a remote procedure call or, more closely, to a
call from a computer to a Java Card [28].

The TrustZone driver (TZ_Driver) is a kernel driver in
the mobile OS, which supports cross-world calls from the
normal world to the secure world. In this simple design it
allocates a shared memory zone that is used for the normal
world to pass parameters to the secure world, and for the
secure world to pass results of calls to the normal world.

SPD API.
Light-SPD provides an application programming interface

(API) in the normal world (SPD_API). This API allows
untrusted application components running in the normal
world to call trusted functions in the secure world. The
API has a single function that requests an operation by a
trusted application (trustlet) in the secure world:

operation_call(int AppID, // in

char *op_code, // in

char *buffer, // in & out

int buffer_size, // in

int *success_code) // out

This function calls an operation with operation code
op_code in the trustlet identified by AppID. The arguments
to be passed to the trustlet are encoded into the buffer. If
this function call is successful, it returns success_code with
the value of zero. On an error, it returns -1. The result from
this call will be placed back into the buffer.

An example of the operation_call function being called
is presented in the code snippet shown in Figure 3.

Figure 2: Light-SPD detailed architecture. Grey boxes are components that are specific of the Light-SPD
platform.



AppID = ...

op_code = ...

size_of_inputs=compute_size(input_descriptors);

size_of_outputs=compute_size(output_descriptors);

buffer_size=max(size_of_inputs, size_of_outputs);

buffer=allocate_buffer(buffer_size);

success_code=0:

encode_into_buffer(buffer, input_descriptors,

argument1, argument2, ...);

operation_call(AppID, op_code, buffer, buffer_size,

success_code);

if (success_code < 0) {

process_error();

}

decode_from_buffer(buffer, output_descriptors,

output1, output2, ...);

Figure 3: An example API call.

SPDMonitor.
This component implements the core functionality of

the SPD. It is responsible for receiving a request from
an application in the normal world and determining the
corresponding trustlet in the secure world. It also validates
all the incoming parameters from the normal world in order
to prevent attacks such as buffer overflows, format string
attacks, or command injection. In addition, it may perform
user authentication using the biometric sensors before it
starts the trusted application partition in the secure world.
This prevents unauthorized access to the user’s private data.
The form of authentication performed depends on a policy
stored in the Light-SPD, similarly to what happens in the
PCAS SPD.

3.3 Light-SPD Mechanisms
In this section, we discuss the security mechanisms pro-

vided by the Light-SPD platform.

Secure Connectivity.
The secure world provides the ability to communicate with

a remote server using an end-to-end secure channel, hence
securing this communication even against applications run-
ning in the normal world (that emulates the smartphone).
In order to limit the size of the TCB, no network driver
is included in the secure world, only in the normal world.
Although the network driver is in the normal world, its
role is only to forward packets (it works as a gateway)
and communication is protected end-to-end, so it does need
to be trusted. If compromised, it may only block the
communication, not do other attacks.

The secure channel protects communication using 4 shared
secret keys established using the Internet Key Exchange
protocol [20]. Protection is implemented using the usual
mechanisms: confidentiality is guaranteed by encrypting
the data using the sender’s encryption key and AES;
integrity and authenticity are guaranteed using message
authentication codes (MACs) obtained with the sender’s

MAC key; replay is prevented using sequence numbers.
Messages always cross the normal world protected this way
(they are only encrypted, decrypted, etc. inside the secure
world).

Secure Storage.
The Light-SPD platform provides a secure storage compo-

nent accessible only to the secure world. This secure storage
is isolated in the secure world and cannot be accessed by
the mobile OS or applications running in the normal world.
Therefore, this secure memory can be used to store sensitive
data (such as credit card details and personal health records)
and this data can be protected from attacks despite the
mobile OS being compromised.

Secure World User Interface.
Unlike the SPD, the Light-SPD has a small screen and

a keyboard. The objective of this modification of the
original idea is to provide more versatility when prototyping
applications. Use of this screen and keyboard is optional.

While a screen and keyboard might be shared by the two
worlds, if input/output (I/O) devices are accessible from
both the worlds, then the data from/to the secure world
could be accessed or modified by untrusted applications or
the mobile OS (which itself is vulnerable to malware attacks)
in the normal world. Gilad, Herzberg, and Trachtenberg [16]
proposed using a hardware indicator on the device to shows
the status, i.e., if the device is running in the normal or
secure world (for example, a LED that only lights up when
the secure world is running). However, OSs are designed
to run in a CPU without (long) interruptions and it seems
infeasible to dedicate the CPU to the secure world during the
entire time the user needs to interact with it, e.g., seconds.
Moreover, if an interrupt occurs a compromised OS could
modify inputs/outputs.

