
MultiTLS: Secure communication channels
with cipher suite diversity

Ricardo Moura[0000−0003−4306−3477], David R. Matos[0000−0001−6834−705X],
Miguel L. Pardal[0000−0003−2872−7300], and Miguel Correia[0000−0001−7873−5531]

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{ricardo.de.moura,david.r.matos,miguel.pardal,miguel.p.correia}

@tecnico.ulisboa.pt

Abstract. TLS ensures confidentiality, integrity, and authenticity of
communications. However, design, implementation, and cryptographic
vulnerabilities can make TLS communication channels insecure. We need
mechanisms that allow the channels to be kept secure even when a new
vulnerability is discovered.

We present MultiTLS, a middleware based on diversity and tunneling
mechanisms that allows keeping communication channels secure even
when new vulnerabilities are discovered. MultiTLS creates a secure
communication channel through the encapsulation of k TLS channels,
where each one uses a different cipher suite. We evaluated the perfor-
mance of MultiTLS and concluded that it has the advantage of being
easy to use and maintain since it does not modify any of its dependencies.

Keywords: Secure communication channels · SSL/TLS · Security ·
Vulnerability-tolerance · Diversity for security · Tunneling

1 Introduction

We are currently living in an increasingly digital age. and there have been many
cyberattacks that cause increased losses and damage to businesses and Inter-
net users [8]. Secure communication protocols are a fundamental component
of distributed systems and digital business because they allow entities to ex-
change messages through a trusted communication channel over the untrusted
public Internet. These channels aim to guarantee confidentiality, integrity and
authenticity. Transport Layer Security (TLS) is one of the most commonly used
protocols to provide secure communications. It allows server/client applications
to communicate over a channel that is designed to prevent eavesdropping, tam-
pering, and message forgery. The most recent version is TLS 1.3 [9].

Protocols that allow secure communications may contain vulnerabilities that
make them insecure. Over the years, many vulnerabilities have been discovered
and corrected in SSL/TLS. The vulnerabilities with which we are concerned
can be divided into three groups: design vulnerabilities, implementation vulner-
abilities and cryptographic mechanisms vulnerabilities. Updating the software is

advisable in order to fix these vulnerabilities, but sometimes this is not done,
e.g., because the update process is inconvenient or time-consuming.

This work explores diversity in communication protocols by using multiple
cipher suites. These suites are used for defining a key exchange algorithm, an
authentication mechanism, an encryption mechanism, and a message authenti-
cation algorithm. Taking into account the existing problems and the objectives
defined, the solution found consists in creating several TLS channels, each us-
ing a cipher suite different from the other TLS channels, and using tunneling
mechanisms to encapsulate each TLS channel within another.

We developed MultiTLS, a middleware that obtains diversity by leveraging
tunneling mechanisms. In our implementation, we used socat , a tunneling soft-
ware, and OpenSSL, a TLS implementation, to create multiple TLS channels
and encapsulate each one in another. MultiTLS can be run as a shell com-
mand and is configured with a parameter k, the diversity factor (k > 1). This
parameter specifies the number of TLS channels to be created and consequently
the number of cipher suites to be used. The cipher suites used by these TLS
channels are different from each other to mitigate the vulnerabilities that can
be found in each cipher suite. Therefore, the communication channel created by
MultiTLS has multiple layers of protection, so that if k − 1 of the used cipher
suites are vulnerable, communications will remain secure, since there is at least
one cipher suite that guarantees the security of communications (confidentiality,
integrity, authentication). MultiTLS aims to make progress over vtTLS [5], a
vulnerability-tolerant communication protocol also based on diversity and redun-
dancy of cryptographic mechanisms to provide a secure communication channel.
However, vtTLS modifies a TLS implementation internally, leading to severe
software maintenance challenges.

2 Background and Related Work

Transport Layer Security (TLS)[9] is a security protocol that provides secure
communication channels between two entities, server and client. The protocol is
structured in two layers: the TLS Record protocol and the TLS Handshake proto-
col. The TLS Record protocol is used by the TLS Handshake and the application
data protocols to provide mechanisms for sending and receiving messages. The
TLS Handshake protocol is used to establish or resume a secure session between
server and client. A session is established in several steps, each corresponding
to a different message and with a specific objective. Following the TLS Hand-
shake protocol, the server and the client can exchange information through the
established secure communication channel.

