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Abstract

In environments like the Internet, faults follow unusual
patterns, dictated by the combination of malicious attacks
with accidental faults such as long communication delays
caused by temporary network partitions. In this scenario,
attackers can force buffer overflows in order to leave the
system in an inconsistent state or to prevent it from doing
progress, causing a denial of service. This paper is about the
effects that finite memory has on intrusion-tolerant protocols
and systems. We present the problem and propose a generic
mitigation technique based on repair nodes that reduces the
buffer space requirements. An experimental evaluation of the
buffer usage with and without this technique is presented, al-
lowing to assess in practice the effects of finite memory in a
real, albeit simple, intrusion-tolerant system.

1 Introduction

Intrusion tolerance has been proposed for some years now
as a new paradigm for computer systems security [8, 24, 15].
The idea is to apply the fault tolerance paradigm in the do-
main of systems security, accepting

that malicious faults (attacks, intrusions) can never be en-
tirely prevented, and that highly resilient systems have to
tolerate these faults. The main motivation for new security
paradigms like intrusion tolerance has been the poor state
of security in the Internet, yearly reported in documents like
[10].

Research in intrusion tolerance has been centered in
designing intrusion-tolerant distributed systems, based on
message-passing protocols [4, 5, 6, 7, 13, 15, 19, 22] Intru-
sion tolerance is usually obtained by replicating the system in
a set of servers, which behave according to the system specifi-
cation even if there are intrusions in up to a certain threshold
of the servers. If each server is protected using the current
best practices, and there is diversity between the servers in
such a way that they do not share the same vulnerabilities
[17], the overall system is ensured to be more trustworthy
than if it was centralized.

Research in this area has produced a set of clever intrusion-
tolerant protocols and systems (I/T protocols and I/T sys-
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tems for short). However, we believe that an issue has been
overlooked: that servers have finite memory, so the num-
ber of messages that can be stored in their buffers is lim-
ited. Intuitively, this can be a problem in systems in which
there are many messages being exchanged. Moreover, all
of these systems assume that the environment is essentially
asynchronous, i.e., that there are no bounds on communi-
cation and processing delays. Assuming this kind of model
is very important in order to prevent the success of attacks
against time.

However, this combination of a limited capacity to store
messages with long message delays that cause long protocol
execution times, can be very problematic. This is the crucial
problem debated in this paper: the effects that finite memory
has on I/T protocols and systems. In environments like the
Internet, faults follow unusual patterns, dictated by the com-
bination of malicious attacks with natural faults such as long
communication delays, e.g., due to temporary network parti-
tions. In this scenario, attackers can force buffer overflows1 in
order to leave the system in an inconsistent state or to prevent
it from doing progress, causing a denial of service.

The paper starts by presenting the problem and showing
that there are three levels at which it is not possible to guar-
antee that messages are safely removed from the buffers :
channel, protocol instances and service levels. After pre-
senting the problem, the paper studies buffer overflows with
an I/T group communication primitive, inspired by the Ram-
part toolkit [22]. Our system provides only an echo multicast
primitive similar to Rampart’s. However, unlike Rampart,
our system is not a full-fledged group communication sys-
tem, since it has no membership service (groups are static).
This simplicity of the system is on purpose since it allow
us to put the emphasis in the effects of finite memory and
buffer management, not in the system design, which would
require a full paper on its own. After presenting the multicast
primitive, we propose a generic scheme to deal with message
losses caused by buffer overflows based on the notion of re-
pair nodes. This scheme allows messages to be stored only in
some of the system’s processes, thus improving the memory
usage of the overall system and increasing the possibility of
the message being delivered in case the network is experienc-
ing a temporary disconnection. Repair nodes do not solve the

1These buffer overflows should not be confused with the common C/C++
buffer overflow attacks. These latter attacks consist in injecting data in a
buffer for which the limits are not checked, writing over memory used for
other purposes, with effects that may range from crashing the application to
running arbitrary code on the attacked machine.
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buffer overflow problem, but reduce significantly its impact
in the system. However, the buffer overflow problem in this
kind of system is essentially unsolvable, so mitigating it is the
best that can be done. Finally, an experimental evaluation of
the buffer usage with and without the repair node scheme is
presented, allowing to assess in practice the effects of finite
memory in a real, albeit simple, I/T system.

The contributions of the paper are the following:

• the first systematic study of the problem of buffer over-
flows in intrusion-tolerant systems and protocols;

• a generic scheme based on repair nodes to allow mes-
sages to be available for longer time and be recovered in
case they are lost;

• a practical assessment of the buffer overflow problem
and the repair nodes scheme in a simple intrusion-
tolerant system.

