
1

Omega: a Secure Event Ordering Service
for the Edge

Cláudio Correia, Miguel Correia, and Luı́s Rodrigues

Abstract—The edge computing paradigm extends cloud computing with storage and processing capacity close to the edge of the
network, which can be materialized by using many fog nodes placed in multiple geographic locations. Fog nodes are likely to be
vulnerable to tampering, so it is important to protect the functions they provide from attacks. A key building block of many distributed
applications is an ordering service that keeps track of cause-effect dependencies among events and that allows events to be
processed in an order that respects causality. This paper presents the design and implementation of a secure event ordering service
for fog nodes. Our service, named Omega, leverages the availability of a Trusted Execution Environment (TEE), based on SGX
technology, to offer fog clients guarantees regarding the order in which events are applied and served, even when fog nodes are
compromised. We have also built OmegaKV, a key-value store that uses Omega to offer causal consistency. Experimental results
show that the ordering service can be secured without violating the latency constraints of time-sensitive edge applications, despite the
overhead associated with using a TEE. Omega introduces an additional latency of approximately 4ms, that contrary to cloud based
solutions, allows latency values in the 5ms-30ms range, as required by time-sensitive edge applications.

Index Terms—Fog computing, Edge computing, Security, IoT, Intel SGX.

F

1 INTRODUCTION

C LOUD computing is a model for deploying Internet
applications that allows companies to execute services

in shared infrastructures, typically large data centers, that
are managed by cloud service providers [2]. The economies
of scale that result from using large shared infrastructures
reduce the deployment costs and make it easier to scale the
resources associated with each application in response to
changes in demand. Cloud computing has been, therefore,
widely adopted both by private and public services.

Many applications deployed in the cloud provide a
range of services to clients that reside in the edge of the
network: desktops, laptops, smartphones, and even smart
devices such as cameras or home appliances, also known
as the Internet of Things (IoT). The number and capacity
of these devices have been growing at a fast pace in recent
years. Many of these devices can run real time applications,
such as augmented reality or online games, that require low
latency when accessing the cloud. In fact, it is known that
a response time below 5ms–30ms is typically required for
many of these applications [3].

One solution to address the latency requirements of new
edge applications is to process data at the edge of the net-
work, close to the devices, a paradigm called edge computing
[4]. To support edge computing, one can complement the
services provided by central data centers with the service
of smaller data centers, or even individual servers, located

• An earlier version of this paper appeared in the Proceedings of the 50th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’20) [1]. In this journal version, we include additional
analysis on use cases, techniques and more evaluation results for Omega.

• Cláudio Correia, Miguel Correia and Luı́s Rodrigues are with INESC-ID,
Instituto Superior Técnico, Universidade de Lisboa, Portugal. (Email:
claudio.correia@tecnico.ulisboa.pt, miguel.p.correia@tecnico.ulisboa.pt,
ler@tecnico.ulisboa.pt)

Manuscript received June 2020; revised

closer to the edge. This concept is often named fog computing
[5]. It assumes the availability of fog nodes located close to
the edge. The number of fog nodes is expected to be several
orders of magnitude larger than the number of data centers
in the cloud. Cloud nodes are physically located in secure
premises, administered by a single provider. Fog nodes,
instead, are most likely managed by several different local
providers and installed in physical locations that are more
exposed to tampering. Therefore, fog nodes are substantially
more vulnerable to being compromised [6], [7], and devel-
opers of applications and middleware for edge computing
need to take security as a primary concern in the design.

In this paper, we address the problem of securing middle-
ware for edge computing. Specifically, we focus on securing an
event ordering service that is able to keep track of cause-effect
dependencies among events and that allows events to be
processed in an order that respects causality. The ability to
keep track of causal relations among events is at the heart
of distributed computing and, as such, an ordering service
is a fundamental building block for many applications such
as storage services [8], graph stores, social networks, online
games, among others. The idea of providing an event or-
dering service is not new (an example is Kronos [9]) but, to
the best of our knowledge, we are the first to address the
problem of providing secure implementations that may be
safely executed in fog nodes.

Our service, named Omega, has as main goals to provide
the following guarantees over data stored in fog nodes:

• Integrity: A fog node cannot modify application data
without this being detected.

• Freshness: A fog node cannot return an old version of
data, without this being detected.

• Causal Consistency: A fog node cannot modify the
causal order of events without being detected.

2

Omega leverages the wide availability of support for
Trusted Execution Environments (TEE), namely of Intel SGX
enclaves [10], to offer fog clients guarantees regarding the
order by which events are applied and served, even when
fog nodes become compromised. We take particular care to
use lightweight cryptographic techniques to ensure data in-
tegrity while keeping a reasonable tradeoff with availability.
A key goal is to secure the ordering service without violating
the latency constraints imposed by time-sensitive edge ap-
plications. We achieve this by using enclaves only for a few
important operations. In particular, applications run outside
the TEE and use the enclave to selectively request proofs
over the order of operations. Also, the interface of Omega
is, as it will be discussed later, richer than that of services
such as Kronos.

Omega is the first system that provides an ordering ser-
vice that allows clients to access and navigate the history of
all events in a secure and efficient manner, despite intrusions
in the Omega node. Clients can crawl the event history
without having to constantly access the enclave. All events
are ordered and stored in the untrusted zone and the client
is only required to access the enclave to get the root of the
event history.

To illustrate the use of Omega and to assess its perfor-
mance, we have built a key-value store named OmegaKV,
that offers causal consistency [11] for the edge. OmegaKV
is an extension of causal-consistent key-value stores that
have been previously designed for the cloud [8], [12]. We
are particularly interested in extending key-value stores that
offer causal consistency, since this is the strongest consis-
tency model that can be enforced without risking blocking
the system when network partitions or failures occur [12].
Clients of OmegaKV can perform write and read operations
on data replicated by fog nodes, and are provided with the
guarantees that writes are applied in causal order and that
reads are also served in an order that respects causality.

We experimentally assessed the performance of Omega
using a combination of micro-benchmarks and its use to
secure the metadata required by OmegaKV. Our experi-
mental results show that Omega introduces an additional
latency of approximately 4ms, which is much smaller than
the latency required to access central cloud data centers,
and that, contrary to cloud based solutions, allows latency
values in the 5ms-30ms range, as required by time-sensitive
edge applications [3].

2 BACKGROUND AND RELATED WORK

Edge computing [4] is a model of computation that aims
at leveraging the capacity of edge nodes to save network
bandwidth and provide results with low latency. However,
many edge devices are resource constrained (in particular,
those that run on batteries) and may benefit from the
availability of small servers placed in the edge vicinity, a
concept known as fog computing [5]. Fog nodes provide
computing and storage services to edge nodes with low
latency, setting the ground for deploying resource-eager
latency-constrained applications, such as augmented reality.

2.1 Securing Fog Services
While some edge infrastructures may be located in secure
premises, many applications will require a number of edge

servers to be placed in vulnerable locations (e.g., Road Side
Units [13]). Having fog nodes dispersed among multiple
geographic locations, close to the edge, increases the risk
of being attacked and becoming malicious. Therefore, the
security of edge services is a growing concern [6], [7], [14]. A
compromised fog node may delete, copy, or alter operations
requested by edge devices, causing information to be lost,
leaked, or changed in such a way that it can lead the applica-
tion to a faulty state. To achieve our goal we leverage secure
hardware as a means to harden the implementation. TEE
offers a secured execution environment with guarantees
provided by the processor. The code that executes inside
a TEE is logically isolated from the operating system (OS)
and other processes, providing integrity and confidentiality,
even if the OS is compromised.

The Intel Software Guard Extensions (SGX) are a set of
functionalities introduced in the 6th generation Intel Core
microprocessors that implement a form of TEEs named
enclaves [10]. The potential benefits of this technology for
the fog have already been recognized by Intel [15], [16]
and it has already been used in practice [17]. Applications
designed to use SGX have two parts: an untrusted part and a
trusted part. The trusted part runs inside the enclave, where
the code and data have integrity and confidentiality; the
untrusted part runs as a normal application. The untrusted
part can make an Enclave Call (ECALL) to switch into the
enclave and start the trusted execution. The opposite is also
possible using an Outside Call (OCALL). A limitation of
current SGX implementations is that the protected memory
region, named enclave page cache, is limited to 128 MB
[18]. Therefore, it is essential to minimize the memory usage
inside the enclave. In particular, the use of more memory
also increases the swap time from enclave and out. While
attacks against SGX like Foreshadow and LVI [19] exist, Intel
continues to investigate how to mitigate these issues. From
a security perspective, it is also relevant to maintain a small
trusted computing base and to reduce the attack surface.

