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Abstract—Existing interoperability mechanisms usually en-
compass asset exchanges, asset transfers, and general data trans-
fers. However, most of the solutions based on these mechanisms
work only for pairs of permissionless blockchains, falling short
in use cases that require more complex business relationships.
Furthermore, contrary to existing legacy systems, there is little
standardization for cross-domain communication, which multiple
players in industry and academia are exploring. We present
the Multi-Party Secure Asset Transfer Protocol (MP-SATP), a
resilient multi-party asset transfer protocol built on top of the
Secure Asset Transfer Protocol (SATP), which is being developed
by the Internet Engineering Task Force (IETF). Furthermore,
we enhance SATP’s crash recovery mechanism to improve the
reliability and performance of our solution. Using MP-SATP,
we explain how to perform N-to-N resilient asset transfers in
permissioned environments by decoupling them into multiple 1-
to-1 asset transfers. Our results show that the latency of the
protocol is driven by the latency of the slowest 1-to-1 session and
that the use of backup gateways avoids the overhead caused by
rollbacks.

Index Terms—asset transfer, cross-chain, interoperability,
multi-party, SATP

I. INTRODUCTION

In recent years, we have seen a shift in attention to per-
missioned (or private) blockchains, where companies spread
across multiple industries have been adopting the technol-
ogy [1]. Finance, healthcare, copyrights, and supply chain are
some examples [2], [3].

In blockchain interoperability protocols, especially those
focused on asset transfers, we identify and address two gaps in
the literature. First, the majority of interoperability solutions
focus on cross-chain communication between, at most, two
parties. Although some cross-chain communication protocols
focus on 1-to-1 transfers, others that involve multi-party in-
teractions are limited to asset exchanges through atomic swap
protocols [4]–[6]. Second, we observe a lack of research on
interoperability among permissioned networks. The prevail-
ing solutions are predominantly designed for permissionless
networks, assuming that the parties involved can access each
other’s internal state. Permissioned blockchains provide lower
decentralization but use consensus mechanisms that offer
instant finality. The importance of such protocols is underlined
by use cases like Delivery vs Payment [7] or Central Bank
Digital Currencies [8].

In response to the identified gaps in the literature, we present
the Multi-Party Secure Asset Transfer Protocol (MP-SATP).
MP-SATP is specifically designed for permissioned networks
and facilitates the transfer of multiple assets among N parties.
Building on the SATP protocol [9], ongoing work within

the IETF SATP working group [10], MP-SATP operates as
a gateway-based protocol, i.e., it is executed by gateways.
The gateway-based architecture is being actively explored by
prominent players in academia and industry [11]–[13], by
standardization organizations such as IETF [10] and ISO [14],
and by financial corporations [15]. In this architecture, a
blockchain has one or more gateways that allow the direct
transfer of digital assets to another blockchain that has a
compatible gateway.

One notable benefit of MP-SATP is its emphasis on cross-
chain standardization, as it paves the way toward establish-
ing immediate and consistent interoperation among diverse
blockchains. To the best of our knowledge, MP-SATP repre-
sents the first multi-party blockchain interoperability solution
dedicated to asset transfers between permissioned networks,
while also focusing on cross-chain standardization. To further
enhance the resilience of our proposed solution, we introduce
a new primary backup mode that improves the gateway crash
recovery procedure. This additional feature ensures a more
robust and reliable system in the face of gateway failures,
increasing the overall resiliency of MP-SATP.

We present the structure of this work. Section II presents
the Secure Asset Transfer Protocol. MP-SATP is presented
in Section III, and the primary-backup mode of SATP in
Section IV. Section V presents the implementation and per-
formance evaluation. Lastly, we present the Related Work and
conclude in Sections VI and VII.

II. SATP

This section briefly introduces aspects of the SATP protocol
[9] that are relevant for understanding MP-SATP.

Clients instantiate gateway-to-gateway interactions to per-
form asset transfers. We represent a cross-chain transfer of an
asset a between party A and party B as A a→ B.Considering
a source gateway GS , and a recipient gateway GR, an SATP
session can be represented as GS

satp→ GR. The SATP protocol
has four phases:

0) Identity and Asset Verification Flow: gateways mutually
verify their identities and the identities of their owners,
ensuring that both gateways are valid (if gateways use
trusted hardware this can be performed through attesta-
tion techniques);

1) Transfer Initiation Flow: gateways exchange the com-
munication terms and rules, making verifications re-
garding their jurisdictions and the asset that is being
transferred;



2) Lock-Evidence Verification Flow: the asset being trans-
ferred is locked (i.e., escrowed by the gateway), and a
piece of evidence is presented to the other party;

3) Commitment Establishment Flow: the involved gate-
ways commit the changes and terminate the asset trans-
fer. The commitment corresponds to the deletion of the
asset in the source blockchain, and the creation of a
representation in the target blockchain.