2 System Model

We consider a distributed system that contains a group
of n processes P = {p1, p2, ..., pn} that communicate only
by message-passing. This group of processes is closed, i.e.,
no processes join or leave the group. The system is asyn-
chronous, so there are no bounds on processing or commu-
nication delays. For I/T protocols, there is a common under-
standing that protocols should not rely on time assumptions
about communication or processing, at least to guarantee that
safety properties are satisfied. The reason is that time as-
sumptions are known to be vulnerable to attacks that delay
the system, e.g., by flooding the network with traffic (a de-
nial of service attack, DoS), or causing temporary network
disconnections.

The connection between processes is modeled in two ways
in the paper. In Section 3 we consider that each pair of pro-
cesses is connected by an authenticated fair link, which can
lose messages but that delivers infinite times messages that
are sent infinite times [1]. These links can be easily obtained
in the internet using UDP over IPsec/AH –Authentication
Header protocol [12]. They guarantee the authentication of
the processes, i.e., that they have certainty about who is the
sender, usually using message authentication codes (MACs)
obtained using a cryptographic key shared by the two pro-
cesses and a cryptographic hash function [14]. Details about
how to distribute these keys are out of the context of the paper.

For the protocol in Section 4.1, we assume processes are
connected by authenticated reliable point-to-point channels,
which can be (approximately) implemented on top of authen-
ticated fair links, but also guarantee the reliability of the com-
munication, i.e., that messages are all delivered, unmodified,
using retransmissions and MACs. These channels can be
obtained using TCP over IPsec/AH or SSL/TLS [9]. How-
ever, enforcing reliability involves storing messages in a send
buffer of the sender until it receives an acknowledgment that
the message was delivered to the recipient. This buffer must
have limited size due to the finite size of the sender’s memory,
so the sender may face a situation in which this buffer is full
(see Section 3.1). We assume the existence of a cryptographic

hash function H(m). This function is assumed to be collision-
resistant, i.e., that ∀m,m′ : H(m) = H(m′) ⇒ m = m′. The
output of this function is called a hash.

Processes can be correct or faulty. Correct processes al-
ways follow their protocol. No assumptions are made about
the behavior of faulty processes. They can collude against the
correct processes following some malicious purpose. This
class of unconstrained faults is usually called arbitrary or
Byzantine. We follow the literature and sometimes also say
that some faulty processes are malicious if they have the in-
tention of breaking the behavior of a protocol or system. We
assume that at most f = �(n−1)/3� processes can be faulty,
which implies that n ≥ 3 f +1.

3 The Problem

This section presents a systematic study of the problem of
buffer overflows 2 in intrusion-tolerant systems and protocols.
The main goal is to give a formal description of the problem
looking at three different levels: channels, protocol instances
and service.

3.1 Channels
Consider a set of processes that communicate by message-

passing over authenticated fair links, which deliver infinite
times messages sent infinite times. The system is asyn-
chronous. Consider also an application that repeatedly re-
quests a process p to send data messages (i.e., application-
level messages) to a process q for a long period of time. The
application wants to be sure that q receives the messages, so
messages are numbered sequentially and whenever q receives
a message m(k) it has to send a message ack(k) to p, where
k is the number of message m. p stores all the messages it
sends in a send buffer; when p receives ack(k), it discards
m(k), since it knows that q received it. Messages that are not
confirmed have to be retransmitted after a timeout.

Now, suppose that after a certain instant, p stops receiving
acknowledgments from q. If the application periodically re-
quests p to send messages to q, eventually p’s send buffer will
be full of messages (memory is finite). Therefore, when the
application requests it to send the next message, say m′, it has
three possibilities: (1) discard the message m′, hoping that q
is faulty; (2) discard an older message, hoping that q received
it; (3) block waiting for q to acknowledge messages, hoping
that the communication with q is slow or there is a tempo-
rary disconnection, but that it will recover. The problem is
that p can not know for sure if q is faulty or the communica-
tion is simply experiencing long delays, so all these solutions
are problematic. In (1), if in reality there is a temporary dis-
connection, q will never receive the message. In (2), if q is
correct and did not receive the message, it will never receive
it. In (3), if q is faulty, p will stay blocked.