With time new systems have emerged to alleviate the
SGX limitations. SCONE [20] supports secure Linux con-
tainers that offer I/O data operations efficiently; in Omega
all enclave operations are done in memory thus avoiding
the use of I/O operations. HotCalls [21] offers mechanisms
to reduce the overhead between enclave and non-enclave
communication; Omega could leverage HotCalls to further
reduce latency.

ROTE and LCM [22], [23] propose efficient monotonic
counters that Omega could use to persistently store its
state and prevent rollback attacks. ROTE requires replicas
to synchronize when a new monotonic counter is required,
which can be a source of delays in edge applications.

2.2 Event Ordering
Most distributed applications need to keep track of the order
of events. Different techniques can be used for this purpose,
from synchronized physical clocks, logical Lamport clocks
[11], vector clocks, hybrid clocks, and others. In most cases,
the event ordering service is a core component of the appli-
cation and if this service is compromised the correctness of
the application can no longer be ensured [24].

In many cases, applications use their own technique to
order events, so the implementation of the ordering service

3

is intertwined with the application logic. This approach has
two important drawbacks: first, it is hard to keep track of
chains of related events across multiple applications [25].
Second, it causes developers to maintain complex code, that
is duplicated in many slightly different variations.

Kronos [9] was recently proposed as an alternative ap-
proach that consists in offering event ordering as a service
and can be used by multiple applications, although it was
designed for the cloud and does not implement any security
measures. In the context of edge computing, implementing
the event ordering as a separate service that is provided
by fog nodes makes it easier to harden the implementation,
increasing the robustness of the applications that use such a
secured version of the service. In this paper we follow this
path and describe the design and implementation of Omega,
a secure event ordering service to be executed at fog nodes.

2.3 Edge Storage

To unleash their full potential, fog nodes should not only
provide processing capacity, but also cache data that may
be frequently used [26]; otherwise, the advantages of pro-
cessing on the edge may be impaired by frequent remote
data accesses [27]. Consequently, a key ingredient of edge-
assisted cloud computing is a storage service that extends
the one offered by the cloud in a way that relevant data
is replicated closer to the edge. Therefore, in this paper we
also describe the implementation of a storage service to be
provided by fog nodes, that we have named OmegaKV.
This storage service extends key-value stores designed for
the cloud that offer causal consistency [8], [12]. This consis-
tency criteria is particularly meaningful for edge computing,
given that it was shown to be the strongest consistency cri-
teria that can be offered without compromising availability.

Systems such as CloudPath [27], Pathstore [28], Fog-
Store [29], and EdgeCons [30] were designed exactly to
offer data consistency and storage at the edge. However,
none of these systems addresses the security vulnerabilities
that fog nodes face. A compromised fog node can create,
delete, and/or manipulate the data maintained by these
storage systems, leaving the storage and the applications
that depend on it in an unpredictable state, as described
in Section 3. OmegaKV is protected from these attacks by
leveraging Omega and the security properties that Omega
provides.

Recently two key-value stores that leverage SGX have
been proposed: ShieldStore [17] and Speicher [31]. Both have
been designed to operate in data centers at the cloud layer.
Omega is a more general ordering service, which can be
used to implement a key-value store but also other services
at the fog layer. Pesos [32] is secure object store in the cloud
that takes advantage of SGX. Pesos assumes a secure third
party to persistently store the data, while OmegaKV stores
the data locally in the untrusted part. All these systems
require that operations call an enclave, incurring with a
non-negligible latency overheard. This overheard may result
from: i) the enclave context switch; ii) calling the malloc
function that may involve encrypting and decrypting data
in memory; iii) cryptographic operations to prove that the
computation was performed inside the enclave; iv) and the
use of mechanisms that overcome the limited memory that

enclaves suffer. Omega solves this challenge by using the
enclave as a root of trust for just a few important operations,
and to generate secure data structures. After contacting the
enclave once, clients can perform multiple read operations
without calling the enclave, with the same integrity and
authenticity assurances.

Needless to say, any storage service that offers causal
consistency needs to keep track of the causal order relations
among read and write operations. Instead of embedding
such operations in the code of OmegaKV, our implementa-
tion makes extensive use of Omega. As a result, OmegaKV
illustrates the benefits than can be achieved by having an
event ordering service implemented at the fog level, and
also shows how applications can leverage the fact that
Omega is secured to harden their own behaviour.

3 VIOLATIONS OF THE EVENT ORDERING

Prior to describing the design and implementation of
Omega, it is worth enumerating the problems that might
occur if the event ordering service is compromised. In this
discussion, we assume that the event ordering service is
executed in a fog node and that the clients of the service
are edge nodes, servers in cloud data centers, or other
fog nodes. In this work, we assume that clients are non-
faulty and we only address the implications of a faulty
implementation of the event ordering service.

The API of the Omega service will be described later in
the text. For now, just assume that clients can: i) register
events with the event ordering service in an order that re-
spects causality and, ii) query the service to obtain a history
of the events that have been registered. Typically, clients
that query the event ordering service will be interested in
obtaining a subset of the event history that matches the
complete registered history (i.e., it has no gaps), and that
is fresh (i.e., includes events up to the last registered event).

Informally, a faulty event ordering service can: i) Expose
an event history that is incomplete by omitting one or multi-
ple events from the history; ii) Expose an event history that
depicts events in the wrong order, in particular, in an order
that does not respect the cause-effect relations among those
events; iii) Expose a stale history, by omitting all events
subsequent to a given event in the past (falsely presented
as the last event to have occurred); iv) Add false events, that
have never been registered, at arbitrary points in the event
history. These behaviours break the causal consistency and
may leave applications in an unpredictable state.

4 OMEGA SERVICE

Omega is a secure event ordering service that runs in a fog
node and that assigns logical timestamps to events in a way
that these cannot be tampered with, even if the fog node has
been compromised. Clients can ask Omega to assign logical
timestamps to events they produce, and can use these log-
ical timestamps to extract information regarding potential
cause-effect relations among events. Furthermore, Omega
keeps track of the last events that have been registered in the
system and also keeps track of the predecessor of each event.
These two last features are relevant as they allow a client to
check if the information provided by a fog node is fresh and

4

TABLE 1
The Omega API.

Create a timestamped event with a given identifier and a given tag
Event createEvent (EventId id, EventTag tag)
Order two events and return the first
Event orderEvents (Event e1, Event e2)
Return the last event timestamped by Omega
Event lastEvent ()
Return the last timestamped event with a given tag
Event lastEventWithTag (EventTag tag)
Return immediate predecessor of a given event
Event predecessorEvent (Event e)
Return the most recent predecessor with the same tag
Event predecessorWithTag (Event e)
Return the application level identifier of an event
EventId getId (Event e)
Return the tag associated with an event
EventTag getTag (Event e)

Fig. 1. predecessorEvent and predecessorWithTag functions.

complete (i.e, if a compromised fog node omits some events
in the causal past of a client, the client can flag the fog node
as faulty). More precisely, Omega establishes a linearization
[33] of all timestamp requests it receives, effectively defining
a total order for all events that occur at the fog node. Any
linearization of the event history is consistent with causality.

4.1 Omega API
The interface of the Omega service is depicted in Table 1.
Omega assigns, upon request, logical timestamps to appli-
cation level events. Each event is assumed to have a unique
identifier that is assigned by the client of the Omega service,
so Omega is oblivious to the process of assigning identifiers
to events, which is application specific. Omega also allows
the application to associate a given tag to each event. Again,
Omega is oblivious to the way the application uses tags (tags
can be associated to users, to keys in a key-value store, to
event sources, etc.). In Section 4.2, we provide examples that
illustrate how tags can be used by different applications. The
createEvent operation assigns a timestamp to a user event
and returns an object of type Event that securely binds a
logical timestamp to an event and a tag.

