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Abstract. The paper presents OutGene, an approach for streaming
detection of malicious activity without previous knowledge about attacks
or training data. OutGene uses clustering to aggregate hosts with simi-
lar behavior. To assist human analysts on pinpointing malicious clusters,
we introduce the notion of genetic zoom, that consists in using a genetic
algorithm to identify the features that are more relevant to character-
ize a cluster. Adversaries are often able to circumvent attack detection
based on machine learning by executing attacks at a low pace, below
the thresholds used. To detect such stealth attacks, we introduce the
notion of time stretching. The idea is to analyze the stream of events in
different time-windows, so that we can identify attacks independently of
the pace they are performed. We evaluated OutGene experimentally
with a recent publicly available dataset and with a dataset obtained at
a large military infrastructure. Both genetic zoom and time stretching
have been found to be useful, and high values of recall and accuracy were
obtained.
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1 Introduction

The exponential growth of data and of its value makes data assets mission-
critical to many organizations [38]. The increasing occurrence of cybercrime and,
generically, of cyberattacks [8], raises the need for better methods of protecting
computers and the information they store, process and transmit. This objective
is challenging as, for example, the average time a company takes to detect certain
attacks, Advanced Persistent Threats (APTs), is about 100 days [32].

Intrusion Detection Systems (IDS) have been proposed as an attempt to
deal with this increasing number of attacks, that often manage to elude existing
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protections [11, 12]. Most IDSs are either signature-based (search for known at-
tack patterns) or anomaly-based (detect deviations from baseline behavior), but
both approaches have limitations: knowledge about attack patterns tends to be
incomplete, as new attacks and attack variants are constantly appearing [43];
and anomaly-based detection requires clean training data, i.e., data of normal
operation without attacks, to train the IDS, which is hard to obtain in systems
in production. Moreover, anomaly-based IDSs have to discover attacks hidden
among what may be a huge amount of data representing normal behavior [58].
IDSs can also be classified as network-based (that inspect communication data)
or host-based (that inspect host activity). Finally, IDSs can be classified as online
(detect intrusions in runtime) and offline (detect intrusions later, when decided
by someone). This paper is about online network-based intrusion detection.

Machine learning (ML) approaches for intrusion detection have been receiv-
ing much attention [4,5,13,20,29,58]. Handling high volumes of security-relevant
data is unfeasible for humans, so ML techniques can come to assistance. An ex-
ample approach are the above-mentioned anomaly-based IDSs, with their draw-
backs [4]. A more recent ML approach to intrusion detection uses clustering
and/or outlier detection to identify entities – typically users or hosts – that
have an anomalous behavior [7, 18, 40, 55, 56]. To be precise, the approach does
not detect intrusions, but anomalies that have to be further diagnosed as in-
trusions or some other sort of anomaly. This approach is interesting because it
does not require knowledge about attacks (signatures/rules) or clean training
data. However, it brings in two difficulties. First, a human analyst has to in-
spect the outliers or suspect clusters, which is a non-trivial task, although it is
also necessary in anomaly-based detection and even signature-based detection
(although in this latter case the attack is already labelled with a class). Second,
attackers can often circumvent ML-based attack detection by executing attacks
– e.g., port scanning – at a low pace, below the thresholds used.

We present OutGene, a network intrusion detection approach that detects
attacks that are undefined (no signatures) without clean training data. This
contrasts to both signature-based detection, that needs attack signatures, and
anomaly-based detection, that needs clean training data. OutGene does cluster-
ing of hosts with similar behavior and detects ouliers, leveraging the assumption
that hosts that are doing attacks behave in a way that is distinguishable from the
others. OutGene does online, streaming, attack detection, i.e., it does detection
continuously, not by processing bulk data sporadically.

OutGene solves the two difficulties mentioned above. First, to assist human
analysts on pinpointing malicious clusters, we introduce the notion of genetic
zoom. The idea is to use a genetic algorithm to identify the best subset of features
that provides the same clustering output as the full set of features. For example,
genetic zoom might say that out of 26 features, only a certain subset of 8 features
is relevant to obtain the clusters. Examples of such features might be the number
of ports used by an entity and the number of ports contacted by an entity. It is
much easier to understand what was the malicious behavior by inspecting the
values of 8 features instead of 26.
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Second, to detect stealth attacks that try to pass below the radar of the
detection scheme, we introduce the notion of time stretching. The idea is to
analyse the stream of events in different time-windows, at different time scales, so
that we can detect attacks independently of the pace at which they are executed
(e.g., a slow network scan). For example, an attack may be detected if we analyse
traffic at the scale of one hour, but not at the scale of one day or one minute.

We implemented the proposed approach as a system that we also designate
OutGene. This system is based on a set of large-scale data processing and
storage packages. Incoming data, e.g., network flow data, is consumed by Apache
Kafka [28], that stores it using the Hadoop Distributed File System (HDFS) [42].
The first is used to decouple processing from data producers and the former as
long-term storage and checkpoint location (for the aggregation process). Apache
Spark [34] consumes data incoming from Kafka and does most of the analysis.