Although the goal of the TLS protocol is to establish a secure communica-
tion channel, it may still have unknown vulnerabilities making it insecure and
susceptible to attacks.

An example of an attack that exploits a design vulnerability is CRIME (Com-
pression Ratio Info-leak Made Easy) [12]. This vulnerability was found in TLS

0 http://www.dest-unreach.org/socat/

2

compression. Using this method, an attacker can brute-force the cookie value
by using the responses sent by the server. The Heartbleed vulnerability [3] is
a buffer over-read vulnerability that happens when the sender sends a message
that specifies a payload size higher than what the real size of the payload. The
receiver, upon receiving the message, returns a block of memory where the sent
payload begins plus the specified size of the received message, that is, it returns
the received payload and dataset with size equal to the size specified in the
received message minus the real size of the message.

There are also vulnerabilities in the underlying cryptographic mechanisms
used by the TLS protocol. In 2011, Bogdanov et al. [2] published a biclique
attack against AES, though only with slight advantage over brute force. The
computational complexity of the attack is 2126.1, 2189.7 and 2254.4 for AES128,
AES192 and AES256, respectively. Although there is this attack and others, AES
is still considered a secure encryption mechanism. MD5 [11] is a hash function,
created by Rivest in 1991, that produces a 128 bit hash. In 2005, MD5 was proved
not to be collision resistant by Wang and Yu [13], through differential attacks.
Differential cryptanalysis, introduced by Biham and Shamir [1], analyzes the
differences in input pairs on the differences of the resultant output pairs.

In this work we achieve security through diversity. The term diversity de-
scribes multi-version software in which redundant versions are purposely made
different from between themselves [7]. With diverse versions, one hopes that any
faults they contain will be different and show different failure behavior.

vtTLS [5] is a previous work that also uses the diversity approach to solve
the limitation of TLS having only one cipher suite negotiated between server
and client. It uses the diversity and redundancy of cryptographic mechanisms,
keys and certificates. vtTLS was successfully implemented as a fork of OpenSSL
version 1.0.2g, but moving to a newer version of OpenSSL requires implementing
the diversity features again. Our solution, MultiTLS, is similar to this approach
but we do not modify implementations of the tools.

3 MultiTLS

MultiTLS provides secure communication channels with multiple layers through
tunneling of TLS channels within each other. The term tunneling describes a pro-
cess of encapsulating entire data packets as the payload within others packets,
which are handled properly by the network on both endpoints [6]. MultiTLS
provides an increase in security since each of these TLS channels uses a different
cipher suite than the others. The reason MultiTLS contributes to increased
security is that even when k − 1 cipher suites become insecure, that is, even
when k − 1 TLS channels become vulnerable, the communication channel cre-
ated by MultiTLS, which is the combination of the k TLS channels, remains
secure since there is still one TLS channel with secure cipher suite. The mecha-
nisms used by MultiTLS allow creating k TLS channels without changing the
implementations of the used tools. This approach is an advantage over vtTLS,

3

since it does not require changes to the implementation of TLS. In the following
sections, we will discuss the design and implementation of MultiTLS.

3.1 Design

To encapsulate a TLS channel in another TLS channel, we use TUN (network
TUNnel) interfaces. This mechanism is a feature offered by some operating sys-
tems. Unlike common network interfaces, TUN does not have physical hardware
components, that is, it is a virtual network interface implemented and managed
by the kernel itself. TUN is a virtual point-to-point network device. Its driver
was designed with low level kernel support for IP tunneling. It works at the pro-
tocol layer of the network stack. TUN interfaces allow user-space applications to
interact with them as if they were a real device, remaining invisible to the user.
These applications pass packets to a TUN device, in this case, the TUN inter-
face delivers these packets to the operating system’s network stack. Conversely,
the packets sent by an operating system to a TUN device are delivered to a
user-space application that attaches to the device. Figure 1 shows a practical
example in which an application running on two different hosts communicates
through TUN interfaces.