Clients are not required to know the internal format used
by Omega to encode logical timestamps, which is encapsu-
lated in an object of type Event. Instead, the client can use
the remaining primitives in Omega to query the order of
events and to explore the event linearization that has been
defined by Omega. The primitive orderEvents receives two
events and returns the oldest according to the linearization
order. The client can also ask Omega for the last event that
has been timestamped (lastEvent), or by the most recent
event associated with a given tag (lastEventWithTag). Given
a target event, the client can also obtain the event that is the
immediate predecessor of the target in the linearization or-
der (predecessorEvent), or the most recent predecessor that
shares the same tag with the target (predecessorWithTag),
as shown in Figure 1. Finally, getId and getTag extract the

application level event identifier and tag that have been
securely bound with the target logical timestamp.

Note that although Omega is inspired by services such
as Kronos, it offers an interface that makes different trade-
offs. First, it allows clients to associate events with specific
objects / tags and to fetch all previous events that have
updated that specific object; Kronos requires clients to crawl
the event history to get the previous version of a particular
object. Second, Kronos requires the application to explicitly
declare the cause effect relations among objects. This is
more versatile but more complex to use than Omega, that
automatically defines a causal dependency among the last
operation of a client and all operations that this client has
performed or observed in its past. Unlike Kronos, Omega
automatically establishes a linearization of all operations,
which simplifies the design of applications that need to
totally order concurrent operations.

To execute a CreateEvent, it is mandatory to authenticate
the client. Other methods in the API do not change the state,
and cannot compromise the integrity even if invoked by an
attacker. Note that Omega does not offer confidentiality; it
only aims at offering integrity and freshness.

4.2 Example Use Cases

Many applications can leverage an event ordering service
such as Omega. Examples are applications based on state-
less functions, online shops, assisted car driving, online
augmented-reality multiplayer games, stream processing
engines, social networks, city-scale smart surveillance, and
distributed key-value stores. In the following, we use a set
of use cases to illustrate how the API exported by Omega
can be used for different purposes.

4.2.1 Applications Based on Stateless Functions
New computing models such as microservices [34] and
serverless computing [35] allow applications deployed in
the cloud to scale seamlessly. These models are based on
stateless functions (or services) that are typically small,
low complexity, easy to develop, and fast to launch and
terminate. Stateless functions typically rely on external
services to store and retrieve persistent state. A service such
as Omega can provide the methods that allow functions
to create and read persistent events securely and with
low latency, encapsulation the complexity associated with
ensuring the integrity and freshness of data.

Stateless functions can be used by applications to pro-
cess large amounts of data close to the edge, reducing the
volume of data propagated in the network: the raw data is
processed by a stateless function to reduce its size and later
migrated to the cloud or served to edge clients (for instance,
compressing or image background subtraction). Omega can
securely store the metadata relative to these images.

Video surveillance for traffic control is an example of an
application that can use stateless functions. A camera can
be an edge client that creates events in Omega whenever
there are variations in the image. Subsequently, images are
processed by a stateless function that performs the image
processing in background. To ensure the integrity and order
of the images, the camera device leverages Omega by gener-
ating an event for each image with the correspondent image

5

hash, by calling createEvent(imageHash,cameraID); Later
the data is migrated to the cloud and, if required, the images
integrity can be verified by recovering the background and
recalculating the correspondent hashes. Moreover, Omega
also ensures the correct order of images, reading the pre-
vious events using lastEventWithTag(cameraID) and prede-
cessorEvent. Note that image order may be important to
reconstruct events, such as an accident or a crime.

In this use case, a malicious fog node can manipulate
the content of an image to harm a client. Specifically, the
node might add illegal content to an image and later use it
against the client. Omega prevents this attack by ordering
the events, so reconstructing the entire image sequence
through the image hashes allows proving there was no
image manipulation. Additionally, all functions that per-
form computation on the image can also verify this hash
to guarantee that they are accessing the correct image.

4.2.2 Video Conferencing Applications
Video conferencing applications can leverage fog nodes to
save network bandwidth and offer low latency to their
clients. For example, a video conferencing application in a
corporate campus can leverage a fog node as a broker of
the video streams, so local streams stay within the intranet
instead of going to the cloud. In this use case, the application
can leverage Omega to locally and securely store access
control data. Applications can access this data avoiding ac-
cessing the distant cloud, obtaining low response time, and
even tolerating faults when the cloud is unreachable [36].

The fog node multicasts the video streams encrypted
from the source to the local clients, while Omega locally
stores legitimate user lists. A possible implementation is
to assume the existence of a unique entity (system owner)
capable of creating events on Omega. Although only one
entity is capable of creating events, all these events are
public. The system owner can be a TEE running on the fog
node in parallel with Omega or a special edge client.

In the first case, the TEE needs to store the stream
secret (such as a symmetric key) and leverage Omega
to store the access control lists. To remove and add
users, the system owner creates events on Omega, cre-
ateEvent(addUserA/ removeUserA, conference1). To read
the control data, the system owner can simple scroll through
the events generated with the tag corresponding to the con-
ference (lastEventWithTag(conference1) and then use prede-
cessorEvent). To avoid crawling the entire event history,
the EventId could be a hash of the legitimate users. In the
second, the events are generated in a similar fashion, but the
users must run a shared key protocol to generate the video
stream secret (tree-based Diffie-Hellman [37]).

4.2.3 Online Augmented-Reality Games
In augmented-reality games, users are able to interact with
virtual objects that are placed at multiple physical locations.
Examples of online augmented-reality multiplayer games
are Pokémon GO, Ingress, or Temple Treasure Hunt. In such
games, players can interact indirectly by taking or placing
virtual objects on specific locations. For instance, player A
could drop some object that players B and C would try to
catch. The interaction with these objects can be modeled
by drop and catch events that can be coordinated by a fog

node close to the physical location of the virtual object
to ensure faster interactions. In this case, the state of the
game can be modelled as a function of a totally ordered
log of events executed by clients. Without a service such as
Omega, a compromised fog node could present to different
clients different serialization of events, causing the state of
the client application to diverge. For instance, the fog node
could report to player A that she has caught the object before
player B did and report to player B exactly the opposite.

The extension of such game to use Omega could follow
a structure similar to the one discussed for the messaging
application, given that, at a higher level of abstraction, both
applications maintain a log of events. There are, however,
some interesting aspects of the Omega API that can only be
illustrated by the current example. In the game, it would be
possible to assign a different tag to each virtual object. This
would allow the application to keep track of actions that
manipulate a given object. However, in this case, the ability
to keep track of causal relations among events of different
tags (using the method predecessorEvent) is relevant, given
that the ownership of some object may be a pre-condition to
manipulate some other object (e.g. a player may be required
to hold a key in order to remove an object from a vault).
Also, the fact that Omega linearizes all events is helpful
for scenarios where players concurrently attempt to do the
same actions and a serialization is required (e.g. if players
B and C try to concurrently catch the same object, only
one should succeed). In this situation, the time of arrival
of the event to the createEvent API function determines
the winner, and the clients must then crawl the object
history until they find the earliest pickup event or the client
identifier.

4.2.4 Key-Value Stores

Key-value stores are widely used in cloud computing today,
and a large number of designs have been implemented [38].
Most of these systems support geo-replication, where copies
of the key-value store are kept in multiple data centers. To
answer the low latency requirement from edge applications,
key-value stores will require to extend their services to the
edge and use fog nodes as replicas. Many geo-replicated
key-value stores, such as COPS [8] or Saturn [12], support
causal consistency. As the name implies, causal consistency
requires the ability to keep track of causal relations among
multiple put and get operations. This can be achieved with
the help of a service such as Omega. We have decided to
implement an extension for an existing key-value store to
illustrate the benefits of Omega. Therefore, we postpone
further discussion on how to use Omega for the implemen-
tation of key-value stores to Section 6, where we present
OmegaKV.

5 OMEGA DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of the Omega service. We start by presenting the system
architecture, the system model and the threats they face.
Then, we describe in detail the most important aspects of
the implementation.

6

Fig. 2. Omega architecture. ΩC is Omega client, ΩV is Omega Vault
and ΩL is the event log.