This is the kind of dilemma that asynchronous I/T proto-
cols have to deal with. The problem is that due to the limited
size of memory, and consequently of buffers, a protocol may
have to sacrifice either a safety property (e.g., discarding mes-
sages) or a liveness property (blocking), in both cases poten-

2Recall once more that these buffer overflows are not be confused with
buffer overflow attacks (see footnote 1)
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tially impairing the behavior of the protocol or system. No-
tice that this problem of the buffer size being limited is not an
implementation detail, but an intrinsic, theoretical, problem,
which can not be solved simply by making this size larger.

Most I/T protocols in the literature assume that processes
are fully-connected by authenticated reliable point-to-point
channels (that deliver all messages), or implement those
channels on top of authenticated fair links (e.g., [20, 22]).
The problem of reliable channels with finite memory is es-
sentially the problem just described, which can be stated more
formally as:
Proposition 1 It is not possible to implement an authenti-
cated reliable point-to-point channel on top of authenticated
fair links that eventually relinquishes messages from the send
buffer (i.e., frees buffer memory) if the processes can fail in a
Byzantine way.

3.2 Protocol Instances
I/T systems often run several instances of the same I/T pro-

tocol(s) concurrently. In [20, 22] several processes can be
sending messages in parallel to the others, using several com-
munication primitives. Malicious processes can send mes-
sages about a non-existent instance of a protocol, which the
others have to store and can not discard because they can not
distinguish an instance that does not exist from one that they
are not aware of. The problem can be stated:
Proposition 2 If for a certain I/T protocol, the relinquish-
ing of messages from the internal buffers involves receiving
the message plus some form of confirmation from at least a
process other than the sender, and there can be an arbitrary
number of parallel executions of instances of that protocol,
then it is not possible to guarantee both the safety and the
termination of all instances of the protocol.

3.3 Service
Most I/T systems in the literature replicate a service in a set

of servers that is accessed by a set of clients. This is the case
for the two techniques most used to implement I/T systems:
state machine replication [5] and Byzantine quorum systems
[19]. Clients send requests to the servers, which process the
requests and send back replies.

The buffer problem at service level is the following. The
servers have to store in a reply buffer the replies that they
have to send to the clients. If clients do not acknowledge the
reception of the replies, either because they are faulty or be-
cause the network is experiencing long delays or disconnec-
tions, this buffer can overflow. In those cases, servers either
stop accepting more requests –blocking the service– or dis-
card replies –possibly leaving correct but slow clients without
the replies they are entitled to. The problem at service level
can be stated as:
Proposition 3 It is not possible to implement a reliable ser-
vice that eventually relinquishes reply messages if the clients
can fail in Byzantine way and the links are fair.

4 Buffer Overflows in an I/T System

After presenting the problem, we now study buffer over-
flows with an I/T group communication primitive, inspired

by the Rampart toolkit [22] and RITAS [20]. The objective is
not to present a full-fledged I/T system that solves the buffer
overflow problem, which would require a paper on its own.
In contrast, the idea is to show that the problem can have a
relevant impact in a real, albeit simple, system, and to present
a generic mitigation mechanism that can be implemented in
any I/T System. The mechanism is generic in the sense that it
can be used in many different I/T systems.

4.1 Echo Multicast
In order to study the buffer overflow problem in I/T proto-

cols, we implement a message dissemination protocol based
on the echo broadcast proposed by Toueg [23], later modi-
fied by Reiter for Rampart [22]. Those protocols guarantee
two properties: (1) if a correct process sends a data message
(or application-level message), all correct processes deliver
that message; and (2) no two correct processes deliver two
different data messages with the same identifier (if the sender
is malicious, some of the correct processes may not deliver
the message, but all that do, deliver the same).

We assume the system model in Section 2, with authen-
ticated reliable point-to-point channels. The protocol, pre-
sented in Algorithm 1, satisfies the properties (1) and (2)
above if the channels have unlimited capacity (i.e., if the send
buffer is infinite), so we assume infinite memory in this sec-
tion. However, in practice memory is finite, so in the next
section we start assuming limited-capacity authenticated reli-
able point-to-point channels.

In the original Toueg’s protocol, when the first message is
received, all correct processes reply with a message contain-
ing the same data. We propose an optimization in which each
process replies with a message containing only the hash of
this data. This approach reduces the use of buffer space.

Messages are composed by fields such as: 〈PROTOCOL,
MESSAGE TYPE, SENDER IDENTIFIER, MESSAGE IDENTI-
FIER, DATA, HASH〉. All messages that are sent by a process
pi are tagged with a message identifier (or sequence number)
eliminating possible interferences among multicasts. There
are two types of messages: initial and echo. The protocol
starts with the sender transmitting an initial message m. All
processes that received m send to each other an echo message
containing the hash of m. If a process receives an initial and
(n− f ) echo messages with the same hash, then it accepts m.