Kernel space

User space

Application
receive message from

10.1.1.1

TUN
interface
10.1.1.2

Ethernet
interface

User space

Application
send message to

10.1.1.2

Kernel space

TUN
interface
10.1.1.1

Ethernet
interface Network

Host A Host B

Fig. 1: Example of using TUN interfaces

We create an encapsulation of several tunnels by creating TUN interfaces
through others created previously. For each of these interfaces, we can use dif-
ferent TLS implementations running in user space that allow creating a TLS
channel that is encapsulated by the tunnel used by the hosts.

Figure 2 presents the architecture of MultiTLS for k = 2. This configura-
tion allows an application to communicate over two tunnels, whereas the tunnel
between the TUN1 interfaces encapsulates the tunnel between the TUN2 inter-
faces. In addition, we can see that between the TUN1 interfaces there is a tunnel
that crosses two processes that we designate by TLS implementation and whose

4

User space

Host A

User space

Kernel space

5

Host B

TUN 1

Ethernet
interface 6

TLS implementation

TLS implementation

6

1
2

3

Application

Kernel space

TUN 1

Ethernet
interface

TUN 2

TLS implementation

11 10

9 8 7

Network

Application

4

TLS implementation

TUN 2

Fig. 2: MultiTLS design with k = 2 and the flow of sending messages from one
application to another on different hosts

function is to establish and manage the TLS channel that is encapsulated by the
tunnel. To do this, one of these processes will run in server mode and the other
in client mode.

3.2 Combining Diverse Cipher Suites

In MultiTLS, we are interested in having the maximum possible diversity of
cryptographic mechanisms, because we want to avoid common vulnerabilities.
Evaluating the diversity among cryptographic mechanisms is not trivial. For this
purpose, we based our analysis on work by Carvalho [4] regarding heuristics to
compare diversity among different cryptographic mechanisms. In our work, we
focused on searching for the combination of four cipher suites supported by TLS
1.2 from the OpenSSL 1.1.0g implementation, that guarantees greater diversity.

We began by evaluating the diversity of public key mechanisms. In this case,
we observed the various combinations of key exchange and authentication algo-
rithms in cipher suites. The insecure cryptographic mechanisms were discarded
as well as the ECDH and DH algorithms since there are the variants of them,
ECDHE and DHE, which guarantee perfect forward secrecy. This analysis re-
sulted in the following combinations: ECDHE for key exchange and ECDSA for
authentication; RSA for key exchange and authentication; DHE for key exchange
and DSS for authentication; ECDHE for key exchange and RSA for authentica-
tion; and DHE for key exchange and RSA for authentication. In order to avoid

5

that the key exchange and authentication algorithms are repeated consecutively,
we choose the first four combinations of the above list, keeping the presented
order, i.e., the first tunnel will use ECDHE for key exchange and ECDSA as
authentication algorithm, the second RSA for key exchange and authentication,
the third DHE for key exchange and DSS for authentication and the fourth DHE
for key exchange and RSA for authentication.

Considering the combination of key exchange and authentication algorithms,
we group the supported cipher suites according to this combination. After this
step, we chose in each group the cipher suite that maximizes the diversity of
the symmetric key algorithms and the hash function between each of the four
groups. In order to measure the diversity of the cryptographic mechanisms, we
have taken into account some characteristics such as the origin, i.e., the author
or institution that proposed the algorithm, the year in which it was designed,
the size of the key in the case of the symmetric key algorithms and the digest
size in the case of hash functions and other metrics described in Carvalho’s
research [4]. We concluded that the combinations of 4 symmetric key algorithms
that maximize the diversity itself are:

– ChaCha20 + Camellia 256 + AES256-GCM + AES128CBC
– ChaCha20 + Camellia 256 + AES256-CBC + AES128GCM
– ChaCha20 + Camellia 256 + Camellia128 + AES256-GCM

Regarding hash functions, the variety is greatly reduced since there is only
SHA-256 and SHA-384. However, some symmetric key algorithms use operation
modes, such as CBC-MAC (CCM mode) and Galois/Counter Mode (GCM),
that provide authenticated encryption with associated data (AEAD). It is con-
sidered an alternative mechanism which can be used redundantly with HMAC to
achieve even higher diversity. In addition, the cipher suites with the ChaCHA20
algorithm use the Poly1305 which is a one-time authenticator. Poly1305 takes a
32-byte one-time key and a message and produces a 16-byte message authenti-
cation code (MAC).