5.1 System Architecture and Interactions

The Omega service is executed on fog nodes and is used
by processes that run in the edge or in cloud data centers,
as shown in Figure 2. Both the edge devices and the cloud
can use Omega to create and read events on the fog node
in a secure manner. For instance, edge devices can make
updates to data stored on the fog node that are later shipped
to the cloud (in this case, edge devices create events and
the cloud reads them). Moreover, the cloud can receive
updates from other locations and update the content of the
fog node with new data that is subsequently read by the
edge devices. For the operation of Omega, we do not need
to distinguish processes running on the edge devices from
processes running on the cloud, we simply denote them as
clients. The method used by clients to obtain the address of
fog nodes is orthogonal to the contribution of this paper.
We can simply assume that cloud nodes are aware of all
fog nodes (via some registration procedure) and the edge
devices can find fog nodes using a request to the Domain
Name System (DNS), e.g., using a name associated with the
application, or to the cloud, e.g., using an URL associated
with the application.

As previously mentioned, we take advantage of Intel
SGX. The use of an enclave could lead to memory con-
straints in our implementation. However, as explained in
Section 5.4, Omega is not constrained by the memory avail-
able to the enclave. In Omega, the enclave generates a
secure data structure that is stored in the untrusted zone;
clients can read this data without calling the enclave and
still obtain security guarantees.

5.2 Components of the Omega Implementation

An important aspect of Omega is how to maintain the func-
tionality of the system in case a fog node is compromised.
To tackle this issue, Omega takes advantage of Intel SGX,
as show in Figure 2; Omega generates all events inside
the enclave, i.e., it executes createEvent operations inside
the enclave. Moreover, all events take a digital signature
obtained inside the enclave using the private key of the
fog node, also stored inside the enclave. Omega includes
the following modules: i) a component named Omega Vault

and (Section 5.4); ii) Event log that are used to preserve the
Omega state (Section 5.4); iii) an implementation of each
method in the API (Section 5.5).

5.3 Threat Model and Security Assumptions
We assume the fog computing model where the network
architecture is split into three parts: cloud, fog, and edge.
This work addresses the security challenges in the fog layer,
protecting fog nodes. Although edge clients and the cloud
can also suffer attacks, the methods to address those attacks
(e.g., endpoint and cloud security controls) are outside the
scope of this paper. The cloud and its services are consid-
ered trustworthy, i.e., are assumed to fail only by crashing
(essentially, we make the same assumptions as the related
work [8], [9], [12]). Clients running on edge devices are also
considered trustworthy and may also fail only by crashing.

Due to their exposed location, fog nodes can suffer
numerous attacks and be compromised (an attacker might
even gain physical access to a fog node). We assume that
fog nodes may fail arbitrarily. They receive operations from
clients and communicate with the cloud, so we assume that
a faulty fog node can: modify the order of messages in the
system; modify the content of messages; repeat messages
(replay attack); tamper with stored data; and generate in-
correct events. All these actions, if not addressed carefully,
may lead the system to a faulty state, cause Omega to break
the causal consistency of the events, and therefore affect the
correctness of applications that use Omega.

We do not make assumptions about the security and
timeliness of the communication, except that messages are
eventually received by their recipient. We also assume that
each fog node has a processor with Intel SGX, which al-
lows running a TEE designated enclave, as depicted in
Figure 2. Both clients and fog nodes have asymmetric key
pairs (Ku,Kr). The private key of the fog node KF

r never
leaves the enclave. For public key distribution, we consider
the existence of a Public Key Infrastructure (PKI). We do
the usual assumptions about the security of TEEs/enclaves
(data executed/stored inside the enclave has integrity and
confidentiality ensured) and cryptographic schemes (e.g.,
private keys are not disclosed, signatures cannot be created
without the private key, and the hash function is collision-
resistant). For obtaining digital signatures efficiently we use
Elliptic Curve Cryptography (ECC), specifically the ECDSA
algorithm with 256-bit keys, which is recommended by
NIST [39]. We assume the existence of a collision-resistant
hash function. In practice we use SHA-256, also recom-
mended by NIST [39]. We use the implementations provided
by the SGX SDK (inside the enclave) and Java (outside).

Finally SGX has some limitations and vulnerabilities that
are not addressed by our work, and that can be tackled by
mechanisms that are orthogonal to the techniques described
in this paper. Namely, SGX can be subject to denial of
service and side-channels attacks [40], and looses all state
upon reboot. To address the latter, Omega could leverage
solutions such as ROTE [23] and LCM [22].

5.4 The Omega Vault and the Event Log
Most systems based on SGX require that every operation
calls the enclave [17], [31], incurring in a non-negligible

7

latency overheard and stressing the enclave. Omega strives
to overcome this challenge by designing techniques that
use the enclave as a root of trust for just a few important
operations and leaving the rest of the operations to be
carried out without the enclave intervention. This can be
beneficial for operations such as predecessorEvent which
requires Omega to store all events generated in the past so
that clients can crawl the event history. Additionally, Omega
is required to securely store different pieces of information,
such as the Omega private key, the last event generated by
Omega, and also the last event associated with each tag.
However, the enclave memory is limited to a few tens of
megabytes and Omega must keep an arbitrary number of
tags. Therefore, Omega requires a way to securely store the
above information (in particular the last event for an arbi-
trary number of tags). To satisfy these requirements, Omega
uses two storage services with different properties, the vault
and the event log. In both cases, Omega stores events in
the untrusted zone. These events can be in plain text but
we still need integrity, i.e., to ensure that the untrusted
zone cannot modify these values in case the fog node is
compromised. Given that events are signed by Omega, the
untrusted zone cannot modify individual events; however
it can delete events or replace new events by older events.
We now describe the implementation of these two services.

The Omega Vault needs to maintain the last event gen-
erated for each tag (lastEventWithTag) and to ensure that
the untrusted components cannot replace the last event by
an older event. To ensure that the untrusted zone cannot
tamper with the data outside the enclave, we use a Merkle
tree [1] over this data and store only the top hash in
the enclave. The Merkle tree preserves the data integrity
efficiently: it is scalable since the enclave stores a single
hash regardless the size of the Merkle tree; and it offers low
latency as the number of hashes that need to be computed
grows logarithmic with the size of the system (see Sec. 7.2.1).
For example, if Omega stores 131072 different tags, the vault
only needs to compute 17 different hashes when executing
the lastEventWithTag operation.

Our vault implementation supports multi-threaded op-
eration. The data address space is sharded, and each shard
is maintained in an independent Merkle tree. This allows
the concurrent execution of multiple threads inside the
enclave, as long as they are updating different shards. This
substantially improves the throughput sustained by the
Omega service. Note that even when multiple threads are
used, Omega still ensures the serialization of all events: the
existence of a sequential history makes the task of crawling
the event log easier. This means that the assignment of the
last event identifier is still executed in mutual exclusion
inside the enclave. However, the fraction of the Omega
code that needs to be executed serially is so small, when
compared with the remaining code this does not impair the
performance. In fact, with the number of cores we have
tested (up to 16), we could not observe any significant
degradation resulting from the need to serialize events.

The Event Log is inspired by blockchain technology [41]
and has two main objectives: 1) to store all events generated
in Omega so that clients can securely crawl the event history
(with predecessorWithTag and predecessorEvent); 2) do
so while avoiding the use of the enclave, by maintaining

data structures that allow clients to read the data from
the untrusted zone and still achieve security guarantees
regarding the relative order of the events observed.

To achieve the first objective, the event log records of all
events generated; we opted to implement it as a key-value
store where events are stored using their unique identifier
(assigned by the application) as key. Every time Omega
makes a look-up for a specific event (e.g., when a client
crawls the event history) it simply finds the event and
returns it to the client; the Omega client then verifies the
integrity of the event before the value is returned to the
application. If an event cannot be found in the key-value
store, this is a sign that the untrusted components of the
fog node have been compromised. Since all events possess
a digital signature produced by the enclave when they were
created, clients can verify the event integrity and have a
guarantee that they are reading a correct event. Omega is
also an event ordering service and therefore also needs to
guarantee the correct order of these events.

The second objective is achieved with a mechanism
similar to to the one used to preserve the sequence of blocks
in blockchains: each event keeps the unique identifier of the
predecessorEvent and the predecedsorWithTag, as shown
in Figure 1. This creates a link between consecutive events.
In a blockchain data structure like Bitcoin’s and Ethereum’s,
blocks are cryptography linked through a hash; in our case,
the event ID is sufficient to securely link the events. These
links are secure and cannot be tampered with because every
event ID is unique (nonces) and each event has a signature.
This data structure allows clients to read data/events with
the guarantee that the order of events is correct.