Hermes [16] proposed a crash recovery mechanism for
SATP with two sub-protocols: 1) self-healing: the crashed
gateway recovers and re-establishes communication with the
counter-party gateway; 2) primary-backup: a backup gateway
resumes the execution of the protocol if the crashed gateway
does not recover within a bounded time δt.If there is no
response from a gateway or its backup within δrollback, s.t.
δt < δrollback, there must be a rollback to ensure termination
in a consistent state [9]. A rollback is equivalent to issuing
transactions with a contrary effect to the ones already issued.

III. MP-SATP

This section presents the building blocks for MP-SATP,
a multi-party asset transfer protocol built on top of SATP.
MP-SATP performs N-to-N transfers of assets through their
decomposition in coordinated 1-to-1 SATP transfers.

A. Notation

Here, we define the notation used to model our protocol.
Some concepts are presented based on the example in Figure 1.
Consider a set of clients C = {C1, C2, C3, C4} that want to
engage in a multi-party asset transfer. Each client Ci has an
account in blockchain Bi, thus, we consider blockchain B1,
B2, B3, and B4. For simplicity, without loss of generality, we
consider two transfers between elements of C, C1

a1→ C2 and
C3

a2→ C4; these represent the transfer of asset a1 from C1 to
C2, and the transfer of asset a2 from C3 to C4. The goal is to
ensure the atomicity of both transfers, i.e., either both succeed
or both fail.

We also leverage gateways as entry points for the underlying
blockchains; therefore, we denote as Gi a gateway with read
and write access to Bi, that will be reached by Ci to initiate
cross-chain transfers. We represent a backup gateway for Gi

as G′
i (not represented in Figure 1).

B. System Model

Clients are assumed to agree on the assets being transferred
off-chain (e.g., match orders in an off-chain forum), building a
graph D1 = (V1, E1), where V1 is a finite set of vertexes, and
E1 is a finite set of edges between elements of V1. V1 is the set
of parties (clients C) involved in the multi-party cross-chain
asset transfer. Additionally, E1 is the list of cross-chain asset
transfers between elements of V1. Each cross-chain transfer
is a tuple (CS , CR, a), where CS is the source client, CR is
the recipient client, and a is the profile of the asset being
transferred. In Figure 1, E1 = {(C1, C2, a1), (C3, C4, a2)}.

Given that gateways run a gateway-to-gateway protocol, a
mapping between each client and their respective gateways

Fig. 1. Example of multi-party asset transfers between clients (C1, C2, C3,
C4) through the respective gateways. Asset a1 is initially owned by C1 and
a2 by C3

must exist. Therefore, in the gateway layer, the graph D1

must be translated into a graph D2 = (V2, E2) where V2 is
the set of gateways that represent each client, and E2 is the
previous list of cross-chain asset transfers concatenated with
the respective gateways. This time, each cross-chain transfer
is a tuple (CS , CR, GS , GR, a), where CS is the source client,
CR is the recipient client, GS is the source gateway, GR is
the recipient gateway, and a is the profile of the asset being
transferred. In the given example, one would have E2 = {(C1,
C2, G1, G2, a1), (C3, C4, G3, G4, a2)}.

Note that the assets being transferred in a single multi-party
cross-chain asset transfer session can be heterogeneous; they
might concern different fungible and non-fungible assets.

C. MP-SATP Session Context

We stated that clients authorize their gateways to act on
their behalf for that specific asset transfer. This is done by
leveraging the concept of a session context ctx. A session
context is calculated by hashing (through a cryptographic
hash function H) the concatenation of the graph D2, with the
current timestamp ts, which avoids replay attacks. Then each
Ci sends this context to the corresponding Gi along with the
graph D2.

ctx = H(V2 || E2 || ts)

D. Protocol

The execution of MP-SATP is represented in Figure 2. Any
client can initiate the protocol within its local gateway. In our
example, we assume that C4 initiates MP-SATP by sending
a request to G4. This particular gateway is designated as the
coordinator. To initiate the transfer, the coordinator sends a
mp-satp-init message containing the relevant context (ctx) to
all gateways involved in the asset transfer.

The protocol is divided into two phases, following a two-
phase commit pattern: the prepare and completion phases. For
clarity, we divide the completion phase into the commit and
rollback phases according to the result of the prepare phase.
In the worst-case scenario, every client application requests
its local gateway to initiate MP-SATP, however, the prepare
phase guarantees that only one can be run successfully.