Algorithm 1 Message dissemination protocol

when pi wants to send a data message m do
send 〈MULTICAST, initial, pi, seq(m), m〉 to all processes

when p j receives from pi a message 〈MULTICAST, initial, pi,
seq(m), m〉 do

send 〈MULTICAST, echo, p j, seq(m), H(m)〉 to all processes

when p j receives messages 〈MULTICAST, echo ,*, seq(m),
H(m)〉 from (n− f ) distinct processes (and p j receives from pi
a message 〈MULTICAST, initial, pi,seq(m), m〉) do

Accept m

The protocol is presented in Algorithm 1. In the second
when, any subsequent 〈MULTICAST, INITIAL, pi , seq(m),
*, *〉 message received by p j from the same process pi is
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ignored. A proof that the modified protocol satisfies the same
properties as Toueg’s original protocol that is straightforward
so we do not include it in the paper.

4.2 Buffer Management

Suppose we have a system, like Rampart, in which pro-
cesses communicate using the echo multicast protocol in the
previous section. There are several I/T systems that use sim-
ilar communication primitives to do exactly that. However,
in practice echo multicast must be implemented on top of
limited-capacity authenticated reliable point-to-point chan-
nels since memory is finite, and in Section 3 we showed that
it is impossible to guarantee that these channels will free their
send buffers. In the same section we also showed that with an
arbitrary number of parallel executions of instances of a pro-
tocol like the echo multicast, the system can deadlock due to
a buffer overflow.

These problems force processes in certain circumstances
to choose either (1) to block or (2) to discard messages. Both
options are highly undesirable but we believe (1) to be the
worse because the system stops (or may stop) functioning.
Moreover, although it is usually not reported, (2) is in general
the solution used, as confirmed by our own experience and by
colleagues that implemented I/T systems. Nevertheless, these
systems are carefully configured to avoid having to discard
messages under normal operation, and even under attacks not
specifically targeted to cause buffer overflows.

If messages are discarded it is still a good idea to try to
store them in some of the processes and retransmit them if
some processes lose some of them. This would allow the sys-
tem to recover, e.g., from temporary network partitions that
cause the unavailability of one or more processes. Another
solution would be for the processes that received all messages
to do a state transfer to the process(es) that lost the system
state. However, this is a costly operation and sometimes it is
not even possible if all processes lose some messages.

Therefore, the problem is to determine which processes
should buffer a message and how long they should keep it.
The expected approach would be to try to store the messages
in all processes that have them for as long as possible. How-
ever, this is clearly a bad option because the total memory
available in the system is limited, so we should avoid occu-
pying it with several copies of the same data.

In the next sections we present a solution to optimize the
buffer management in I/T protocols. Buffer overflows at
channel level are “solved” by discarding messages that can
not be put in the send buffer (in fact, in the experiments we
try to send them twice with a small time interval between
tries). We deal essentially with the problem of buffer over-
flow at protocol instances. The solution is based on discard-
ing messages to avoid that the system blocks. However, the
system uses repair nodes (or repair processes) to retain mes-
sages in the system as long as possible, increasing the possi-
bility of recovery and decreasing the use of state transfers if
some processes lose messages. We do not consider the prob-
lem at service level, since we do not have a service, only a
communication primitive, but repair nodes might also be used
easily at this level.

Message Storage. This section presents our strategy to
store messages received by processes using the dissemination
protocol described in Section 4.1.

When a process receives the first message of a protocol in-
stance, it creates a context object 3 in order to store informa-
tion about the messages received for that instance (initial and
echo messages). All contexts are stored in a context buffer.
Contexts are identified by the sender identifier and the initial
message identifier, and they are classified in states: progress,
accepted and end. Contexts with less than n− f messages re-
ceived from different processes (or without initial message)
are in the progress state. Contexts with one initial message
and at least n− f echo messages (but less than n) are in the
accepted state. Contexts with initial message and n echo mes-
sages are in the end state. Accepted contexts only remain in
the context buffer of repair nodes. Contexts in the end state
are removed from all context buffers (all processes got the
data message). When a process that is not a repair node de-
cides discard a context that is not int the end state, it calcu-
lates the hash of the initial message and before it discards the
context, it stores this hash in another buffer, called the hash
buffer. The hash is identified by the sender and the message
identifiers and it will be used in the message recovery proto-
col that is presented bellow.