Therefore, for Light-SPD we opted to use separate pe-
ripherals, i.e., its own small screen and keyboard. These
input/output devices are controlled exclusively by the secure
world, thus enabling Light-SPD applications to have a
trusted GUI with which to securely interact with the user.

Biometric Authentication.
Light-SPD utilizes the biometric sensors of the device

to implement user authentication mechanisms in order to
subsequently authorize operations by using SPDMonitor in
the secure world. This requires secure sensor data reading
and processing by the secure world. However, malicious code
in the normal world could create fake sensor data if these
sensors are accessible to a compromised OS.

Research on trusted GPS [24], addresses this problem by
resetting the sensor’s configuration to a known good state
whenever the secure world starts reading the sensor’s data.
However, this solution would lead to very high delay when
using sensors. Therefore, similar to the separate I/O devices
used for the trusted GUI, we use biometric sensors controlled
exclusively by the secure world for user authentication.



4. MOBILE APPLICATIONS
In order to leverage Light-SPD to protect the user’s

privacy, a mobile application has to be partitioned into three
components:

• an untrusted component implementing most of the
application’s GUI running in the normal world;

• a small application component that handles security
sensitive computations running in the secure world
(trustlet); and

• a (larger) component implementing most of the appli-
cation’s functionality running as service in a remote
back-end server.

This partitioning minimizes the size of the TCB in
the secure world, while enhancing scalability and reducing
power consumption of the mobile device, as computationally
intensive services are offloaded to the cloud.

As depicted in Figure 2, the untrusted application (App)
in the normal world interacts with the trusted application
(trustlet) by invoking operations. Since the App resides in a
separate domain, it uses the SPD_API to communicate with
the trustlet in the secure world.

Trustlets implement the SPD logic. They are responsible,
e.g., for performing computation on security-sensitive data
stored in the secure storage. They may also securely
transfer data from/to remote services running in a remote
server to perform computationally intensive operations.
Trustlets may be generic (e.g., a trustlet for data storage) or

application-specific. We assume a service provider validates
and signs trustlets before they are inserted in the Light-
SPD, which verifies the signature using the public-key of
the provider.

Every Light-SPD App is assigned a unique identity num-
ber (AppID), that identifies each Light-SPD application
installed on a device. Thus, the Light-SPD maintains a
manifest file which contains a list of Light-SPD applications
represented as 3-tuples <AppIDi, Ti, Si>, where AppIDi is
the unique ID of the Appi in the normal world. This AppIDi
is associated with a trustlet Ti in the secure world and a
service Si (URL) for the corresponding service in the cloud.
The manifest file is stored in the secure storage component
accessible only by the secure world.

When Appi sends a request with AppIDi to the SPDMonitor,
the SPDMonitor uses the AppIDi to determine the cor-
responding trustlet Ti from the manifest file for secure
computation in the secure world. Next, the SPDMonitor may
communicate with the service Si in the cloud for backend
processing.

4.1 Request Processing Example
Figure 4 shows an example of how an operation request

could be processed in the Light-SPD platform. An untrusted
application partition (App) in the normal world initiates a
request containing an AppID and an operation code to the
SPDMonitor in the secure world (step 1). The SPDMonitor

checks for an entry for this AppID in the manifest file and
asks the user for authentication via the trusted GUI (step 2).

Figure 4: Time diagram of an example processing of a request in Light-SPD. The user interacts via the
trusted GUI.



The user provides biometric data via the secure biometric
sensor (step 3). The SPDMonitor sends again a confirmation
request to the user with information about the requested
operation via the trusted GUI (step 4). The user replies
with a decision (authorize or deny) and optionally enters
user inputs through the trusted GUI (step 5).

If the user authorizes, the SPDMonitor then calls the cor-
responding trusted application partition (trustlet) (step
6). The trustlet returns the result back to the SPDMonitor

(step 7).
The SPDMonitor encrypts user data, service name, and

nonce (for replay protection) together with message authen-
tication code (MAC) using the appropriate shared key, and
sends this message to the remote server via the App in the
normal world for backend processing (steps 8-9).

After receiving the data, the server decrypts it, checks the
MAC, and performs the requested service. The server then
encrypts the result, and nonce together with MAC using the
shared key, and sends the ciphertext back to the SPDMonitor
through the App in the normal world (steps 10-11). Finally,
the SPDMonitor decrypts and checks the nonce and MAC,
and displays the response data to the user (step 12). Note
that this final display can be done either via the trusted GUI
or the normal GUI depending upon the App’s preference.