From these analyses, the cipher suites selected to be used by default in Mul-
tiTLS with k ≤ 4 are: TLS ECDHE ECDSA WITH CHACHA20 POLY1305

SHA256, TLS RSA WITH AES 128 CCM 8, TLS DHE DSS WITH CAMELLIA 256

CBC SHA256 and TLS ECDHE RSA WITH AES 256 GCM SHA384

If MultiTLS the user wants to use only 2 tunnels, i.e., k = 2, the first cipher
suite shown in the above list is used in the first tunnel and the second cipher
suite is used in the second tunnel.

3.3 Running MultiTLS

MultiTLS is implemented as a script in Bash language and can be run as a
shell command. Before presenting how MultiTLS creates the secure tunnels, we
will first introduce the commands that allow us to create them. The commands
available through MultiTLS are:

6

– multitls -s port nTunnels [cert cafile cipher]

– multitls -c port nTunnels IPServer [cert cafile cipher]

The flags -s and -c mean that MultiTLS will run as a server or client,
respectively. The port argument specifies the port used to establish the last
tunnel. In the case of the server, MultiTLS will be listening on that port. In
the case of the client, MultiTLS will connect to that port of the machine that
has the IP specified in the IPServer argument. The nTunnels argument specifies
the number of tunnels that MultiTLS will create. In addition, we must specify:
the path to the file with its certificate and private key in the cert argument and
the path to the file that contains the peer certificate in the cafile argument. The
cipher argument lets us specify one or more cipher suites. If cipher suites are not
specified, the default ones will be used. The arguments between brackets must
be specified as many times as the value of the nTunnels argument because each
tunnel will use a set of keys and ciphers.

3.4 Implementing the tunnels

The execution of commands provided by MultiTLS allows the creation of TUN
interfaces and the creation of the tunnel that encapsulates a TLS channel, as
explained in Section 3.1. Figure 2 shows the scheme resulting from the execution
of the two MultiTLS commands presented in Section 3.3.

MultiTLS has as dependencies socat version 1.7.3.2 and OpenSSL version
1.1.0g. Socat is a command line utility1that establishes two bidirectional byte
streams and transfers data between them. A socat command has the following
structure: socat [options] address1 address2, where [options] means that there
may be zero or more options that modify the behavior of the program. The
specification of the address1 and address2 consists of an address type keyword,
for example, TCP4, TCP4-LISTEN, OPENSSL, OPENSSL-LISTEN, TUN; zero
or more required address parameters separated by ‘:’ from the keyword and each
other; and zero or more address options separated by ‘,’.

The MultiTLS script starts by analyzing the arguments provided by the
user. Afterwards, these arguments are used to execute socat commands. Multi-
TLS creates k tunnels running k socat command on the server and k commands
on the client. For the establishment of a tunnel using the socat commands, Mul-
tiTLS executes the following two commands, the first on the server side and
the second on the client side:

– socat openssl-listen:$port,cert=$cert,cafile=$cafile, \
cipher=$cipher TUN:$ipTun/24,tun-name=$nameTun,up

– socat openssl-connect:$ipServer:$port,cert=$cert, \
cafile=$cafile,cipher=$cipher \
TUN:$ipTun/24,tun-name=$nameTun

1 http://www.dest-unreach.org/socat

7

http://www.dest-unreach.org/socat

In the first command, we have the $port argument that represents the port
where the socat will be listening, we have the $cert, $cafile and $cipher argu-
ments that have the same meaning as the MultiTLS command arguments. The
arguments $ipTun and $nameTun are, respectively, the IP of the server in the
TUN interface and the name of that, which is created through this command.

In the second command, we have the argument $ipServer that represents
the IP of the server, the argument $port that represents the port of the server
where the socat connects to establish the communication. We have the $cert,
$cafile, and $cipher arguments that have the same meaning as the cert, cafile,
and cipher arguments in the MultiTLS commands. The arguments $ipTun and
$nameTUN are, respectively, the IP of the client in the TUN interface and its
name, which is created through this command.

MultiTLS by default assumes that the IP and names for the TUN interfaces
are 10.$k.1.$i and TUN$k, where $k is the tunnel number, 1 ≤ k ≤ nTunnels
and $i has the value 1 if it is the server and 2 if it is the client.