A process is defined to be a repair node for a certain
data message depending on the corresponding initial message
identifier. A global system parameter, Nrn, defines how many
processes are repair nodes for each message. This parame-
ter should be defined at least as Nrn = f +1 to guarantee that
at least one correct node will store each message. However,
since any process can lose a message, choosing a higher value
for Nrn increases the possibility of a message being available,
but also involves more nodes storing the message, so a worse
buffer usage. The repair nodes for a message with identi-
fier id are obtained by calculating id modulo

( n
Nrn

)
and using

this value as an index of a vector V with subsets of the pro-
cesses. An example of how the algorithm works considering
Nrn = f +1 and n = 4 is:

n = 4 → P = {1,2,3,4} → Nrn = f +1 = 2
V [0] = {1,2}, V [1] = {1,3}, V [2] = {1,4},
V [3] = {2,3}, V [4] = {2,4}, V [5] = {3,4}

Message id = 983 → 983 modulo 6 = 5 → repair nodes = {3,4}

Using repair nodes allows a better usage of the system
memory. The benefit depends on Nrn. If Nrn = f + 1 and
n = 3 f + 1, the gain of extra space available is 3 f+1

f+1 , i.e.,
from 2 (for f = 1) to 3 (when f → ∞ ); if Nrn = f + 1 and
n � f the gain tends to n/ f . Summarizing, message storage
can be considered to be done at two time-scales:
Short-term: when an instance of the echo multicast is exe-
cuted, initially all nodes that received the initial message keep
it in the context buffer until they receive n− f messages and
the data is accepted.
Long-term: when an instance of the echo multicast is exe-
cuted and the data is accepted (but less than n echos are re-
ceived), the message is stored only in the repair nodes, but the
other processes store a hash of the message in the hash buffer,
to assist the recovery procedure (see below).

3Or context data structure, but we prefer to call it object since the proto-
type was implemented in an object-oriented language, Java
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The general idea is that the responsibility of message
buffering is shared by all processes but each one stores only
a subset of the messages. This storage approach can be used
with any I/T protocol.

Message Recovery. In our system and with our system
model, a message can fail to be received by a process mostly
for three reasons: a buffer overflow of the send buffer of the
sender; the sender is malicious and does not send the message
on purpose; the message was garbage collected from the con-
text buffer (see below). In this section we present a message
recovery protocol with the purpose of increasing the chances
that a message is eventually received, while avoiding to block
the system. Notice that it is impossible to guarantee that no
messages are lost at all without blocking the system, since, for
instance, we allow disconnections with arbitrarily long dura-
tion and with the processes continuing to send messages.

Algorithm 2 Message recovery protocol

when pi wants to request a missing echo message do
send 〈RECOVER, echoRequest, pi, pz, seq(m)〉 to all processes
from which an echo was still not received

when p j receives from pi a message 〈RECOVER, echoRequest,
pi, pz, seq(m)〉 do

if m with sender pz and message identifier seq(m) is in the con-
text buffer or (pz,seq(m),H(m)) is in the hash buffer then

send 〈MULTICAST, echo, p j, seq(m), H(m)〉 to process pi

when pi wants to request a missing initial message do
send 〈RECOVER, initialRequest, pi, pz, seq(m) 〉 to all pro-
cesses

when p j receives from pi a message 〈RECOVER, initialRequest,
pi, pz, seq(m)〉 do

if m with sender pz and message identifier seq(m) is in the con-
text buffer then

send 〈MULTICAST, initial, pz, seq(m), m〉 to process pi

The message recovery protocol has two parts: one to re-
cover echo messages and another to recover initial messages
(Algorithm 2). It works essentially as follows.

The recovery mechanism periodically analyzes each con-
text in the context buffer. If the context has no initial mes-
sage or has less than n− f echo messages and remains in
the buffer more than Trecov units of time, a control message
is sent to all other processes requesting the missing mes-
sage(s). The control message has the format: 〈PROTOCOL,
MESSAGE TYPE, REQUESTER IDENTIFIER, SENDER IDEN-
TIFIER, MESSAGE IDENTIFIER〉. All processes that receive a
control message reply with the message requested, if they still
have it. More precisely, when a process receives an echoRe-
quest message and the corresponding context remains in its
context buffer or the hash is in the hash buffer, it sends an
echo message. The hash is important because even processes
that are not repair nodes participate in the recovery protocol
by sending echo messages. The idea for initialRequest is the
same, but the initial message is sent only if the context re-
mains in the context buffer. The echo and initial messages de-
livered by those algorithms are delivered to the dissemination
protocol (Algorithm 1). Fake messages sent by malicious re-
pair nodes are discarded by the recipient since they can never

match the initial message (if they are echo messages) or n− f
echos (if they are initial messages).