This scheme exemplifies how to provide data confidential-
ity, integrity, and authenticity in the Light-SPD platform.
It is not part of the actual SPD or Light-SPD.

5. PAYMENT APPLICATION
Currently, many mobile payment applications store and

process private data (such as credit card details and pass-
words/pin codes) in an untrusted environment, in a smart-
phone. Therefore, this sensitive data is vulnerable to various
attacks from malicious applications in the smartphone.

Figure 5(a) shows a secure payment scenario at a point of
sale (POS) terminal that leverages the PCAS SPD to protect
user personal data and provide strong authentication with
biometric data. The SPD is connected to a smartphone
via USB and can be used to securely store the cardholder’s
data and other security-sensitive data (an the obvious use
of SPDs for payments).

In this section we will consider a different, richer, payment
scenario, represented in Figure 5(b). The secure payment
application works between the customer and the cashier to
showcase Light-SPD functionality by having each of the per-
sons involved (customer and cashier) use their own devices
with a (emulated) SPD. The two devices can communicate,
e.g., with NFC, Bluetooth Low Energy, or Wi-Fi. The
advantage of this scenario in relation to the previous one
is that it allows secure payments even if the cashier and
the customer devices are temporarily disconnected from the
Internet.

Before any payment occurs, the customer and the cashier
must have installed the payment application(s). To initiate
a payment, the cashier starts the payment application
(cashier_App) in her device, in the normal world. The
cashier_App sends its AppID and operation code to the
Light-SPD (i.e., to the SPDMonitor) in the secure world of
the cashier’s device by using the Light-SPD’s API (i.e., the
SPD_API). The SPDMonitor asks the cashier for authorization
to request this payment via the device’s trusted GUI and
authentication via the secure biometric sensor. After a
successful authentication and authorization, the SPDMonitor

Figure 5: Secure payment scenarios: (a) smarphone
with SPD connect to conventional POS; (b)
customer and cashier with Light-SPD devices
emulating smarphones and SPDs.

calls the trustlet (cashier_trustlet) that returns a chal-
lenge. The SPDMonitor then sends the challenge together
with transaction details to the customer_App in the normal
world of the customer’s device via a secure channel.

Similarly to the cashier, to do the payment the customer
uses the customer_App to initiate an operation that involves
contacting the SPDMonitor in the secure world of her
device. The SPDMonitor displays the amount to pay and
asks the customer for authorization to make this payment
via its trusted GUI and authentication via the secure
biometric sensor. After a successful authentication and
authorization, the SPDMonitor calls the customer_trustlet.
The customer_trustlet answers the challenge and performs
the transaction by deducting from a local balance of the
customer against a line of credit available for local payments.
This method can work offline and reduce the device’s energy
consumption; otherwise the device can communicate with
this app’s remote server to get a payment token or directly
make the payment to the cashier’s account.

At this stage, the SPDMonitor also sends the answer for the
challenge and if necessary the customer’s credit card details
to the SPDMonitor in the cashier’s device which may confirm
the availability of credit or funds by interacting with its
remote server. Finally, the payment confirmation and details
are displayed on the customer’s trusted GUI (customer side)
and on the cashier’s trusted GUI (cashier side).

A brief explanation of why this process is secure is the
following. If the user’s smartphone was malicious it might
modify the payment process to pay a different value and/or
to a different vendor (stealing from the user). However,
with our payment application this is not possible because
every transaction is performed by the customer_trustlet

after a successful authentication and authorization by the
SPDMonitor in the secure world. If the cashier was malicious
she might also modify the amount to request for a payment.
In Light-SPD, this is not possible because the amount details
are processed and sent securely by using the SPDMonitor and
the cashier_trustlet isolated in the secure world.



6. EXPERIMENTS
This section presents the implementation of the Light-

SPD and its experimental evaluation.

6.1 Implementation
We implement a prototype using a i.MX53 QSB.3 The

board is equipped with a Cortex-A8 single core with 1
GHz application processor, 1 GB DDR memory, and a 4GB
MicroSD card.

Genode is a framework for building special-purpose oper-
ating systems [15]. It is a collection of small building blocks
including applications and system software components
(e.g. kernels, device drivers, and protocol stacks). Since
requirements vary, Genode can reduce system complexity
for each security-sensitive scenario. Due to its small TCB,
Genode is an appealing foundation for an OS designated to
run on the secure secure world. Genode Labs has released
a TrustZone virtual machine monitor (VMM) demo for this
board, which enables the execution of Genode in the secure
world, while a guest OS (such as Linux) monitored by a
Genode hypervisor runs in the normal world. We used this
demo as a starting point to run Genode in the secure world.