In most cases, clients can request the most recent event
from a given tag (lastEventWithTag) and then crawl the
causal past of that particular event (predecessorWithTag
and predecessorEvent). Note that, in this case, only the
first operation requires a call to the enclave and all the
other operations can be executed just by reading the event
log. This allows the client to crawl the event log from the
untrusted zone while still ensuring integrity, authenticity,
and the order of the events.

It is worth highlighting the importance that some simple
optimizations, as the ones provided by the predecessor-
WithTag operation, may have for a client at the edge. A
system like Omega is capable of processing hundreds of
events per second. In the case of an edge client that is
only interested in events generated with a certain tag, it
can use the operation predecessorWithTag to quickly obtain
all the events of that tag. Instead, if the client had access
to only the predecessorEvent operation, it would have to
crawl through all events that were generated for all tags,
several hundreds or thousands. The client would incur in
a high latency penalty, especially because it would have to
verify digital signatures of all these events despite not being
interested in them. With the operation predecessorWithTag,
clients can more easily and efficiently get access to the
events they are looking for.

5.5 Implementation of the Omega API

Clients invoke the Omega API via a client library. In this
way, clients do not need to be aware of the specifics for

8

communication with the Omega server. In fact, as we dis-
cuss here, different methods use different communication
primitives to interact with the enclave. Also, some of the
methods can be executed directly by the client library and
do not require any message exchange with the enclave. In
the next paragraphs, we describe the implementation of
each primitive in detail.

The method createEvent is the only method that mod-
ifies the state of the Omega server in the fog node. The
method createEvent is used to create a new event in the
server. The state of an event is a tuple that contains the
following fields: i) a unique timestamp, that is associated
to the event by the server (in the current implementation,
this timestamp is a sequence number); ii) the EventId ; iii)
the associated EventTag ; iv) the EventId of the last event
generated by Omega; v) the EventId of the last event
generated by Omega with the same tag. The identifiers
of the predecessor events are maintained in the Omega
vault. The new tuple is signed with the private key of the
Omega server. Subsequently, the Omega server replaces the
identifier of the last event generated by the identifier of
the new event and replaces the identifier of the last event
generated with the given tag, by the new event. As noted,
these variables are maintained in the secured Omega vault.
Then, the tuple is also stored in the event log, maintained in
the non-secured portion of the fog node. Finally, the tuple
that represents the event is returned to the client.

The methods lastEvent, lastEventWithTag, predeces-
sorEvent, and predecessorWithTag do not change the state
of the Omega. When the server receives a lastEvent request
it extracts the last event it has processed from the vault
(i.e, a tuple with the fields enumerated in the previous
paragraph) to the client. Similarly, when the server receives
a lastEventWithTag request, it uses the vault to extract the
previous request and sends it to the client. The requests
predecessorEvent and predecessorWithTag are executed
collaboratively by the client library and the server. The
client library, that is aware of the internal structure of the
Event tuple, extracts the timestamp of the event. This event
identifier is sent to the server that fetches the complete event
tuple associated to that identifier from the event log. Finally,
the full tuple associated with the desired event is returned
to the client.

Lastly, the methods orderEvents, getId, and getTag re-
quire no communication with the enclave, and are imple-
mented directly on the library. The first method extracts
the timestamp field from each tuple, compares their values,
and returns the tuple with lower timestamp. The other two
simply return the corresponding fields from the input tuple.

Note that several of the methods described above require
the Omega server to extract information from the vault
and/or from the event log. The integrity of the information
maintained in the vault is ensured by construction. Also the
server can always check the validity of records extracted
from the event log (since each tuple is signed with the
private key of the server, which is securely stored in the
enclave). However, the Omega server cannot prevent the
non-secured portion of the fog node from deleting infor-
mation from stable storage, making the vault, the log, or
both unavailable. In this case, the part of Omega that runs
inside the enclave detects the corruption, stops operating,

Fig. 3. OmegaKV service components.

and reports an error.

6 OMEGA KEY-VALUE STORE

OmegaKV is an extension to key-value stores that have been
designed for the cloud. It makes it possible to maintain a
cache of some key-value pairs in the untrusted space of
a fog node while still ensuring that clients observe up-to-
date values of the cached objects, in an order that respects
causality. This is achieved by resorting to the services of
Omega. We use OmegaKV mainly to illustrate the use of
Omega and as a means to assess the overhead introduced
by this service.

OmegaKV is implemented by combining an untrusted
local key-value store and Omega, as illustrated in Figure 3.
The key-value store resides in the untrusted region of the fog
node, and it is used to store the values persistently. Omega is
used to keep track of the relative order of update operations
that have been performed locally. The implementation of
OmegaKV has components that run on a client library and
components that run of the fog node.

OmegaKV uses Omega as follows. Every update per-
formed on the local replica is associated with an event
generated by Omega. The keys used in the OmegaKV are
associated to EventTags in Omega; thus Omega will store
securely each update performed on each key. Also, for each
update operation, an EventId is generated as a function of
the content of the update; more precisely, if a client writes
value v on some key k, that update will be identified by
hash (k ⊕ v).

To put a value on the OmegaKV, the client starts by
creating an identifier for the put operation by hashing the
concatenation of the key and the value. Then it contacts
Omega to serialize the update operation with regard to other
update operations (in a serialization that respects causality).
Finally, the server replaces the old value of the key with the
new one. The event generated by Omega is stored locally
with the update value. This can be used subsequently to
ensure that clients see updates in the right order.

To perform the get operation, the server reads the value
and the associated event from the local key-value store and
queries Omega for the last event to be associated with the
target key. Then it uses the hash of the value that has been
securely stored by Omega and compares it with the hash of
the value returned by the untrusted code running on the fog
node. This allows the client to check that the untrusted zone
has not been compromised and that the value returned is,
in fact, the last value written on that key.

By leveraging Omega, OmegaKV is capable of offer-
ing another operation, getKeyDependencies. This operation
takes two input arguments, the target key, and a limit. This
operation will read all predecessors of the key up to the
limit number, and return key-value pairs. When the limit is

9

TABLE 2
SGX-based systems comparison. RYW is read your writes.

integrity
and freshness scalability consistency secure

history

Speicher O(n) no RYW yes
Enclavecache no – RYW no
Securekeeper no – linearializability no
Concerto (upon request) yes RYW yes
ShieldStore O(n) yes RYW no
OmegaKV
+ Omega O(logn) yes causal yes

zero, OmegaKV crawls to the end of Omega history. With
this operation, clients are able to obtain the dependencies of
a given key.

As OmegaKV resorts to Omega, OmegaKV inherits
many of the Omega security properties. Thus, OmegaKV
compares positively with other key-value stores based on
SGX, as shown in Table 6. OmegaKV maintains data fresh-
ness through Omega Vault that has a logarithm cost, while
other systems have a linear cost [17], [31]. Concerto [42]
verifies data integrity in a deferred manner and at client
request, a solution that is not practical for the edge. Inter-
estingly Concerto also implements a Merkle tree outside the
enclave, but needs to pass as input the entire path from the
leaf to the root through the Ecall. Omega Vault leverages
the user check parameter allowing the enclave to directly
access the Merkle tree nodes in untrusted memory. Another
important factor is the scalability that these techniques hold.
While a single top hash is sufficient to ensure integrity
in Omega Vault, Speicher stores a table inside the enclave
that needs to be flushed to disk. Most key-value stores,
such as EnclaveCache [43], offer Read your Write data
consistency. Securekeeper [44] performs consensus among
replicas that can result in long latencies. Omega, similarly to
Saturn, orders all events with timestamps to capture causal
consistency. Also, OmegaKV offers a complete history of
operations by resorting to the event log.

7 EVALUATION

This section is divided in two parts. First, we evaluate
Omega in isolation. The goal is to offer a better understand-
ing of the relative cost of the different components of the
Omega implementation. Second, we show the impact of
using Omega to secure a concrete service, OmegaKV. The
goal is to provide insights on the tradeoffs involved when
executing services securely on the cloud, insecurely on fog
nodes, or securely on fog nodes leveraging Omega.