Much research in machine learning-based intrusion detection uses synthetic
datasets [4]. Instead, we aim that OutGene works in real settings so we evalu-
ated it using real network data from two real-world networks: one dataset that
is publicly available [50] and another from an administrative network of a large
military infrastructure that we collected for this work. Moreover, we emulated
stealth attacks, which may pass unnoticed by traditional detection systems, to
evaluate our approach on such attacks. The obtained results in both datasets re-
veal that there are significant improvements by analyzing different time-windows
as well as by having outlier explanation provided by genetic zoom. The use of
real network data was challenging due to data noise, lack of full context, and
lack of labels. Nevertheless, high values of recall and accuracy were obtained
with the military network dataset (near 1).

The main contributions are: (1) a practical approach for online detection
of network attacks that uses clustering and outlier detection to avoid the need
of knowledge about attacks and clean training data, implemented and tested
with real-data datasets; (2) the genetic zoom mechanism, which uses a genetic
algorithm to help the human analyst; (3) the time stretching mechanism, that
analyses traffic in different time frames, in order to detect stealth attacks.

2 OutGene Approach Overview

OutGene does not rely on knowledge about what is bad behavior as in signature-
based methods, or what is good behavior, as in typical anomaly detection. Hence,
our approach does not use supervised learning that needs training data, nor rules
or thresholds, which can be easily circumvented by attackers or are sensitive to
new systems deployed in a network.

Inspired by [7, 18, 56], OutGene uses unsupervised learning, more specifi-
cally, a clustering algorithm to group entities with similar behaviors. The term
entity designates something that is identified by an IP address: typically a host
but there are other possibilities, like a network behind NAT [45]. Furthermore,
OutGene uses feature selection jointly with clustering to obtain a better de-
scription (i.e., the most relevant features) of anomalous groups (i.e., of small
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Fig. 1. Flowchart of the pre-runtime phase

clusters). The main goal of the developed work is to extract useful information
to detect and characterize cyberattacks from streaming data, without informa-
tion of previous patterns. Since most of the used features are count-based (e.g.,
count of bytes sent), the approach does time-based aggregation of the events in
real time through incremental aggregation [24].

OutGene aims to detect attacks and select the relevant features to: classify
them by performing clustering to extract information from network flows (that
we will designate netflow as it is typically Netflow data [10], although it may
also be extracted from raw packet data) using generic features that are con-
sidered relevant in the scope of security; provide improved insight on outliers
using genetic zoom, a genetic algorithm to search for the specific features that
characterizes outliers (i.e., small clusters) in our set of data; do detection using
time stretching, i.e., repeating the previous steps on different time-windows. By
doing this, it is possible to get more knowledge about the data and apply this
knowledge to classify and label specific behaviors.

The approach is divided in two phases. The pre-runtime phase consists in
exploratory data analysis to prepare the runtime phase, when OutGene con-
tinuously processes data to detect attacks. They are explained in detail next.

Pre-runtime phase The pre-runtime phase is executed before the system is de-
ployed to define generic feature extraction and normalization (see Figure 1).
This phase consists in exploratory data analysis techniques and can be detailed
in three steps: the definition of the normalization of the data, to transform the
data so that we know what parameters to normalize to make all data consistent;
the feature selection, to know which features are going to be extracted to charac-
terize the available data, as well as the time periods (to aggregate time-windows)
to extract the features; the definition of how the features are extracted, given
the kind of data considered.

Runtime phase The runtime phase corresponds to detection in normal operation
(see Figure 2). The stream of data that is processed contains the traffic flows
that are collected (e.g., by routers) and passed to OutGene. The processing
starts by generic feature extraction and normalization. The extracted features
are given as input to the clustering algorithm which groups entities (typically
hosts) with similar behavior.

If clustering produces outliers, there are two options. If this kind of out-
lier/anomaly has been observed before, which is the typical case in cruise speed,
it can simply be reported. Otherwise, manual intervention by a human ana-
lyst is required, which is inevitable when the possibility of unknown attacks is
considered.
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Fig. 2. Flowchart of the runtime phase (notice the genetic zoom and time stretching
processes, respectively on the right and bottom-left)

The purpose of genetic zoom is to assist the human analyst on diagnosing
malicious clusters (among the outliers only). The idea is to use a genetic algo-
rithm [17] to identify the features that are more relevant to characterize a clus-
ter. The genetic algorithm is used to understand which features are important to
identify an entity as belonging to that cluster. Moreover, it helps understanding
which features better characterize the data in general, discarding features that
are less important, i.e., that do not change the clusters that are obtained, at a
certain iteration of the loop. The pre-runtime phase involves defining features
that are potentially useful to pinpoint outliers. However, not all of these fea-
tures may be relevant at each iteration of the loop in runtime. Hence, choosing
a subset of the original features with the genetic algorithm will lead to better
knowledge of the anomaly.