In the secure world we run the Genode kernel. On top of
the kernel runs a VMM that implements the SPDMonitor

that handles hypercalls from the normal world. In the
normal world we run Linux. We incorporated a driver
(TZ_Driver) in the Linux kernel to issue an hypercall to
exit the normal world, and trap to the secure world using the
secure monitor call (SMC) instruction of the ARM security
extensions. A shared buffer in normal world RAM is
implemented to pass selected data across worlds. General
purpose registers are used to store information about the
shared buffer between the two worlds, including the physical
address of the buffer and the length of the buffer. By doing
this, application components that resides in the two worlds
can interact.

We have ported the OpenSSL library (libcrypto) to run
in the secure world on top of Genode in order to support a
variety of cryptographic operations. Thus, the secure world
can establish secure channels with remote servers via the
network stack in the normal world. For secure display and
user input, we use a serial console to simulate the secure
display and a hardware keyboard as the secure input. To
do this we setup the UART device as a secure world only
peripheral, which means that software running in the normal
world cannot access that device. For secure storage, we use
the Genode partition manager (part_blk), which supports
MSDOS as well as GPT partition tables and provides a block
session for each partition on a SD card. This allows the
partitions to be addressable as separate block sessions and
makes it is easy to grant or deny access to them. In our
platform, we use an SD card partition for storing the security

3We plan to release the prototype but it is not publicly
available yet.

sensitive data which is accessible exclusively by the secure
word. In the current prototype, we allocated 2GB of secure
storage space from a total of 4GB space available on the
MicroSD card.

6.2 Performance
In this section we evaluate the prototype via both micro-

benchmarks and a single macro benchmark.

6.2.1 Micro-benchmarks
We used a set of micro-benchmarks to evaluate the

performance of our platform. We measured 4 latencies:
context switch between worlds; data passing using the
shared buffer; data encryption and decryption in the secure
world. All the results we present are the average of 1000
operations.

To evaluate the time for context switching between the
two worlds, we make SMC calls from the normal world and
the secure world returns immediately without executing any
trustlet (we modified SPDMonitor for this purpose). We
measured an average context switching time of 0.045 ms.

We evaluate the overhead due to data transfer between the
two worlds using the shared buffer, copying different sized
chunks of data into the shared buffer and sending them to
the secure world. Next the secure world retrieves the data
from the buffer and switches execution back to the normal
world. The results of these experiments are shown in the
second line (Data Transfer) of Table 1.

In the payment application and generically in the Light-
SPD platform when secure channels are used, a trustlet
running in the secure world encrypts data before it sends
it to the remote server and decrypts incoming data. We
measured the time for these operations using different sizes
of data and AES with keys of 256 bits. Note the key is
previously stored in the secure world. We show these results
in the two bottom lines of Table 1.

6.2.2 Macro-benchmark - Payment application
To evaluate the performance of the payment application,

we measured the latency of two operations of the payment
application: pay() to make a payment and show_balance()

to check the available balance. We did not consider the
user authentication and authorization times. We con-
ducted this experiment with two payment methods: a
local payment where all transactions are performed on the
local machine/our board, and a remote payment, where all

Table 2: Time of the payment application operations
(milliseconds).

Payment \ Operation pay show balance
Local 0.16 0.15
Remote 1.58 1.52

Table 1: Time to transfer data between the two worlds and to encryt/decrypt data in the secure world
(milliseconds).

Operation \ Data Size 10B 100B 1KB 10KB 100KB
Data Transfer 0.061 0.07 0.085 0.311 2.5
Data Encryption 7.1 8.0 8.2 9.4 27
Data Decryption 6.4 7.0 8.0 8.1 24.6



transactions are performed on a remote server. For the
remote payment, we used a LAN network and the average
round trip time (RTT) between the board and the remote
server is 0.373 ms. We show these results in Table 2.

In the payment application the messages exchanged have
less than 1 KB in size. Therefore, if we do not consider the
user authentication, communication, and processing times,
our platform introduces a delay of a few centiseconds, which
is negligible in operations involving humans. Note that these
measurements reflect preliminary measurements. As future
work we expect to examine the details of caching between
the normal world and the secure world in order to improve
this performance.

7. RELATED WORK
There is a large amount of related work, of which we

highlight four major areas: Android extensions to protect
sensitive data, trusted execution environment, secure stor-
age of such data, and secure mobile payments (the example
used in this paper).