Trecov is an application-specific parameter that gives the
maximum time that a context stays in the context buffer before
the recovery protocol is executed. Nrecov is another parameter
that gives the maximum number of times the recovery proto-
col is executed for each context. Malicious processes can try
to cause buffer overflows by sending messages to less than
2 f + 1 correct recipients. In that case there are not enough
echos and the message can never be accepted. Furthermore
malicious processes can forge echo messages to make the re-
ceivers create contexts for which there is no initial message.
The Nrecov parameter serves to avoid that the recovery pro-
tocol is executed forever when it is not possible to recover.
After Nrecov recovery executions, if the context is not in the
accepted state and has less than n echo messages, it is re-
moved.

Garbage Collection. Our system uses two garbage collec-
tors to avoid entirely buffer overflows of the context and hash
buffers: the context collector and the age-based collector.

Consider a process pi. Messages for which pi is not a re-
pair node are discarded from the context buffer by the context
collector (in the short-term). This collector is executed pe-
riodically, with period Trecov, and it does the following (only
for contexts for which pi is not a repair node): (1) remove
contexts in the progress state that remain in the buffer after
Nrecov recovery protocol executions; (2) remove contexts in
the accepted state; (3) remove contexts in the end state.

The idea of using repair nodes is to store information about
messages as long as possible. In the long-term, contexts may
have to be removed even from the context buffer of their re-
pair nodes, to avoid a protocol instance to remain in the buffer
forever. This removal is performed by a specific collector that
only deletes objects when space is needed, the age-based col-
lector. It is executed whenever the context buffer free space
drops below a low-water mark. The age-based collector sim-
ply discards the Nold oldest contexts. Nold is a parameter spec-
ified by application. An age-based collector is also associated
to the hash buffer, to remove old hashes.

4.3 Evaluation
In order to understand the effects of finite buffers on I/T

protocols/systems, we did a set of experiments with a proto-
type of the echo multicast protocol written in Java, using three
different buffer management policies:

P1 – no removals: messages are stored by all processes and
are discarded only when all processes confirm the mes-
sage reception. There are no repair nodes and nothing
is done to deal with buffer overflows. The system stays
blocked waiting for free space in the buffer.

P2 – with repair nodes (our proposal): in this approach the
responsibility of message buffering is shared by all pro-
cesses, however every process stores only a subset of
messages in the long-term. Messages are discarded from
the buffers by the context and age-based collectors (see
Section 4.2).

P3 – without repair nodes: messages are stored by all pro-
cesses and are discarded only when all processes con-
firm the message reception (since other processes may
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request its retransmission). If the buffer is full, the old-
est messages are discarded by the age-based collector.

All the three policies use the recovery protocol presented
in Section 4.2. Policies P1 and P3 do not have repair nodes, so
they also do not have a hash buffer. For policy P3, that means
that an echo message can only be resent before the process
to which it is requested discards the corresponding context
(in the case of policy P1, contexts are not discarded). The
experiments were run on the Emulab environment [25], on 16
Pentium-III machines with 850 Mhz processors, 512 Mb of
RAM and Red-Hat Linux 9. The JVM was Sun JDK1.5.11.

In all tests the virtual machine memory was limited to
100Mbytes to allow the experiments to assess the impact of
finite memory without having to run for long periods of time.
We also executed some of the experiments with much larger
memory and the problems were the same, but the experiments
took much longer times. Notice that these protocols are part
of the middleware (e.g., analogous to RPCs or CORBA) so
they are supposed to leave most of the memory to the ser-
vice/application, not consume it themselves.

For policy P2 the number of repair nodes was Nrn = f +1.
For all policies, the maximum number of recovery protocol
executions per context was Nrecov = 2 and the time interval
between recovery executions was Trecov = 3 seconds. The ex-
periments were executed with different message sizes: 1, 10
and 100Kbytes. The value of f varied from 1 to 5 and the
number of processes was set to n = 3 f +1, so varied from 4
to 16.

The measurements were taken under three different fault-
loads. In the failure-free faultload, all processes behave cor-
rectly. In the fail-stop faultload, f processes crashed before
messages started to be sent. In the Byzantine faultload, f ma-
licious processes tried to cause buffer overflows in two ways:
(1) for each message they had to send, they sent two differ-
ent messages, one to each half of the recipients, but both with
the same identifier, making them impossible to deliver; (2)
they never sent echo messages, so correct processes did not
receive echos from all processes and were not able to discard
these contexts.