The second mechanism we introduce is time stretching. Figure 2 shows a
single loop in which features are passed to clustering, then clusters are diagnosed
automatically or, in some cases, manually. However, in reality there are several
loops executed in parallel processing flows corresponding to several time-windows
(e.g., 10 min., 30 min., 1 hour, 4 hours, 8 hours, 1 day), leveraging incremental
aggregation. Hence, OutGene is not limited to bulk processing of large data
corresponding to long periods. This processing in different time-windows is what
we designate time stretching and what allows detecting both conspicuous attacks
quickly (e.g., DDoS) and stealth attacks (e.g., slow port scan).

3 The OutGene Platform

This section presents the basic OutGene platform. The details about clustering,
genetic zoom, and time stretching are deferred for Section 4. To handle the
processing of large volume of flows, we propose a platform based on distributed
stream processing and analytics modules. The stream processing module has the
objective of handling the data that arrives from data sources, as well as enabling
checkpointing for streaming aggregation allowing time stretching. The analytics
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Fig. 3. System architecture

module has the objective of extracting the features and to execute the clustering
and the genetic zoom algorithms. The architecture is represented in Figure 3).

Stream processing module The stream processing module decouples data streams
from the analytics module. To do so, the Apache Kafka [28] framework and
HDFS [42] were used. Apache Kafka is a distributed streaming platform, with
capabilities to publish and subscribe streams of records, similar to a message
queue or enterprise messaging system; To accomplish this, Kafka stores streams
of records in categories called topics in a fault-tolerant way. A topic is a category
or feed name to which records are published. Topics in Kafka are always multi-
subscriber, that is, a topic can have zero, one, or more consumers that subscribe
to the data written to it. Kafka topics are divided in partitions. Partitions allow
us to parallelize a topic by splitting the data in that particular topic across
the multiple servers. In order to guarantee the correct operation of the brokers
(servers), a broker manager is needed. This service can be implemented with the
Apache Zookeeper coordination service [23]. For the experiments we created a
Kafka topic with replication factor 3 (i.e., all data is replicated in 3 nodes), where
the data streams corresponding to netflow data were inserted. Regarding HDFS,
its main role is to store checkpoints (for the aggregation process) as explained
later, although it might also be used for long-term storage.

Analytics module The analytics module is where all the computation is made.
To implement it, the Apache Spark framework was used as a Kafka consumer.
Apache Spark is a distributed and highly scalable in-memory data analytics
system with four main submodules: Spark SQL, Spark Streaming, MLlib and
GraphX. For OutGene, only the Spark Streaming and MLlib modules are nec-
essary. The Spark MLlib module is able to run advanced data analysis algorithms
in a scalable way. In its core, Apache Spark provides the runtime for in-memory
massive parallel data processing, and different parallel machine learning libraries
are running on top of it. Apache Spark distributes tasks over multiple computer
nodes (i.e., worker nodes), although even on a single node it can spill data to
disk avoiding the main memory bottleneck [27]. Regarding Spark Streaming, it is
able to process continuous streams of data in real time, with the functionality of
checkpointing and windowing. Later we explain how it is used. Every Spark ap-
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plication consists on a driver program that runs the main function and executes
various parallel operations in a cluster. The main abstraction Spark provides
is the resilient distributed dataset (RDD), which is a collection of elements —
similar to an array — partitioned across the nodes of the cluster that can be
operated on in parallel. It is possible to ask Spark to persist RDDs in memory,
allowing them to be reused efficiently across parallel operations.

4 OutGene Approach Instantiation

The OutGene approach can be instantiated in different ways. An instantiation
entails four aspects: feature extraction, clustering, feature selection with a genetic
algorithm (i.e., genetic zoom), and online mode processing of different time-
windows (i.e., time stretching). We present each of the aspects next.

4.1 Feature extraction

Selecting the features to use is a crucial step, because they provide the symptoms
that allow distinguishing normal traffic from attacks. The Spark transformations
and operations needed to perform feature extraction can be divided in three
steps: (1) a Map transformation, to group pairs of values; (2) the CountByValue
operation for features that count the frequency of an occurrence (e.g., number
of connections made); (3) the reduceByKey operation, to remove the repeated
values by summing the values for each entity (e.g., a computer, IP, user).

The selected features were extracted from network flows. The choice of such
data to implement OutGene was based on good results in related work [21,40,
44]. A set of 26 features was used, split in two groups: the first half are features
about the source computer (i.e., the source IP address) and the other half are
about the destination computer (destination IP address). The first half features
are shown in Table 1. The other 13 features are similar (e.g., DConn connections
received, and DPSum packets received). In the table, it is clear that only four
application-layer protocols are considered explicitly in the features: HTTP, IRC,
SMTP, and SSH. We selected these protocols based on the literature, instead of
selecting a larger range (not trivial as there are around 1000 well-known ports
plus 10000 reserved ports) or selecting the ports used in the datasets (which
would be a form of bias). We decided to stick to what the literature says is
meaningful and observe the results, which were quite positive (Section 5.3).
Features are extracted for a given time-window (e.g., 10 min, 1 hour, 1 day).