7.1 Experimental Setup

In our experiments, the fog node is a dedicated computer
with a 3.6GHz Intel i9-9900K CPU which has 16GB RAM
(this processor supports SGX). The fog node OS is Ubuntu
18.04.2 LTS 64bit with Linux kernel 5.0.8. We run the Intel
SGX SDK Linux 2.4 Release. The client machines are com-
puters with 2.5GHz Intel i7-4710HQ CPU and 16GB RAM.

Low latency communication is one of the main motiva-
tions for fog computing. Computation close to the network
edge can achieve low latency: in 5G cellular networks that

can include computing capacity in the access nodes; in Con-
tent Delivery Network (CDN) as recent work has pushed
computation to CDN nodes; in Vehicle-to-Infrastructure
(V2I) communications when cars interact directly with Road
Side Units (RSUs). In all these cases, low communication
latency is a consequence of direct (1-hop) communication.
In our experiments, clients and fog node were deployed
in our laboratory, in the same network, emulating a 5G
station communicating with a terminal (1-hop). The latency
has been tuned to be aligned with the expected latency
of 5G networks and future mobile edge computing (MEC)
networks (below 1ms, according to Imtiaz et al. [45]). Cloud
services were executed on an Amazon Elastic Compute
Cloud (Amazon EC2) datacenter in London, selected as the
closest in Round Trip Time (RTT) to our lab located in
Lisbon, in t2.micro virtual machines. This setting captures
many realistic scenarios where clients are diverted to the
closest datacenter. The observed experimental latency is
consistent with values obtained by others [46].

The Intel SGX SDK and the code for the enclave are in
C/C++. Omega was implemented in Java 11 and the Java
Native Interface (JNI) was used as a bridge between Java
and C++. For persistent storage we use the Redis key-value
store [38] and Jedis, the Java Redis client library, to interact
with Redis.

7.2 Omega Server Side Performance

We first provide an overview for the performance of Omega
and the main functions executed in Omega. We will dis-
cuss the Omega server-side performance, i.e. discarding the
client’s cryptographic overhead. Then we discuss the per-
formance of the event log, a component capable of offering
minimal latency for edge clients.

7.2.1 Omega Operations

2 4 6 8 10 12 14 16
Number of local threads/clients

5000

10000

15000

Th
ro

ug
hp

ut
(o

pe
ra

tio
ns

/s
)

Omega server side

Fig. 4. Server side scalability of Omega’s createEvent (1 to 16 threads).

We now present the results from two experiments that
aim at assessing the performance of Omega, in particular of
the operations that are mainly executed in the enclave. We
have measured the performance of the createEvent opera-
tion, as this is the most expensive of all operations provided
by Omega and involves updating the Omega vault.

In the first experiment, we show that the performance of
Omega can scale as more threads are allocated to the service.
Figure 4 depicts the maximum number of operations per
second that our implementation can execute as the number
of threads increase. It can be seen that the throughput
of the system increases almost linearly up the 8 threads
(the number of real cores in the machine that we have
used). This is possible because cryptographic operations are
performed in parallel within the enclave and the Omega
vault is sharded. Updates to different shards can also be

10

createEvent lastEventWithTag lastEvent predecessorEvent
0.0

0.1

0.2

0.3

0.4

0.5
La

te
nc

y
(m

s)
Java
Jedis
JNI
C++
Enclave switch
Enclave

Fig. 5. Server side operation latency for createEvent, lastEventWithTag,
predecessorEvent, and lastEvent.

executed concurrently, without blocking each other. Note
also that the derivative of the line is below 1; this is due
to the overhead induced by the synchronization required to
enforce the serialization guarantees offered by Omega and
due to leveraging hyperthreading.

Figure 5 shows how each software component executed
in an operation critical path contributes to the final latency.
We show the latency for the createEvent, lastEventWithTag,
predecessorEvent, and lastEvent operations of the Omega
API. These operations use different components, that have
different properties, and therefore exhibit different perfor-
mance. All the results were obtained using the most re-
cent implementation of Omega, that includes a number of
optimizations with regard to previous versions, avoiding
some redundant memory copies and comparisons. There-
fore, these results are better than those of the original Omega
code [1].

The createEvent operation takes around 0.5ms to be
executed by the Omega server and is the slowest provided
by Omega. It involves calling the enclave, verifying and
computing digital signatures, calling the Omega Vault (ac-
quiring the lock over the partition to be modified) and the
event log, and, finally, replacing the value of lastEvent within
the enclave in an atomic manner. The event log uses Redis
(Section 5.4), so to store the event in the event log Omega
needs to transform the event into a string. The latency
introduced by this transformation (in green in Figure 5)
together with the work required by Jedis to store the event
in the Redis, leads to a penalty close to 0.1ms. Comparing
with Figure 4, the 8 clients experiment obtains an average
throughput of 13333op/s corresponding to a latency just
over 0.5ms validating these results.

The lastEventWithTag operation requires the enclave to
verify the client’s signature, then to use the Omega Vault to
get the most recent event for a given tag. This operation also
requires an access to the partition lock and the verification
of the Merkle tree. Still, it is faster than createEvent. The
enclave calculates a new digital signature with a nonce that
comes from the client to ensure freshness. To execute this
operation, Omega does not need to use Redis, since this
event was stored at the time of its creation. This results in a
noticeable reduction in latency compared to createEvent.

The lastEvent operation requires the enclave to verify
first the client’s signature, then to atomically read the most
recent event stored inside the enclave, to compute a new

digital signature (also with a client’s nonce) and, finally, to
return the event to the client. The visible latency difference
between lastEvent and lastEventWithTag is due to the use
of the Omega Vault and its Merkle tree. We conclude that
the time spent inside the enclave is mostly associated with
the operations required to verify and compute digital signa-
tures. The use of the Merkle tree is very efficient, causing a
small overhead. In the experiments, the system was storing
16384 different tags, using a Merkle tree with 14 levels.

The predecessorEvent operation is similar to predeces-
sorWithTag. The most interesting aspect of this operation is
that it does not require the use of the enclave, as it does not
require freshness. However, the untrusted part still verifies
the client’s signature, which is the time spent on the C++
component in the graph (as expected, C ++ is much more
efficient in cryptographic operations than Java). The figure
shows that a substantial fraction of time is spent in the
interface with Redis, namely transforming the stored string
into a Java object to be returned to the client. The impact of
the JNI is not noticeable in this case, as the C++ layer only
returns a boolean instead of an entire event as in all other
operations.

The observed latencies match the requirements of edge
applications. For instance, in vehicular applications, the
overall connection time of a vehicle with an RSU is typically
around 18-21s for a vehicle moving at 120 km/h [47], which
allows a vehicle to access multiple types of events such
as congestion control, driving conditions, curve speed, and
others. The latency of 0.6ms also matches the maximum
tolerable delay for many other edge applications, such as the
∼7ms required for virtual reality gaming [48], the ∼10ms
needed for augmented reality apps [49], and the ∼100ms
needed for image processing [50].

7.2.2 Performance of the Event Log
We now evaluate the performance of the event log com-
ponent. Figure 6 depicts the server side latency observed
when an client performs read operations, as a function of
the number of clients performing concurrent requests on
Omega. The vertical bars plotted at each point represent
the confidence interval at 99%. Each point is the average of
10,000 reads, but the variance was low, so the confidence
intervals are narrow (the lines are almost superimposed).

The top line of the experiment was obtained using a
single-threaded version of Omega and a single Merkle tree
(1 MT). This version presents the worst performance. The
middle line shows results for the multi-threaded version
using 512 partitions/Merkle trees. This version performs
better but it is possible to observe a latency degradation
when the processor can no longer execute the cryptographic
operations concurrently in an efficient manner (this happens
with 32 clients or more). Note that, in these experiments,
the client is executing the lastEventWithTag operation, that
uses both the enclave and the Omega Vault; threads execut-
ing this operation need to perform synchronized access to
shared variables.

The line in the bottom of figure depicts the server side
latency when a client performs the predecessorEvent opera-
tion in the multi-threaded Omega. In this case, the client al-
most does not notice any increase in latency, despite the con-
current execution of other clients. This happens because the

11

1 client
(0cc + 1cr)

2 clients
(1cc + 1cr)

4 clients
(3cc + 1cr)

8 clients
(7cc + 1cr)

16 clients
(15cc + 1cr)

32 clients
(31cc + 1cr)

64 clients
(63cc + 1cr)

128 clients
(127cc + 1cr)

256 clients
(255cc + 1cr)

512 clients
(511cc + 1cr)

Number of clients using Omega

0

1

10

100

500

La
te

nc
y

(m
s)

1 cr performing lastEventWithTag (1 MT)
1 cr performing lastEventWithTag (512 MT)
1 cr performing predecessorEvent (512 MT)

Fig. 6. Server side operation latency while the enclave is concurrently accessed. cc is client creating events, cr is client reading events, and MT is
Merkle tree.