Effect of Buffer Overflows. The objective of the first set
of experiments is to show the occurrence of buffer overflows.
For that purpose, the system was executed with policy P1,
which simply blocks waiting for space when a buffer is full,
under a Byzantine faultload. All experiments had exactly
the same effect: after some time the execution of the system
blocked entirely. The numbers of data messages/contexts in
the context buffer when the overflows occurred are displayed
in Figure 1. The results were similar with different values
of n, which was expected since the capacity of the context
buffers does not change with n. For 100Kbytes messages,
the number of messages in the buffer was approximately 850
(line on the bottom).
Time to Discard the First Data Message. The main inter-
est of the repair node scheme we propose is to increase the
time a data message is available in the system in case there
is a temporary network partition or high communication de-
lays. In this section we begin to evaluate the benefit of having
this scheme (policy P2), instead of storing the messages in all
processes that receive them (policy P3).

Figure 1. Number of contexts in the context buffer
when a buffer overflow happens and the sys-
tem blocks (Byzantine faultload)
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Figure 2. Time to discard the first data mes-
sage, measured with (a) fail-stop and (b)
Byzantine faultloads, with and without repair
nodes

This first evaluation consists in measuring the time until
the first data message is discarded from a context buffer due
to a buffer overflow with both policies. The set of experiments
presented in Figure 2 evaluated this time with the fail-stop and
Byzantine faultloads. Each test was executed 10 times and
each process (even if Byzantine) sent 20000/n data messages
with 10Kbytes at a rate of 100 messages per second.

The number of repair nodes was Nrn = f + 1, so the re-
sults in the figure are the expected: the system with repair
buffers discarded the first message at least twice as late as
the system without repair nodes. In fact, the ratio between
the time to discard in policies P2 and P3 is approximately
proportional to Nrn/n, as also expected. The time to discard
the first message with repair nodes (P2) might be further im-
proved by reducing this ratio, e.g., by keeping Nrn = f + 1
constant but increasing the total number of processes n. In
the Byzantine faultload, data messages are discarded earlier
than in the fail-stop faultload, since Byzantine processes do
their best to cause discarding.

Percentage of Data Messages Lost. The second part of the
evaluation of the repair node scheme consists in measuring
the number of data messages/contexts lost due to garbage col-
lections with and without repair nodes. A data message is said
to be lost when it is removed from enough processes for not
being delivered by all correct processes.

The set of experiments are presented in Figure 3. Each
test was executed 10 times and in each test each process
sent 20000/n data messages. The message size used was
10Kbytes and the maximum number of contexts in the buffer
was set to 7000, which is approximately the maximum num-
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ber of messages that can be stored with 100Mbytes of mem-
ory in the virtual machine 4. Whenever the number of con-
texts reached this value, the age-based collector removed the
oldest contexts. Each process sent one data message every
30ms. The percentage of messages/contexts lost in the figure
is the average of the tests.

The figure shows that the percentage of data messages lost
with repair nodes (policy P2) was lower than the number mea-
sured without repair nodes (policy P3) for both faultloads and
all values of n. These results were expected since using re-
pair nodes, the time a data message is available in the system
is larger, so it is possible to recover it in case it is discarded
from some buffer. Furthermore, the benefit was higher with
Byzantine processes attempting to cause buffer overflows on
purpose.
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Figure 3. Percentage of data messages lost
measured with (a) fail-stop and (b) Byzantine
faultload, with and without repair nodes

Buffer Occupation. Figure 4 presents the number of data
messages/contexts in the context buffer in a set of experi-
ments. The experiments were conducted with 10 processes
using policies P2 and P3. Each process sent 1000 messages at
a rate of 100 messages per second, with intervals of 1 minute
between these bursts of 100 messages. Values in the graphs
were taken in a single process. Periodically, with period of
1 second, one thread obtained the number of contexts in the
buffer. These are the values presented in the figure.

The figure leads to several interesting conclusions. With
the fault-free faultload, when there is a burst the buffer occu-
pation increases, but then decreases fast until the next burst.
The buffer occupation tends to be low but there are some mes-
sage losses (probably echoes) that prevent some of the con-
texts from being removed from the buffer.