4.2 Clustering algorithm

Our approach aims to differentiate well-behaved from misbehaving entities, so
the clustering algorithm has to separate entities with different behavior, being
different behavior expressed by different values of features. From the clustering
algorithms available in Apache Spark MLlib, we have chosen K-means [31] for
two reasons: (1) it splits data points into a predefined number of clusters K,
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Table 1. Features extracted for a source IP

Feature Description
SConn Number of connections made
SPus Number of ports used in source
SPcon Number of ports contacted by a source
SPsum Sum of packets sent by a source
SP80t Sum of packets sent by a source to port 80 (HTTP)
SP80f Sum of packets sent by a source from port 80 (HTTP)
SP194t Sum of packets sent by a source to port 194 (IRC)
SP194f Sum of packets sent by a source from port 194 (IRC)
SP25t Sum of packets sent by a source to port 25 (SMTP)
SP25f Sum of packets sent by a source from port 25 (SMTP)
SP22t Sum of packets sent by a source to port 22 (SSH)
SP22f Sum of packets sent by a source from port 22 (SSH)
SBytes Sum of bytes sent by a source

which is important to force the appearance of small clusters with outliers; (2)
K-means is known to be a good option when the number of samples is large
(e.g., more than 10,000), which is our case.

K-means works iteratively, assigning each data point to one of K groups
based on the distance to the group’s centroid. The distance metric used is often
the Euclidean distance, which is also the one we used in practice. At the end,
data points with similar features are in the same cluster. The output of this
algorithm is the number of the cluster to which each entity belongs to, and the
central point (centroid) of each cluster.

The features have to be normalized using min-max normalization before clus-
tering is performed. Interestingly we also did experiments with logarithmic nor-
malization, but the detection results were much worse, as this form of normal-
ization mitigates the differences between outliers and normal behavior.

4.3 Genetic zoom

The genetic zoom mechanism is based on a genetic algorithm [17]. The goal
is to find the best subset of features that provides the same clustering output
as generic features (i.e., initial clustering). The genetic zoom scheme is based
on a wrapper model [3] that iteratively (1) selects subsets of features and (2)
evaluates clustering quality using the selected subset (see Figure 4). Given that
an exhaustive search of the 2D possible feature subsets (where D is the number
of generic features) is intractable for high dimensionality, we choose as search
strategy a genetic algorithm to provide a near-optimal response, by selecting a
acceptable subset of features (i.e., the fitness function output stabilizes). Notice
that the analyzed clusters are only the outliers, that are more likely to be the en-
tities with misbehavior. The analyst either reports known anomalies or searches
for new ones.

Genetic algorithms entail four concepts: gene, individual, population, and
generation. A gene is a property that characterizes an individual. An individual
is a candidate solution to the problem that one wants to solve with the algo-
rithm. An individual is characterized by a set of genes. A population is a set
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Fig. 4. The wrapper model for feature selection

of individuals, which can be modified from generation to generation. A gener-
ation is a new population, inheriting individuals from previous populations or
modifying them (e.g., with operators such as crossover and mutation).

In this work, 26 genes were used, corresponding to the 26 features. Since
we want to reduce the number of features, each gene can have the value 1 or
0 corresponding to a feature being active or not for that individual. The zoom
consists in reducing the number of active features/genes (number of 1s in the
individual’s array of features) to a number F lower than 26. F will be the lowest
possible as long as there is an individual (i.e., set of features) that reproduces
the same outliers as the clustering with all the features.

The selection of individuals used to breed a new generation is made using a
fitness function. We use maximizing fitness function to get higher value possible
(details below). The fitness function does the following:

1. Reduce the number of genes/features that are active (i.e., set to ‘1’) to F ;
2. Re-execute the clustering algorithm with the selected features;
3. Only if the same outliers (i.e., clusters with one entity) are present, calculate

the similarity between new output and initial clustering using the rand index
adjusted for chance [22];

4. The similarity score is returned (a value between 0 and 1).

After getting this evaluation, the best individuals (the ones that obtained
highest similarity score) are selected for the next generation. To create a new
population, two operators are used: crossover and mutation. The crossover op-
erator requires two individuals that came from the previous generation, called
the parents, and the offspring is created by exchanging genes of parents among
themselves until the crossover point is reached. After the crossover operator is ex-
ecuted, the mutation operator is applied. Mutation is applied to a new offspring
formed to change their genes given a low random probability. It occurs to main-
tain diversity within the population and prevent premature convergence. Both
the crossover and mutation operator use functions that shuffle the attributes of
the input individual and return a mutant.

In this work individuals have a set of 26 genes (i.e., total number of features).
A population has N individuals, being the first generation generated randomly.
There is a total of G generations and each generation is created with half of the
best individuals from the previous generation plus a set of individuals generated
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Fig. 5. Spark streaming process

with crossover and mutation operations. This way, we keep our best individuals
and mutate from them to try to obtain better individuals. In the experiments we
have used N = 32 and G = 40 which revealed to achieve good results efficiently.