2 16 32 64 128 256 512
Number of keys/tags

0.02

0.04

0.06

0.08

0.10

La
te

nc
y

(m
s)

Omega Vault
ShiedlStore, 1 hash bucket
ShiedlStore, 2 hash buckets
ShiedlStore, 4 hash buckets

Fig. 7. Performance of Omega Vault vs the ShieldStore hash bucket data
structure.

client thread does not need to call the enclave and can avoid
the use of synchronization primitives (such as the locks on
each partition/Merkle tree); therefore the implementation
can quickly read the event log event and return to the
client. These results clearly demonstrate the benefits that can
be achieved when the operations can be executed without
incurring the overheads associated with the enclave calls.
One can also observe the same latency difference between
the predecessorEvent operation and the lastEventWithTag
visible in Figura 5, where predecessorEvent has a latency
close to 0.4ms and the lastEventWithTag just over 0.1ms.
Futher, comparing with Figure 4 it is possible to observe the
slight increase in latency beyond 8 clients.

7.2.3 Performance of the Omega Vault

In this section we evaluate the performance of the Omega
Vault component, not to be confused with OmegaKV. To
evaluate the performance of Omega Vault we chose to
compare it with an open-source system, ShieldStore [17].
ShieldStore also uses cryptographic techniques to store data
outside the enclave in a secure manner, with integrity,
freshness, and confidentiality. However, ShieldStore uses a
flat Merkle tree to ensure data integrity; a Flat Merkle tree
fails to offer the logarithmic cost that Omega Vault offers.
Furthermore, the solution proposed by ShieldStore uses a
linked list on the leaves of the flat Merkle tree, named hash
buckets. Linked lists impose a linear cost when the system
grows. This linear cost is visible in Figure 7; when the
number of keys increases, ShieldStore has a linear growth

0 5 10 15 20 25 30 35 40
Client write operation latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

HealthTest
OmegaKV_NoSGX
OmegaKV
CloudHealthTest
CloudKV

Fig. 8. Write operation latency of a fog node and cloud.

in latency. However, Omega demonstrates a logarithmic
growth in latency, since it leverages a pure Merkle tree. This
experiment shows clearly that is preferable to implement a
pure Merkle tree over linked lists.

7.3 Performance of the OmegaKV

We now measure the impact of using Omega to make other
services secure. For this purpose we compare the perfor-
mance of OmegaKV, our Omega-based key-value store for
the fog, with a similar non-secured service also running
in the fog node (denoted OmegaKV NoSGX), and with a
version where security is achieved by running the service
on the cloud (denoted CloudKV). All implementations of
the key-value store have been developed in Java and use
Redis [38] to keep their state persistent. Also, all systems
use messages that are cryptographically signed. The major
difference among the implementations are that CloudKV
and OmegaKV NoSGX do not use the enclave (nor the
Merkle tree used to implement the Omega Vault), they make
no effort to verify the integrity of stored data, and they do
not need to use JNI interface.

Figure 8 compares the latency that a client experiences
when using the services OmegaKV, OmegaKV NoSGX,
and CloudKV. For a better understanding of the graph,
we measure the ping operation to calculate the round-trip
time from the client to the fog node and to the cloud;
this is shown as HealthTest line for the fog node and

12

0.5 1 2 4 8 16 32 64 128 256 512
Object value size (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

nc
y

(s
)

OmegaKV_NoSGX
OmegaKV

Fig. 9. Write operation latencies w/ and w/o SGX.

CloudHealthTest for the cloud1). As expected the client can
perform operations with much lower latency by using the
fog node rather than using the CloudKV services that are
in a data center, a reduction from 36ms to 12ms, close to
67%. OmegaKV has higher latency than OmegaKV NoSGX,
due to the use of the enclave. In absolute value we observe
an increase in latency in the order of 4ms, which is non-
negligible but still significantly smaller than the latency
introduced by wide-area links. OmegaKV can offer latency
values in the 5ms–30ms range required by time-sensitive
edge applications [3].

We also tested the performance of OmegaKV with dif-
ferent data sizes up to 512 MB (this is the maximum object
size supported by Redis, our underlying persistent store).
Results are shown in Figure 9. For this experiment we com-
pared OmegaKV against OmegaKV NoSGX. It is visible
that our system follows the same latency as the traditional
key-value store. This happens because, with large files,
the overhead of the enclave and cryptographic operations
becomes negligible when compared with the data transfer
costs. It should be noted that OmegaKV transfers only
one hash of the object to Omega; the object with tens of
megabytes is stored in Redis.

8 CONCLUSIONS

Fog computing can pave the way for the deployment of
novel latency-sensitive applications for the edge, such as
augmented reality. However, in order to fulfill its potential,
we need to address the vulnerabilities that emerge when
deploying a large set of servers on different locations. These
cannot be physically secured with the same level of trust
than cloud premises. This paper moves towards better re-
siliency by describing the design and implementation of a
secure service that can be executed on fog nodes in a secure
manner, leveraging on the properties of trusted executions
environments such as Intel SGX. In particular, we have
proposed Omega, an event ordering service that can be
used as a building block to build higher level abstractions.
Our evaluation shows that, despite the costs incurred with
the use of the enclave, less than 0.4ms, the use of Omega
based applications can still provide much smaller latency
and higher throughput than current cloud based solutions.

1. The latency was tuned to be aligned with the expected latency
of 5G networks and future MEC networks (below 1ms [45]). Note
that 5G towers have a short-range compared to 4G even with no
obstructions [51]. Clients can lose the signal if they physically move
away from the towers.

ACKNOWLEDGMENTS
This work was partially supported by the Fundação para a Ciência
e Tecnologia (FCT) under grant 2020.05270.BD, and via project
COSMOS (via the OE with ref. PTDC/EEI-COM/29271/2017 and
via the “Programa Operacional Regional de Lisboa na sua compo-
nente FEDER” with ref. Lisboa-01-0145-FEDER-029271), Project NG-
STORAGE (PTDC/CCI-INF/32038/2017), project UIDB/ 50021/ 2020,
and by the European Commission under grant agreement number
830892 (SPARTA).

REFERENCES

[1] C. Correia, M. Correia, and L. Rodrigues, “Omega: a secure event
ordering service for the edge,” in IEEE/IFIP International Conference
on Dependable Systems and Networks, València, Spain, Jun. 2020.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, 2010.

[3] G. Ricart, “A city edge cloud with its economic and technical
considerations,” in International Workshop on Smart Edge Computing
and Networking, Kona, HI, USA, Jun. 2017.

[4] Y. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5G,” ETSI white paper,
vol. 11, no. 11, 2015.

[5] L. Vaquero and L. Rodero-Merino, “Finding your way in the fog:
Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, 2014.

[6] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security
and privacy-preserving in edge computing paradigm: Survey and
open issues,” IEEE Access, vol. 6, 2018.

[7] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag,
N. Choudhury, and V. Kumar, “Security and privacy in fog com-
puting: Challenges,” IEEE Access, vol. 5, no. 6, 2017.

[8] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: Scalable causal consistency for wide-
area storage with cops,” in ACM Symposium on Operating Systems
Principles, Cascais, Portugal, Oct. 2011.

[9] R. Escriva, A. Dubey, B. Wong, and E. G. Sirer, “Kronos: The
design and implementation of an event ordering service,” in
ACM European Conference on Computer Systems, Amsterdam, The
Netherlands, Apr. 2014.

[10] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative
technology for CPU based attestation and sealing,” in International
Workshop on Hardware and Architectural Support for Security and
Privacy, Tel-Aviv, Israel, Jun. 2013, pp. 1–7.

[11] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Communications of the ACM, vol. 21, no. 7, 1978.

[12] M. Bravo, L. Rodrigues, and P. Van Roy, “Saturn: A distributed
metadata service for causal consistency,” in ACM European Confer-
ence on Computer Systems, Belgrade, Serbia, Apr. 2017.