After the establishment of the first tunnel, MultiTLS can create the second
tunnel which is encapsulated by the first tunnel, using the previous socat com-
mands in which the value of $ipServer instead of being the real IP of the server
is the IP of the TUN interface created on the server to establish the first tunnel,
which as previously mentioned is 10.1.1.1, by default. To create more tunnels,
the IP of the last TUN interface created on the server side must be specified in
the $ipServer argument.

4 Evaluation

The experimental evaluation aims to answer questions about the performance
and cost of MultiTLS. We have three experiment sets: performance; compari-
son with other approaches; and MultiTLS applied to a use case.

4.1 Performance

In this section we want to answer the questions: What is the cost of adding more
tunnels? What is the cost of encrypting messages? To answer these questions
we used two virtual machines running on two different hosts, one playing the
role of a server and the other of a client. Both virtual machines used 2 VCPUs,
8GB of RAM and ran Ubuntu 16 (Xenial).

In the first evaluation, we used the iperf3 tool, version 3.0.11. Iperf3 is a
tool used to measure network performance. It has server and client functionality
and can create data streams to measure the throughput between the two ends.
It supports the adjustment of several parameters related to timing and proto-
cols. The iperf3 output presents the bandwidth, transmission time, and other
parameters.

To answer the first question, the first experiment consisted of using the iperf3
tool to measure 100 times the transmission time of 1 MB, 100 MB and 1 GB for
each k, considering k ≤ 4. The cipher suites used in this evaluation are the same

8

ones that are defined by default in MultiTLS. The average and the standard
deviation of transmission time of 1 MB, 100 MB and 1 GB for each value of k
can be seen in Figure 3.

0.17 5.06

48.10

0.25
8.27

87.90

0.41

14.53

146.22

1.05

24.66

210.74

0

50

100

150

200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
o

n
d

s)

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Fig. 3: Comparison between the time it takes to send 1 MB, 100 MB and 1 GB
messages in relation to the number of tunnels created.

Figure 4 shows for each message size the overhead of the transmission time
for k = 2, k = 3 and k = 4 in relation to k = 1. Therefore, we can see that for
k = 2 and k = 3 the cost of having added more tunnels increases as the size of
the message to be transmitted also increases. For k = 4 the cost of having added
more channels decreased as the size of the message to be transmitted increased.
We can also observe that the transmission time for k tunnels is less than k times
the value of k = 1 for each message size, except for k = 4, where the overhead
exceeds 4 times the value of k = 1 and for k = 3 in the 1GB transmission where
the time is 3.04 times greater than for k = 1.

We can answer the first question that for k = 2 the performance of Multi-
TLS is acceptable, since the time of sending messages with k = 2 is less than the
double of the time of sending messages with k = 1. With 3 tunnels, i.e., k = 3,
for the transfer of 1 GB, the performance of the MultiTLS is poor because the
sending time is more than three times the time of k = 1, in contrast, to transfer
1 MB and 100 MB the performance is good since the sending time is less than
three times the time of k = 1.

The second experiment aims to evaluate the cost of encrypting the commu-
nication messages. To do this, using the same virtual machines, we performed
the same tests we did in the first experiment, however changing the cipher suites
by default from MultiTLS to TLS ECDHE ECDSA WITH NULL SHA, TLS RSA WITH

9

47%
63%

83%

141%

187%
204%

518%

387%

338%

0%

100%

200%

300%

400%

500%

600%

1 MB 100 MB 1 GB

O
ve

rh
ea

d

Message Size

2 Tunnels 3 Tunnels 4 Tunnels

Fig. 4: The overhead of adding more tunnels in relation to k = 1.

NULL SHA256, TLS RSA WITH NULL SHA and TLS ECDHE RSA WITH NULL SHA. There-
fore, the messages exchanged by the client and the server were not encrypted.
This experiment helps us realize the influence of encrypting the data in the total
transmission time of messages with different sizes. Figure 5 shows the average
and standard deviation of transmission time of 1 MB, 100 MB, and 1 GB for
each value of k.

As with the first experiment, for each message size, the transmission time
increases as the number of tunnels increases. However, we verified that the trans-
mission time of 1 MB for all values of k is greater than k times the time of k = 1.
In the transfer of 100 MB and 1 GB with k tunnels, the transmission time does
not exceed k times the value of k = 1.