The genetic algorithm was implemented using an evolutionary algorithm
framework – the Distributed Evolutionary Algorithms in Python (DEAP) [16] –,
as OutGene was mostly implemented in Python. DEAP is a recent evolution-
ary computation framework for rapid prototyping and testing of ideas, seeking
to make algorithms explicit and data structures transparent. The genetic algo-
rithm can be fully configured through DEAP by configuring the fitness function
and the existing operators. The configurations made were based on the GENI-
TOR scheme [52]: when selecting the individuals for a new generation, the best
individuals of the previous generation are kept.

4.4 Time stretching

OutGene analyses data on different time-windows, what we call time stretching,
to allow detecting stealth attacks. For that purpose we leverage the concept of
incremental aggregation, which consists in executing aggregate functions (e.g.,
count or sum) continuously over streams of data [24]. The aggregate functions
are used to calculate the values of the features.

To avoid the effort of executing the aggregate functions several times in
parallel, we execute them on a base time-window of duration B. In practice we
considered B = 10min.. Then, for the larger time-windows, OutGene simply
executes the aggregate functions over the results obtained for B. For example,
whenever base time-window number i finishes, the system calculates the features
not only for Bi of 10 min., but also for the time-window of 30 min. using the
results of the last 3 last base time-windows (Bi−2,Bi−1,Bi). The same idea is
applied for the larger time-windows.

Time stretching has been instantiated leveraging the incremental aggregation
supported by the Spark Streaming module. This module works as shown in Fig-
ure 5, receiving live input data streams and dividing the data into mini batches.
The mini batches are then processed, by the clustering algorithm in OutGene.

The operations supported by Spark Streaming are similar to those of Apache
Spark, but with a time parameter that has to be defined. For feature extraction,
the main operation used was reduceByKeyandWindow, that is similar to reduce-
ByKey (used in batch mode) but with two more parameters: window length,
the total duration of the window, and sliding interval, the interval at which the
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Fig. 6. Spark streaming window operations (adapted from [1])

Table 2. Summary of the dataset characteristics

Dataset Size Num. events Num. hosts
LANL 1.1 GB (compressed) 129,977,412 12,027
Military 160 GB 5,500

window operation is performed. As shown in Figure 6, every time the window
slides over a source data stream (DStream), the source RDDs that fall within the
window are combined and operated upon to produce the RDDs of the windowed
DStream.

For the experiments we set up an HDFS directory to store Apache Spark
streaming information (checkpointing) necessary for window aggregation. Apart
from the checkpointing data, the outputted data (extracted features and cluster-
ing results) was also saved on a HDFS directory to keep the progress registered.

5 Experimental Evaluation

This section presents the experimental evaluation of the OutGene instance we
created, focused on the genetic zoom and time stretching mechanisms. Despite
the existence of related approaches in the literature (see Section 6), implemen-
tations of those closer to ours are not available, so we present no experimental
comparisons.

We first present the datasets, then the evaluation itself. As mentioned before,
we used three servers, designated simply host 1 (the master), host 2 and host
3 (slaves). All software components were installed in the three servers: Kafka,
Spark, Zookeeper, HDFS, and our own code.

5.1 Dataset characterization

We used two datasets in the experimental evaluation: netflow events from the
Los Alamos National Laboratory (LANL) corporate network [25,26], and netflow
events that we obtained at a large military infrastructure. The information about
the datasets is summarized in Table 2.
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Table 3. Attacks in the military network dataset

SrcIP DstIP Attack
S1 D1 stealth/slow port scan: 1-to-1 - every port (5sec. pace for 1 day)
S2 /24 net stealth/slow port scan: one to many - every port (1sec. pace for 1 day)
S3 D3 stealth dictionary attack: SSH auth requests (with 2 min. interval for half day)
S4 D4 stealth dictionary attack: SSH auth requests (with 30 sec. interval for 20 min.)
S5 D5 data exfiltration: unusual volume of data sent to one entity (1.5GB in 7 min.)

LANL dataset This dataset represents 58 consecutive days of pseudonymized
event data collected from five sources: authentication events, hosts process start/
stop, DNS, netflow, and red team events. We did not use the whole dataset
but only the redteam and netflow data. The netflow events have 1.1 GB when
compressed and correspond to 129,977,412 events for 12,027 computers. The
red team events provide us with attacker IP addresses, only 4, that we use to
identify malicious events in the other dataset, i.e., to obtain ground truth for
the evaluation. The dataset comes in text files. Each line of the netflow event
files contains a timestamp (an epoch time starting at 0), connection duration,
source computer, source port, destination computer, destination port, protocol,
packet count, and byte count. The well-known ports (e.g., 80 and 443) are not
pseudonymized, only the IP addresses. A few sample lines of data are:

1,9,C3090,N10471,C3420,N46,6,3,144

1,9,C3538,N2600,C3371,N46,6,3,144

2,0,C4316,N10199,C5030,443,6,2,92

Military network dataset This dataset was obtained from the Security Informa-
tion and Event Management (SIEM) system [6] in production in that network,
which collects Netflow events from internal routers. Collecting these flows can
give us insights of eventual misbehavior of internal entities, undetected by de-
ployed security systems. The dataset corresponds to a full month, with approxi-
mately 5,500 computers and 160 GB of size. As shown in Table 3, we emulated 4
stealth/slow attacks (e.g., probing) at different pace to evaluate OutGene, and
provide us with detailed ground truth. We also emulated a noisy attack (high
volume of data exfiltrated to an unexpected destination). The main reasons for
the chosen emulated attacks were: (1) to be able to evaluate our time stretching
analysis; and (2) to have attacks that are unnoticed by traditional protection
systems.

5.2 Detection with genetic zoom

This section evaluates OutGene’s genetic zoom mechanism. As mentioned be-
fore, genetic zoom allows the analyst to understand what are the relevant fea-
tures for OutGene’s decisions (i.e., attack detection after initial clustering).
We considered a 24h subset of the LANL dataset in which the attacker with
pseudonym IP address C17693 generated many events. We designate the subset
attday. Notice that no data is available about what attacks were performed by
the attacker.
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Table 4. Clustering results for day attday (LANL dataset)

Initial clustering
Cluster number 0 10 1 12 9 5 7 3 6 13 4 11 14 2 8
Number of entities 7078 660 12 10 9 6 4 2 2 2 2 1 1 1 1
Clustering after genetic zoom
Cluster number 0 7 14 5 3 1 11 2 13 10 6 9 12 8 4
Number of entities 7080 646 24 14 7 6 4 2 2 1 1 1 1 1 1

Table 5. Output of genetic algorithm (LANL dataset)

-- End of (successful) evolution --
Best allOfFame individual is [0,1,1,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0], (0.9309)

Table 4 shows the clusters obtained for attday. We considered the number
of clusters K = 15. This value should not be too large or several clusters would
represent similar behavior, or too small or there would be no small clusters with
outliers. In practice, experience is needed to define the value and obtain good
results, but values in the range of 15 to 20 tend to provide good results. As we
expected, there are large clusters (2 in this case), and small clusters (13), as
observed in the table. Our focus is on clusters having 1 entity. Typically, small
clusters correspond either to machines with different yet legitimate behaviour
(e.g., web server, web proxy, etc.) or to misbehaving entities. The other clusters
might be interesting but without contextual information it is difficult to draw
conclusions.

The output of the genetic algorithm (Table 5) shows that there were 8 impor-
tant features: number of different ports used, number of different ports contacted,
sum of packets sent to port 80, sum of packets sent to port 194, sum of packets
sent from port 22, sum of packets received, sum of packets received to port 80,
and sum of packets received form port 22. Hence, all the oultiers obtained in the
initial clustering are also obtained by redoing the clustering with this subset of
features (bottom of the table). The results are 93% similar.

To help understanding the meaning of the small clusters, Figure 7 shows a
heatmap for the clustering after genetic zoom was applied. The 8 features are
at the bottom of the figure (x-axis) and the 15 clusters on the left (y-axis),
whereas the color represents the value of each feature for each cluster. In the
figure it is possible to observe that the outliers are those with higher values
in certain features. IP C17693 (cluster 4) is the known attacker, who contacted
many different ports (possibly doing a port scan) and was the only IP contacting
port 194. The IP C706 (cluster 10) received several packets to port 80 and
contacted several ports, which indicates it corresponds to a webserver, so it is
normal behavior. The IP C2091 (cluster 9), also received several packets to port
80, but unlike the previous, it has not contacted several ports, which seems
suspicious. The IP C22226 (cluster 6) have high number of packets sent to port
80 which seems suspicious. The IP C5696 (cluster 12) sent several packets from
port 22, which may indicate it is a server suffering an attack, or is just one server
being accessed by network administrator. The IP C15733 (cluster 8) has several
packets received from port 22, which may indicate it is accessing IP C5696.
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Fig. 7. Heatmap of features vs. clusters after genetic zoom at attday, with clusters with
a single IP address identified on the left (LANL dataset)

We did a similar exercise with the military network dataset and the 5 attacks
we injected (Table 3). The main features identified for each attack were:

– slow port scan 1-to-1: SPcon, SP194t, SP25t
– slow port scan 1-to-/24-net: SPcon, SP194t, SP25t
– stealth dictionary attack SSH 2 min.: SP22t
– stealth dictionary attack SSH 30 sec.: SP22t
– data exfiltration: SBytes

In summary, instead of having to extract information from the values of all
the 26 features, by using the genetic zoom mechanism the analyst understands
which subset of features is relevant to differentiate the clusters. In the LANL
dataset case, we have limited knowledge about the computers, but we could still
extract some information by inspecting the values of these 8 features and identify
the red team IP address. That IP was isolated in a cluster, contacted many ports
and sent several packets to port 194. In the military network dataset we have
more information about both the attacks and the machines, so we can conclude
that the mechanism is indeed useful.