1) Prepare Phase: The coordinator is responsible for ini-
tiating an MP-SATP session with every source gateway GS in
the asset transfers list E2, through a mp-satp-prepare message.



Return

1. <..., mp-satp-prepare, a1>

0. <..., mp-satp-init, ctx>

1. <..., mp-satp-prepare, a2>

3. <...mp-satp-prepare-ack, a1>
3. <...mp-satp-prepare-ack, a2>

4. <..., mp-satp-commit, a2>

6. <..., mp-satp-commit-ack, a2>
6. <..., mp-satp-commit-ack, a1>

4. <..., mp-satp-commit, a1>

2. SATP (UNTIL LAST COMMIT)

5. SATP COMMIT / ROLLBACK

Fig. 2. MP-SATP session initiated by a client Ci. In this example, we consider
G1

satp→ G2 and G3
satp→ G4, where G4 was elected as the coordinator.

It includes the data necessary for each gateway to start its
SATP 1-to-1 session with the corresponding counterparty
gateway. Gateways run SATP only until the end of the Lock-
Evidence Verification Flow, until every ai in E2 is locked in
the corresponding source blockchains. All source gateways
acknowledge the coordinator.

2) Commit Phase: Committing to an SATP session cor-
responds to deleting the locked asset in the source chain
and creating a representation of that asset in the target one.
Therefore, the coordinator sends a mp-satp-commit message
to every client gateway in E2. In each SATP session, the
third (and last) phase is run, and a final mp-satp-commit-ack
message is sent to the coordinator.

3) Rollback Phase (optional): When MP-SATP reaches the
rollback phase, at least one SATP session is not ready to
commit. The coordinator sends a mp-satp-rollback message,
which initiates the rollback in each SATP session. This in-
cludes issuing transactions that have the inverse effect of those
that have previously been issued.

IV. ENHANCING SATP CRASH RECOVERY

We also propose an enhancement to SATP’s crash recovery
mechanism, directly impacting the guarantees of our solution.
We remove the previous assumption that no gateway will
ever crash indefinitely, and introduce backup gateways that are
capable of resuming the execution of protocol on behalf of the
crashed. To ensure that a gateway can resume the execution
of an SATP session, it is up-to-date with the latest logs. We
leverage a primary-secondary scheme in which the primary
gateway replicates log entries to all the backup gateways.

A. Protocol Description

To demonstrate the solution, we assume only one SATP
session, given by G1

satp−→ G3. The proposed enhancement is
based on X.509 certificates, so we consider that every gateway
has a valid X.509 certificate that was issued to its owner, the
entity legally responsible for the gateway. Moreover, in the
extensions field of the certificate, there is a list that contains

the hash of the authorized backup gateways. Assuming G′
1 and

G′′
1 backup gateways for G1, the extensions field of G1’s X.509

certificate is given by LG1 = [H(Cert(G′
1)),H(Cert(G′′

1 ))],
where H(m) represents the cryptographic hash of m, and
Cert(G) represents the X.509 certificate for gateway G.

As mentioned in Section II, if G1 does not send any
message for δt units of time, G′

1 assumes the crash of G1.
To avoid rollbacks, G′

1 contacts G3 before δrollback to resume
the execution of the open SATP session. The main issue here is
how G3 knows that G′

1 is authorized to replace G1 and resume
the execution of the protocol. The solution proposed is based
on three validations conducted by G3:

1) The certificate of G′
1 must be valid – checked by running

a certification path validation algorithm [17], which
includes validating all the intermediate certificates up
to a trusted root;

2) the parent certificate of both G1 and G′
1 certificates is the

same. In other words, both certificates must have been
issued by the same institution, which proves they belong
to the same legal entity;

3) G′
1’s certificate hash belongs to the list specified in G1’s

certificate extensions, which indicates a set of gateways
that are eligible to be the backup gateway in the case of
a crash – i.e., H(Cert(G′

1)) ∈ LG1 . This is set by each
entity when issuing a certificate for a gateway.

V. IMPLEMENTATION & PERFORMANCE EVALUATION

We implement MP-SATP as a plugin of the Hyperledger
Cacti interoperability framework [18]. Cacti has more than
2.5 million lines of code, 300 stars, and 254 forks in GitHub.
All tests were run in a Google Cloud Compute Engine VM
instance composed of 4 vCPUs, and 20 GB of memory, having
a boot disk mounted using an Ubuntu 20.04 image, and a 100
GB SSD. Every result presented in this section is the average
of 100 independent runs.