Figure 6 shows the difference between the first and second experiment, for
each message size and k. We can see that, for certain message sizes and k,
messages sent on the first experiment took less time than messages sent without
encryption. However, we can observe that in these cases the average overhead
is about −10%, whereas in cases where encrypted communications take longer
than unencrypted communications, the average overhead is 35%. Overall, the
overhead of encrypting the messages is 13%.

For all this, we can answer the second question: the time to encrypt the
messages has a considerable low impact given that it takes 13% more time.

4.2 Comparison with MultiTLS

The purpose of this section is to compare the performance of MultiTLS with
other tools and to know which of these approaches performs better.

10

0.10 5.40

54.14

0.21
8.93

91.84

0.45
11.76

118.87

1.34

17.40

162.25

0

50

100

150

200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
o

n
d

s)

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Fig. 5: Comparison between the time it takes to send 1 MB, 100 MB and 1 GB
messages in relation to the number of unencrypted tunnels.

For this purpose, using the same virtual machines that we used in previous
experiments, we use vtTLS to transfer three files each with the size of 1 MB, 100
MB and 1 GB. We ran 100 times the vtTLS for each of these files. In addition to
this experience, we also run a file transfer application using a Datagram Trans-
port Layer Security (DTLS) [10] channel implemented through the GnuTLS li-
brary. This channel used the cipher suite TLS RSA AES 128 GCM SHA256. This
application ran over one tunnel created by MultiTLS. DTLS is a communi-
cation protocol that provides security, such as TLS, but for datagram-based
applications. The purpose of using DTLS is to measure the performance of a
channel that uses UDP over TCP, since with MultiTLS communication we
have tunnels of several tunnels, that is, TCP over TCP. We run this application
100 times for each of the files used in the previous experiment. Besides the diver-
sity of cipher suites used, this experience also shows that it is possible to have
a diversity of TLS implementations if the application using MultiTLS uses a
library other than OpenSSL.

Figure 7 allows us to compare the average of the results obtained from the
two previous experiences with the averages of the results obtained in the first
experiment with k = 2 once the two previous experiments use approaches in
which the messages are encrypted twice such as MultiTLS with two tunnels.
In addition, we can also observe the standard deviation in each column. Figure
7 also shows that, of the three approaches, vtTLS is the fastest and the DTLS
channel approach is the slowest. The values of the MultiTLS results are closer
to the results of the vtTLS than to the DTLS channel approach. However, the
transfer time overhead of 1MB, 100MB and 1GB between vtTLS and Mul-
tiTLS are, respectively, 525%, 164% and 173%. The DTLS channel approach

11

0.70

-0.06
-0.11

0.22

-0.07
-0.04

-0.10

0.24 0.23

-0.22

0.42

0.30

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1 MB 100 MB 1 GB

O
ve

rh
ea

d

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Fig. 6: Difference between first and second evaluation results.

does not have an expected performance because the server only sends the next
fragment after receiving the size of the last fragment sent by it.

4.3 Use case

Although the use of MultiTLS presents a transfer time overhead in relation to
vtTLS, we wanted to know what is the performance of MultiTLS applied in
a use case. We use MultiTLS to establish communication between a browser
and a proxy, based on the scheme shown in Figure 2. To do this evaluation, we
use two virtual machines, one ran the Squid proxy, version 3.5.12, on a computer
with Intel Core i5 and 4 GB RAM and the other ran Google Chrome browser,
version 66.0.3359.117, on a computer with Intel Core i7 and 8 GB RAM.

In this evaluation we tested four approaches: no proxy, use only the proxy,
use the proxy using one and two MultiTLS tunnels. These four approaches
allow us to evaluate the cost of using MultiTLS. The evaluation consisted of
using the browser to request 30 times certain URLs from Amazon1, Google2,
Safecloud3, Técnico4 and Youtube5 websites for each approach and registered
the value of the load event that appears on the network tab in the developer
tools of the browser. The load event is fired when a resource and its dependent
resources have finished loading. In addition to using the browser development
tools to see the value of the load event, we also use to disable cache.