5.3 Detection with time stretching

To evaluate time stretching, we used the military dataset with the attacks we
injected (Table 3). We ran OutGene and compared results on time-windows
from 10 min. to 24 hours, as shown in Table 6. The table is divided in two
parts, which show the results in the detection of either attackers or victims.
To allow the visualization of the time stretching capabilities, the results are
shown for each time-window. Also, clusters are indicated by cluster ranking (the
smallest cluster has the highest rank, 1st) and the cluster size in percentage
(entities within cluster divided by the total number of entities). Moreover, for
each attack, we bolded the time-window were the attack was better detected,
i.e., more clearly observable. Next, we provide an interpretation of the table’s
content.
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Table 6. Time stretching evaluation (military network dataset)

Attack detected cluster rank / % machines in cluster for each time-window Comments10 min 1h 4h 8h 1day
Slow port scan
1-to-1 5s 1st/0.05% 1st/0.04% 1st/0.04% 1st/0.03% 1st/0.02% Attacker was detected

in every window

Slow port scan
1-to-/24-net 1s 1st/0.09% 1st/0.07% 1st/0.06% 1st/0.05% 1st/0.03% Attacker was detected

in every window

Stealth dict. attack
SSH – 2min 9th/30% 7th/8% 1st/0.04% 1st/0.03% 1st/0.02% Attacker detected

in bigger windows

Stealth dict. attack
SSH – 30sec 1st/0.05% 1st/0.04% 1st/0.03% 1st/0.03% 8th/4.1% Attacker detected

in smaller windows

Data exfiltration
out of office time 1st/0.12% 4th/0.35% 6th/1.44% 9th/6.4% 11th/7.5% Attacker in smaller clusters

for smaller windows

Detected victim of cluster rank / % machines in cluster for each time-window Comments10 min 1h 4h 8h 1day
Slow port scan
1-to-1 5s 1st/0.05% 1st/0.04% 1st/0.04% 1st/0.03% 1st/0.02% Victim was detected

in every window

Slow port scan
1-to-/24-net 1s – – – 6th/2% 5th/1.7% Victims in /24 net

grouped in same cluster

Stealth dict. attack
SSH – 2min 7th/0.42% 6th/0.4% 5th/0.34% 2th/0.04% 1th/0.02% Victim is a server

that changes cluster

Stealth dict. attack
SSH – 30sec 1st/0.8% 1st/0.04% 6nd/0.43% 6th/0.20% 4th/13% Victim is a server

that changes cluster

Data exfiltration
out of office time 1st/0.12% 3th/0.28% 4th/0.5% 6th/1.8% 7th/4.1% Victim in smaller clusters

for smaller windows

Regarding attack detection, in the case of both slow port scans running for
almost a day, OutGene achieved excellent results in every time windows. The
attacker was completely isolated in every case. Concerning the detection of the
stealth dictionary attack to the SSH service of half a day and 2 min. intervals,
one can observe that the attack is detected (i.e., appears in the highest ranks)
starting only from the 4 hour time-window, which is expectable as this is the
slowest attack. On the contrary, for a similar attack with a highest pace (30 sec.),
the best result is achieved in smaller time windows (starting from 10 min.). In
both cases we verified that the suspicious entity is indeed an attacker, not a
normal computer with different behavior (e.g., a server). Similarly, for the data
exfiltration attack where an attacker collects data into a staging point of the
internal network, the best results are obtained in the smallest time-window, as
the attack took only a few minutes. To conclude, concerning attacker detection,
we remark that when analysing time-windows without any trace of emulated
attacks, all the machines used to emulate attacks were not in suspicions clusters
(e.g., were in the larger cluster).

In relation to victim detection, in the case of slow port scan 1-to-1, we can
observe that the victim is always in the top ranked clusters. Regarding the slow
port scan (1-to-/24-net), there are several victims, as they are all the computers
in a /24 subnet. With the smaller time-windows they are scattered in several
clusters, but for the larger (8 hours, 1 day) they become more concentrated
in smaller, higher rank, clusters (6th/2% and 5th/1.7%). Concerning the stealth
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Table 7. Performance evaluation (military network dataset)

Attack Num. alerts Best time-window TPR ACC FPR (%)
Slow port scan 1-to-1 5s 3 1 day 1.00 0.99 0.04
Slow port scan 1-to-/24-net 1s 4 1 day 1.00 0.99 0.10
Stealth dict. attack SSH 2min 4 1 day 1.00 0.99 0.10
Stealth dict. attack SSH 30sec 3 10min 1.00 0.99 0.07
Data exfiltration 3 10min 1.00 0.98 0.07
Clean traffic 1 0.03

dictionary attacks, having contextual information, we know the victim is a server
and usually belongs to small clusters. The only suspicion is the fact that the
server moves between clusters and gets in top ranked clusters. Finally, concerning
data exfiltration, we observe exactly the same behaviour as explained for attack
detection (previous paragraph). Besides these emulated attacks, some machines
with suspicious behavior have been found and their IPs given to the security
team for further investigation.