With the fail-stop and Byzantine fault-loads, not all echoes
are received so the buffer goes on being filled up with mes-
sages at a constant pace. At some point the buffer becomes
full and the age-based collector starts discarding messages to
prevent buffer overflows (the stable zone of the lines in Fig-
ures (b) and (c)). These two figures confirm that the buffer
occupation is better with than without repair nodes, since the
buffers are filled slower with repair nodes.
Discussion. Before the experiments reported in this section
were done, many tests were performed in order to discover

4The objective of imposing a maximum number of messages is to avoid
having to check if there is enough memory for each message that has to be
stored in the buffer, since in Java overflowing the virtual machine memory
raises a fatal exception that can not be handled.

the best and more realistic configuration parameters: the rate
at which messages should be sent (or the interval between
send events) in order to avoid as much as possible send buffer
overflows, the number of recovery executions Nrecov and the
period of recovery Trecov. The values of the parameters used
were the same with all buffer management policies. The size
of the hash buffer was defined by observing how many hashes
were requested by correct processes that executed the recov-
ery protocol, in many experiments with the three faultloads.
In all tests the number of requests did not exceed 800 hashes,
which is approximately 10% of the context buffer size. There-
fore, for experiments with policy P2 the size of the hash buffer
was set to hold 1000 hashes.

The experiments on the effect of buffer overflows have
shown that the problem is real and that the processes can
block due to lack of memory. These experiments also showed
how many messages can be stored with limited memory (with
virtual machines with 100Mbytes).

In all experiments we had better results when using the re-
pair nodes scheme, i.e., with policy P2, since the weight of
buffering messages in the long term is scattered by all pro-
cesses, instead of being shared by all for all messages. The
time a data message is available in the system is longer, so
more messages can be recovered. This belief was supported
by the experiments that have shown that less messages were
lost when using repair nodes.

5 Related Work
The buffer overflow problem at channel level derives from

the classical two generals problem, which is the problem of
two processes connected by fair links reaching agreement on
the delivery of a message [2, 11]. The problem is unsolvable
if the network can lose messages, even if the processes are
correct. Several papers explored this issue of implementing
reliable point-to-point and multicast channels with different
types of links: fair links, fair-lossy links, eventually reliable
links, unreliable links [3, 16, 21]. Several results on the area
were surveyed in [18]. The mechanisms used to implement
these communication primitives can be extended for Byzan-
tine faults using cryptographic techniques, such as message
authentication codes (MACs), which can be used to guaran-
tee the authentication and the integrity of the messages ex-
changed [14].

Many intrusion-tolerant protocols and systems have been
proposed in the literature, including several by some of this
paper’s authors. However, to the best of our knowledge, the
only work that discusses the problem of having finite buffers
and garbage collection with some detail is BFT [5]. BFT does
not use reliable channels, but authenticated fair links imple-
mented with UDP and MACs, doing retransmissions when
needed. This circumvents the problem of buffer overflows
at channel level but requires the servers to store messages in
a buffer called message log, analogous to what we call con-
text buffer. This buffer can overflow, so BFT has a garbage
collection mechanism that discards messages related to re-
quests already executed. Messages are not discarded one at a
time for each request executed, but when a checkpoint for a
number of messages is obtained. Although this mechanism is
very effective, several attacks that try to fill this buffer seem
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Figure 4. Buffer occupation measured with (a) fault-free, (b) fail-stop and (c) Byzantine faultload

to be possible. For instance, a collusion of clients can send
requests only to some of the servers, preventing the requests
from being processed, just like the attack done by Byzantine
processes we study in Section 4.3. Also, malicious servers
might send messages with future sequence numbers, which
can not be discarded without risk of breaking safety proper-
ties. The service provided by BFT requires clients to wait for
the reply to a request before issuing another one, thus con-
straining the possibility of a client to cause buffer overflows
(but not a collusion of clients). BFT acknowledges the exis-
tence of the buffer overflow problem at service level, stating
that the system has to bound the amount of reply buffer space
by discarding the oldest replies (but storing enough informa-
tion about the replies to inform clients that request them too
late).

6 Conclusion
This paper presents the first study of the buffer overflow

problem, and the correlated issue of (buffer) garbage collec-
tion, in intrusion-tolerant systems and protocols. The main
purpose of the paper is to bring attention to this problem, and
to the importance of handling it explicitly in works on in-
trusion tolerance. The motivation is the fact that papers in
the area barely mention the problem, with the exception of
BFT [5]. The argument in the paper suggests that these works
are vulnerable to attacks targeting this problem, which might
break either safety or liveness properties. In the latter case,
systems would be vulnerable to denial of service attacks, a
plague in current distributed systems.
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