1 https://www.amazon.com/
2 https://www.google.com/
3 http://www.safecloud-project.eu/
4 https://tecnico.ulisboa.pt/pt/
5 https://www.youtube.com/watch?v=oToaJE4s4z0

12

0.04 3.13 32.14
0.25 8.27

87.90

1.35

117.44

1154.44

0

200

400

600

800

1000

1200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
o

n
d

s)

Message Size

vtTLS 2 Tunnels 1 Tunnel + DTLS

Fig. 7: Time for sending messages with 1MB, 100MB and 1GB in size via vtTLS,
2 MultiTLS tunnels and 1 DTLS communication over 1 MultiTLS tunnel.

Figure 8 presents the average of the results obtained with the different ap-
proaches for each requested URL. We can observe that the use of MultiTLS
in the communication between the browser and the proxy was insignificant. We
can conclude that MultiTLS is a tool with good performance in tasks common
to the day-to-day of Internet users.

5 Conclusion

We presented MultiTLS, a middleware that allows the creation of a channel
of communication through the encapsulation of several secure tunnels in others.
It aims to increase security by using the diversity of cipher suites used by the
tunnels so that if k−1 cipher suites become insecure, there is a secure tunnel that
makes all communication secure. MultiTLS has the advantage of not modifying
any TLS implementation or any of its dependencies.

Acknowledgements

This work was supported by the European Commission through project H2020-
653884 (SafeCloud) and by national funds through Fundação para a Ciência e a
Tecnologia (FCT) with reference UIDB/50021/2020 (INESC-ID).

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of the data encryption standard
(1993)

13

0.73

3.72

5.40

7.61

9.78

0.74

3.77

5.66

7.67

9.97

0.75

3.83

6.21

7.78

10.14

0.78

4.01

6.31

7.97

11.65

0

2

4

6

8

10

12

14

Google Técnico Youtube Safecloud Amazon

Ti
m

e
 (

se
co

n
d

s)

Websites

without proxy with proxy proxy + 1 tunnel proxy + 2 tunnels

Fig. 8: Time to load sites with: no proxy, with proxy, with proxy using Multi-
TLS with 1 tunnel and with 2 tunnels.

2. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lecture Notes in Computer Science. vol. 7073 LNCS (2011)

3. Carvalho, M., Demott, J., Ford, R., Wheeler, D.A.: Heartbleed 101. IEEE Security
and Privacy 12, 63–67 (July/August 2014)

4. Carvalho, R.J.: Authentication Security through Diversity and Redundancy for
Cloud Computing. Ph.D. thesis, Instituto Superior Técnico, Universidade de Lis-
boa (2014)

5. Joaquim, A., L. Pardal, M., Correia, M.: Vulnerability-Tolerant Transport Layer
Security. 21st International Conference on Principles of Distributed Systems
(OPODIS) (2017)

6. Larson, R., Cockcroft, L.: CCSP : Cisco Certified Security Professional Certifica-
tion. McGraw-Hill/Osborne (2003)

7. Littlewood, B., Strigini, L.: Redundancy and Diversity in Security. Computer Se-
curity ESORICS 2004 pp. 227–246 (2004)

8. Nadeau, M.: State of Cybercrime 2017: Security events decline, but not the
impact (July 2017), https://www.csoonline.com/article/3211491/security/

state-of-cybercrime-2017-security-events-decline-but-not-the-impact.

html#tk.cso_fsb

9. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
RFC Editor (August 2018)

10. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Version 1.2.
RFC 6347, RFC Editor (January 2012)

11. Rivest, R.: The MD5 Message-Digest Algorithm (RFC 1321) (1992)
12. Rizzo, J., Duong, T.: Crime: Compression ratio info-leak made easy. In: ekoparty

Security Conference (2012)
13. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. Advances in

Cryptology – EUROCRYPT (2005)

14

https://www.csoonline.com/article/3211491/security/state-of-cybercrime-2017-security-events-decline-but-not-the-impact.html#tk.cso_fsb
https://www.csoonline.com/article/3211491/security/state-of-cybercrime-2017-security-events-decline-but-not-the-impact.html#tk.cso_fsb
https://www.csoonline.com/article/3211491/security/state-of-cybercrime-2017-security-events-decline-but-not-the-impact.html#tk.cso_fsb

	MultiTLS: Secure communication channels with cipher suite diversity