These results can render values for recall/true positive rate (TPR), accuracy
(ACC), and fall-out/false positive rate (FPR), shown in Table 7. Given the usual
definitions of true/false positive (right/wrong alarms, TP/FP) and true/false
negative (right/wrong no-alarms, TN/FN), we have the usual definitions for the
three metrics: TPR = TP/(TP+FN); ACC = (TP+TN)/(TP+TN+FP+FN); FPR =
FP/(TN+FP). We count as an alarm a cluster with a single IP. All time-windows
in the table include attacks and are assumed to include a single attack each. On
average each time-window had 2880 entities. The columns are self explanatory
and the main results are on the three columns on the right. As we can observe,
the TPR and accuracy are quite high, whereas the FPR is low as desirable (all
metrics have values between 0 and 1). The bottom row shows that in (almost)
all the windows there was a false alarm, i.e., one cluster with a single computer
(a server).

In summary, we can conclude that the time stretching mechanism allows
detecting attacks independently of their pace.

6 Related Work

Several surveys offer an extensive review regarding the use of ML techniques in
the cybersecurity domain [4,5,20,58]. The first work in this category is apparently
due to Lee and Stolfo, who used a supervised ML scheme to detect attacks [29].
Most research in the area used datasets that date back to 1999 and that do
not represent the actual cybersecurity landscape nor the difficulty in processing
noisy data of real world systems [30,39,54,57].

Most intrusion detection research focus on signature-based detection to detect
known attacks, or anomaly-based detection that typically learns a model of what
is considered normal and detects deviations from that model. The first is unable
to detect unknown attacks; the former can detect them but at the cost of high
false positive rates. OutGene does not need knowledge about what is good or
bad behavior, although it assumes that attacks are rare and exhibit distinctive
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behavior. Hence, when analyzing previous work, we focused our research on
experiments using unsupervised learning methods and using real data at large-
scale.

Yen et al. [56] proposed Beehive, one of the first systems exploring the chal-
lenges of big data security analytics for real-world log data, using clustering to
identify outliers. The main drawback is that processing is done on a daily ba-
sis and there is no feature selection method for interpretability. Gonçalves et
al. [18] and Sacramento et al. [40] proposed semi-automatic cluster labeling and
the implementation of feature extraction using MapReduce framework. The rel-
evant limitations are the same as Beehive’s. Veeramachaneni et al. [51] use an
ensemble of outlier detection methods and introduces log stream ingestion using
window aggregation for efficient feature extraction, although they focus on web
logs. The problem of outlier explanation remains. A few other works use related
approaches [7, 33,37,47,55].

The previous works rely on batch and mini-batch processing, hence, it is
worth mentioning some recent works that do stream analysis, although they
rely on knowledge of what good behavior is: Cinque et al. use entropy to infer
deviations from a baseline [9]; DeepLog is inspired in natural language processing
and interprets logs as elements of a sequence that follows grammar rules [14];
Kitsune uses an ensemble of neural networks called autoencoders to collectively
differentiate between normal and abnormal traffic patterns [36].

In what concerns feature selection for clustering, [15] and [3] provide a good
overview of several methods. Our choice for the use of a genetic algorithm was
inspired in [35, 46], as well as in its success in finance [19] or in simulating
attackers’ efforts to evade classifiers [53].

Although OutGene was evaluated with examples of SSH brute forcing, port
scan and data exfiltration attacks to illustrate the capabilities offered by time
stretching, it was not designed to detect specific attacks. However, we mention
some works regarding stealth/slow attacks detection. In what concerns detection
of SSH dictionary attacks [48, 49] or data exfiltration [33], most works rely on
count based features (e.g., count of auth failures). In every case, it is necessary to
define thresholds/baselines that can be circumvented. For instance, the popular
tool Fail2ban [2], with the default configuration, bans IPs that make 5 failed login
attempts over a 10 minutes period. Hence, a smart attacker would never exceed
4 login attempts in each 10 minutes period. Furthermore, he could use different
source IPs to perform the attack. Satoh et al. [41] highlight the existence of
atypical inter-arrival times between an auth-packet and the next. This feature
can be derived from single flows of the SSH protocol. Since this is also a misuse-
based method, a malicious user can circumvent it emulating a normal connection
by manipulating the sending rate of the packets.

None of the related works in the literature provides mechanisms similar or
equivalent to genetic zoom and time stretching.
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7 Conclusion

We developed OutGene, an unsupervised learning approach for network intru-
sion detection, that detects attacks that are undefined (no signatures) without
clean training data. It performs clustering of hosts with similar behavior and
detects outliers, with the assumption that attackers behave differently from the
majority. OutGene advances the state of the art with the genetic zoom and
time stretching mechanisms. We show that it is useful to detect attacks in real
network data.
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