[13] J. Ni, A. Zhang, X. Lin, and X. Shen, “Security, privacy, and fair-
ness in fog-based vehicular crowdsensing,” IEEE Communications
Magazine, vol. 55, no. 6, 2017.

[14] W. Zhou, Y. Jia, A. Peng, Y. Zhang, and P. Liu, “The effect of
IoT new features on security and privacy: New threats, existing
solutions, and challenges yet to be solved,” IEEE Internet of Things
Journal, vol. 6, no. 2, 2018.

[15] Intel Corporation, “Intel’s fog reference design overview,” https:
//www.intel.com/content/www/us/en/internet-of-things/
fog-reference-design-overview.html, accessed: 2019-10-04.

[16] Z. Ning, J. Liao, F. Zhang, and W. Shi, “Preliminary study
of trusted execution environments on heterogeneous edge plat-
forms,” in ACM/IEEE Workshop on Security and Privacy in Edge
Computing, Bellevue, WA, USA, Oct. 2018.

[17] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded
in-memory key-value storage with SGX,” in ACM European Con-
ference on Computer Systems, Dresden, Germany, Mar. 2019.

[18] Intel Corporation, “Intel(r) software guard extensions developer
reference for Linux* OS,” https://download.01.org/intel-sgx/
linux-2.3/docs/Intel SGX Developer Reference Linux 2.3
Open Source.pdf, accessed: 2019-10-04.

[19] J. van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load
Value Injection,” in Symposium on Security and Privacy, May 2020.

13

[20] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell et al.,
“SCONE: Secure linux containers with intel SGX,” in USENIX
Symposium on Operating Systems Design and Implementation, Savan-
nah, GA, USA, Nov. 2016.

[21] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with
hotcalls: A fast interface for sgx secure enclaves,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 2, 2017.

[22] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza, “Roll-
back and forking detection for trusted execution environments
using lightweight collective memory,” in IEEE/IFIP International
Conference on Dependable Systems and Networks, Denver, CO, USA,
Jun. 2017.

[23] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer,
A. Gervais, A. Juels, and S. Capkun, “ROTE: Rollback protection
for trusted execution,” in USENIX Security Symposium Security,
Vancouver, Canada, Aug. 2017.

[24] B. Sanders, “The information structure of distributed mutual ex-
clusion algorithms,” ACM Transactions on Computer Systems, vol. 5,
no. 3, 1987.

[25] L. Alvisi and K. Marzullo, “Message logging: Pessimistic, opti-
mistic, causal, and optimal,” IEEE Transactions on Software Engi-
neering, vol. 24, no. 2, 1998.

[26] E. Ahmed and M. Rehmani, “Mobile edge computing: Opportuni-
ties, solutions, and challenges,” Pervasive Computing, vol. 70, 2017.

[27] S. Mortazavi, M. Salehe, C. Gomes, C. Phillips, and E. de Lara,
“Cloudpath: A multi-tier cloud computing framework,” in
ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, Oct.
2017.

[28] S. Mortazavi, B. Balasubramanian, E. de Lara, and S. Narayanan,
“Pathstore, a data storage layer for the edge,” in International
Conference on Mobile Systems, Applications, and Services, Munich,
Germany, Jun. 2018, pp. 519–519.

[29] R. Mayer, H. Gupta, E. Saurez, and U. Ramachandran, “Fogstore:
Toward a distributed data store for fog computing,” in IEEE Fog
World Congress, Santa Clara, CA, USA, Oct. 2017.

[30] Z. Hao, S. Yi, and Q. Li, “Edgecons: Achieving efficient consensus
in edge computing networks,” in USENIX Workshop on Hot Topics
in Edge Computing, Boston, MA, USA, Jul. 2018, pp. 58–65.

[31] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani, “Speicher: Securing LSM-based key-value stores us-
ing shielded execution,” in USENIX Conference on File and Storage
Technologies), Boston, MA, USA, Feb. 2019.

[32] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bha-
totia, and C. Fetzer, “Pesos: policy enhanced secure object store,”
in ACM European Conference on Computer Systems, Porto, Portugal,
Apr. 2018.

[33] M. Herlihy and J. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Transactions on Programming Lan-
guages and Systems, vol. 12, no. 3, 1990.

[34] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, 2015.
[35] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,

N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Server-
less computing: Current trends and open problems,” in Research
Advances in Cloud Computing. Springer, 2017.

[36] B. News. (2020) AWS: amazon web outage breaks vacuums
and doorbells. [Online]. Available: https://www.bbc.com/news/
technology-55087054

[37] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner,
“On ends-to-ends encryption: Asynchronous group messaging
with strong security guarantees,” in ACM Conference on Computer
and Communications Security, Toronto, Canada, Oct. 2018.

[38] Redis, “Key-value store,” http://redis.io, accessed: 2019-10-04.
[39] E. Barker and A. Roginsky, “Transitioning the use of cryptographic

algorithms and key lengths,” NIST, Special Publication 800-131 A
r2, Mar. 2019.

[40] J. van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom with
transient out-of-order execution,” in USENIX Security Symposium,
Baltimore, MD, USA, Aug. 2018.

[41] M. Peck, “Blockchains: How they work and why they’ll change
the world,” IEEE Spectrum, vol. 54, no. 10, 2017.

[42] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey,
and R. Ramamurthy, “Concerto: A high concurrency key-value
store with integrity,” in ACM International Conference on Manage-
ment of Data, Chicago, IL USA, May 2017.

[43] L. Chen, J. Li, R. Ma, H. Guan, and H.-A. Jacobsen, “EnclaveCache:
A secure and scalable key-value cache in multi-tenant clouds using
Intel SGX,” in Middleware Conference, Davis, CA, USA, Dec. 2019.

[44] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz,
C. Fetzer, P. Pietzuch, and R. Kapitza, “Securekeeper: confidential
zookeeper using intel sgx,” in Middleware Conference, Trento, Italy,
Dec. 2016.

[45] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A
survey on low latency towards 5g: Ran, core network and caching
solutions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4,
2018.

[46] “AWS inter-region latency,” https://www.cloudping.co/, ac-
cessed: 2020-03-02.

[47] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected
vehicles: Solutions and challenges,” IEEE internet of things journal,
vol. 1, no. 4, 2014.

[48] S. Mangiante, G. Klas, A. Navon, Z. GuanHua, J. Ran, and
M. Silva, “VR is on the Edge: How to deliver 360 videos in mobile
networks,” in Workshop on Virtual Reality and Augmented Reality
Network, Los Angeles, CA, USA, Aug. 2017.

[49] R.-S. Schmoll, S. Pandi, P. Braun, and F. Fitzek, “Demonstration
of vr/ar offloading to mobile edge cloud for low latency 5g gam-
ing application,” in IEEE Consumer Communications & Networking
Conference, Las Vegas, NV, USA, Jan. 2018.

[50] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha,
K. Elgazzar, P. Pillai, R. Klatzky et al., “An empirical study of
latency in an emerging class of edge computing applications for
wearable cognitive assistance,” in ACM/IEEE Symposium on Edge
Computing, San Jose, CA, USA, Oct. 2017.

[51] VIAVI solutions. (2020) What is 5G technology? [Online]. Avail-
able: https://www.viavisolutions.com/en-us/5g-technology

Cláudio Correia owns a MSc in Computer Sci-
ence and Engineering by the Instituto Superior
Técnico (IST), Universidade de Lisboa and he is
now a PhD candidate at IST and a researcher
at INESC-ID Lisboa. His research interests are
in the area of computer security and distributed
and edge computing.

Miguel Correia (Senior Member, IEEE) is an
Associate Professor with Habilitation at Instituto
Superior Técnico, Universidade de Lisboa and a
researcher at INESC-ID. His research is focused
on (cyber)security and dependability (aka fault
tolerance), typically in distributed systems, in
the context of different applications (blockchain,
cloud, mobile). He has more than 200 publica-
tions in these areas.

Luı́s Rodrigues (Senior Member, IEEE) is a
professor at Instituto Superior Tecnico, Univer-
sidade de Lisboa and a researcher at INESC-
ID. His research interests lie in the area of re-
liable distributed systems. He is co-author of
more than 200 papers and 3 textbooks on these
topics. He is also a senior member of the ACM.