A. MP-SATP Evaluation

We evaluate the protocol in two experiments using at most
10 different networks, given the constraints of running multiple
blockchains in a single machine. We start by creating an
MP-SATP session composed of 5 asset transfers between
Hyperledger Besu blockchains. Figure 3 (a) depicts the la-
tency of one 1-to-1 SATP session between two different
Besu networks; Figure 3 (b) depicts the latency of one MP-
SATP session composed of 5 asset transfers between different
Besu networks. The MP-SATP session has a slight overhead
compared to the single 1-to-1 session, which is caused by the
communication between the coordinator and every participant.

In the second experiment, we replaced one of the 5 SATP
transfers between Besu networks with an asset transfer be-
tween Fabric and Besu, to observe the change in the overall
latency. Figure 3 (c)) depicts the latency of one 1-to-1 SATP
session between a Fabric and a Besu network. Transactions
take longer to be confirmed in the Fabric network, which
explains the difference compared to Figure 3 (a)). To confirm
our previous hypothesis, we run MP-SATP where 4 transfers
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Fig. 3. (a) latency of running a single SATP session between Besu networks;
(b) latency of running MP-SATP transferring 5 assets between Besu networks;
(c) latency of running a single SATP session between a Fabric and a Besu
network; (d) latency of running MP-SATP transferring 5 assets: 4 between
Besu networks and 1 between a Fabric and a Besu network.

are still between Besu networks, and one is between a Fabric
and a Besu network. Figure 3 (d) confirms our hypothesis.

These findings lead us to the predicted conclusion that
the latency of such a protocol is strongly related to the
confirmation times of the ledgers – i.e., the SATP session with
the highest latency drives the total latency of an MP-SATP
session. Formally, the latency of an MP-SATP session is given
by max([Lat(E1

2 ), Lat(E2
2 ), ..., Lat(En

2 )]), where Lat(E i
2) is

the latency of the ith cross-chain asset transfer in E2.

B. SATP’s Crash Recovery Enhancement

To understand the importance of our contribution to SATP’s
crash recovery mechanism through the primary-backup mode,
we analyze the worst-case scenario with and without our
solution. The worst-case scenario is a crash happening at the
end of SATP’s last phase, which would require triggering the
rollback procedures. First, we run SATP without our solution.
We simulate the crash of the source gateway and let the
target gateway timeout, triggering the rollback procedure. We
set δrollback = 9sec. When the crashed gateway recovers, it
learns the rollback performed by the other gateway through the
recovery procedure and rolls back. In the second experiment,
we simulate the crash of the source gateway, however, this
time we ensure there is a backup gateway that resumes the
execution of the protocol right after δt = 5sec (δt < δrollback).

Without our proposal, the protocol terminates as it started
(because all transactions were reverted) and takes, on average,
around 46.3 seconds. With backup gateways, no rollback shall
ever be triggered due to gateway crashes, and the asset is suc-
cessfully transferred to the target chain, taking, on average, 25
seconds. The results are depicted in Figure 4. This showcases
that the latency range of financial transactions processed by
gateways is acceptable for modern financial infrastructure.

VI. RELATED WORK

The interconnection of different chains through the Cross-
Chain Message Passing Protocol (XCMP) [19] enables the
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Fig. 4. Latency of an SATP session having a source gateway crash. When
our proposal is not implemented, both gateways rollback – i.e., every action
is reverted. When using backup gateways, one resumes the execution of the
protocol upon crash of the original one – i.e., the result is the asset being
successfully transferred to the target chain.

interoperation of more than two blockchains. However, it can
only interoperate blockchains in the same ecosystem, limiting
communication with other solutions – not blockchain agnostic.
Wang et al. [5] also leverage 2PC to conduct transactions
across N blockchains. However, atomicity is not guaranteed
if the coordinator crashes. Our protocol guarantees atomicity
through the rollback of every state change. Multiple authors
propose multi-party protocols but focused asset exchanges,
which are only suitable to permissionless blockchains unless
every party involved in the swap has been granted access to
every network beforehand [4], [6], [20].

VII. CONCLUSION

To address the multi-party asset transfer problem focused
on permissioned environments, this paper proposes MP-SATP,
a protocol based on a 2PC to ensure coordination between
the various entities and built on top of the SATP. MP-
SATP launches and coordinates multiple SATP sessions on
multiple fungible or non-fungible assets agreed upon by the
clients. We also improved the SATP crash recovery procedure,
in the primary-backup mode. From the implementation and
evaluation of our proposals, we show that MP-SATP guar-
antees atomicity and finality properties. Additionally, using
gateways, one can guarantee the auditability of transfers of
assets performed between gateways and compliance with legal
frameworks.
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