Extending Android to protect sensitive data.
Many approaches have been proposed to protect private

data in Android smartphones. TaintDroid [11], AppFence
[19], and AppIntent [40] control real-time flow of privacy-
sensitive data through applications and expose possible
privacy leaks. Saint [32], Aurasium [38], and Apex [30]
enable applications to specify runtime constraints on the
use of their sensitive data, e.g., an application can specify
that another application with network access cannot read
that data. Several systems, including FlowDroid [6] and
ComDroid [8], detect privacy-sensitive data leaks by scan-
ning the source code (or bytecode) without executing it.
Another line of research protects sensitive data in Android
devices by classifying applications along with their data into
separate domains with different trust levels and denying
data exchange between different domains. TrustDroid
[7] provides a framework to isolate applications that are
divided into corporate and private applications. All of the
above solutions assume that the Android OS is trusted,
i.e., part of the TCB, which is often not true in reality.
In contrast, Light-SPD enables sensitive data to remain
protected despite Android being compromised.

Trusted execution environment.
Another area of related work is on ensuring that sen-

sitive code and data are stored, processed, and protected
in an isolated, trusted environment. Researchers have
provided trusted execution environments (TEEs) based on
virtualization, e.g., Terra [14], that rely on the hypervisor
to create and manage TEEs without any modification to
existing hardware. Others leveraged the Trusted Computing
Group’s Trusted Platform Module (TPM) to provide higher
assurance, e.g., [36, 26].

More recently hardware extensions appeared that support
the creation of TEEs. The Intel software guard extensions
(SGX) [4, 18, 27] is an Intel architecture designed to
support the concept of an enclave, an isolated execution
environment, similar to ARM’s TrustZone [5]. An enclave
is a protected area of code and data within an application.
Unlike ARM TrustZone, SGX can have multiple protected
enclaves in a system and their memory areas are separately

encrypted. The access to an enclave’s memory area by un-
trusted code including the OS, is protected by the processor.
Iso-X [12] offers higher memory allocation flexibility than
SGX, but is an academic work, not available in current
processors.

Secure storage.
Recent research on secure storage of sensitive data on

mobile devices has begun to leverage the ARM TrustZone
extension. Several works have proposed mechanisms to
protect secrets such as private keys, that are only accessible
to small security critical programs, by using an isolated
environment protected using the TrustZone [10, 21, 16].
Light-SPD is not restricted to storage of secrets, but allows
biometric authentication and storage of large files, besides
supporting the execution of hybrid applications with an
untrusted and a trusted part. It also supports secure
channels for communication with external backends running
in the cloud. DroidVault [23] provides a secure data vault on
Android devices using the TrustZone. DroidVault encrypts
the private data downloaded from a remote server and stores
the ciphertext in the untrusted Android file system. As a
result, the data may be deleted by a compromised Android
OS. In contrast, it is up to the specific trustlet whether
to store encrypted data in the file system of the mobile
OS or to store it in the secure storage component, with
the latter providing increased protection against data loss.
Unlike previous work, the Light-SPD can exploit biometric
authentication mechanisms to authorize access to privacy
sensitive data stored in the secure storage component.

Secure mobile payments.
Marforio, et al. [24] use a trusted application that runs

in the ARM TrustZone secure world to verify the location
of a cardholder during payments at the POS by using
the phone’s location. Light-SPD enables secure payments
without using physical credit/debit cards. The Trusted
Language Runtime (TLR) [37] and Pirker and Slamanig
[35] provide a framework to separate application security
logic, called a trustlet, from the rest of the application
and run it in the ARM TrustZone secure world. This
trustlet alone is responsible for ensuring a secure transaction
during mobile payment. In contrast, Light-SPD can exploit
computationally intensive services running in the cloud to
reduce the size the TCB and the power consumption of the
mobile devices.

There a few real payment services, which have to protect
payment information during transactions. Android Pay
[1] and Apple Pay [2] generate a virtual account number
unique to each credit or debit card added to a user device.
They use this virtual account number along with a payment
token, a one-time security code, when making a transaction.
Moreover, the payment information including the actual
credit or debit card number are encrypted and stored on
secure servers, not on users’ devices.

8. CONCLUSIONS
In order to protect privacy, the PCAS project proposed

the SPD to be connected to a smartphone via USB for se-
curely storing sensitive personal data. However, this device
is closed and currently unavailable. This paper presents
the design, implementation, and experimental evaluation



of the Light-SPD platform that allows experimenting with
mobile applications for the PCAS SPD and smartphones,
and provides sufficient security to allow deployment of such
applications.

We have demonstrated the capabilities of the platform
using a payment application. Light-SPD is open, easy
to deploy, and secure with both an acceptable cost and
performance.
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