
Towards Quantum-Enhanced Machine Learning for
Network Intrusion Detection

Arnaldo Gouveia1,2 Miguel Correia2

1IBM Belgium, Brussels 2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisboa, Portugal

Abstract—Network Intrusion Detection Systems (NIDSs) are
commonly used today to detect malicious activities. Quantum
computers, despite not being practical yet, are becoming available
for experimental purposes. We present the first approach for
applying unsupervised Quantum Machine Learning (QML) in
the context of network intrusion detection from the perspective of
quantum information, based on the concept of quantum-assisted
ML. We evaluate it using IBM QX in simulation mode and show
that the accuracy of a Quantum-Assisted NIDS, based on our
approach, can be high, rivaling with the the best conventional
SVM results, with a dependence on the characteristics of the
dataset.

I. INTRODUCTION

The detection of security violations using machine learning
(ML) has been extensively investigated [1]–[8]. Intrusion
Detection Systems (IDSs) are tools used to detect such ma-
licious activity. Network IDSs (NIDSs) in particular detect
malicious activity in networks and are one of the best known
contexts of ML application in the field [3]. IDSs and NIDSs
can be classified as signature-based or anomaly-based [1]. A
signature-based (N)IDS detects attacks by comparing the data
flow under analysis to patterns stored in a signature database
of known attacks. An anomaly-based (N)IDS typically detects
anomalies using a model of normal behaviour of the monitored
system and flagging behavior lying outside of the model as
anomalous or suspicious. Signature-based IDSs can detect
well-known attacks with high accuracy but fail to detect or
find unknown attacks, whereas anomaly-based IDSs have that
capacity. In this paper we focus on anomaly-based NIDSs.

Quantum computers, and among them Noisy Intermediate-
Scale Quantum (NISQ) computers, aim to leverage quantum
physics to perform computational tasks beyond the capabilities
of the most powerful classical computers, potentially achieving
quantum supremacy [9]–[11]. As the amount of Qbits and
accuracy of quantum computers increases, the problem of
when they exceed the state-of-the-art classical computation
draws a great deal of attention. A definitive proof of quantum
dominance is predicted in the near future [9]–[11], and one
argument has already been made that it has been accomplished
[12], although it has been disputed by competitors [13]. A
consequence of quantum supremacy is that quantum comput-
ers may outperform their classical counterparts quadratically
in terms of learning efficiency, or even exponentially in
performance [10]. This is a motivation towards investigating
the potential of Quantum-Assisted Machine Learning (QAML)
in the context of network intrusion detection.

On May 2016, IBM announced the first Near Term Quantum
Computer, a NISQ, to be publicly available on the cloud [14].
The product is known as IBM Q Experience or simply IBM
QX. Customers can programme a universal quantum computer,
simulate quantum operations via an interface, and perform the
same quantum operations on a quantum computer. IBM QX
has been used in many experiences, e.g., quantum oscillator
synchronization [15], variational quantum algorithms [16],
and quantum search [17], and optimization approaches to
convert common quantum circuits descriptions into the IBM
QX have been proposed [18]. A 5-Qbit quantum computer was
initially offered and, since June 2017, also a 16-Qbit quantum
computer, respectively IBM QX2 and IBM QX3. Revised
versions of these quantum computers, QX4 and IBM QX5,
are available since September 2017. In 2019 and 2020 systems
with 27 and 65 qubits were released. In order to use them, the
desired quantum functionality, e.g., a quantum circuit, has to
be properly mapped so that the underlying physical constraints
are satisfied. Recently the plan to reach 100 Qbits by 2023 was
announced.

We aim to use an hybrid classical/quantum approach where
the data and feature learning are classical, whereas the classi-
fication algorithm is quantum. In this approach, classical data
has to be converted into quantum data. This approach allows
the implementation of quantum algorithms on the quantum
computers available today, e.g., NISQs like IBM QX.

The IBM Quantum Experience (IBM Q) is accessible online
giving users in the general public access to a set of IBM’s
prototype quantum processors. It is an example instance of
cloud based quantum computing. As of May 2018, there are
three processors on the IBM Quantum Experience: two 5-
qubit processors and a 16-qubit processor. This service can be
used to run algorithms and experiments, and explore tutorials
and simulations around what might be possible with quantum
computing.

The first part of the processing relates to the concept
of feature learning. Principal component analysis (PCA) is
arguably the most used technique for dimensionality reduction,
so it has already been used in the context of intrusion detection
[19], [20]. Autoencoders are a more general technique that,
however, can also be used for dimensionality reduction, with
several benefits:

Autoencoders can be trained using a variety of stochastic
optimization methods that have been developed for training
deep neural networks, becoming highly efficient for large
datasets, in particular with statistical signatures that change978-1-7281-8326-8/20/$31.00 c©2020 IEEE

over time [21]. Autoencoders can handle high-dimensional
training data, such as images, being suitable for online learning
contexts in which new data arrives continuously, without the
need of computationally expensive matrix operations as PCA.
In summary, the advantages of using an autoencoder over
PCA can be summarized as: autoencoders can process high-
dimensional data; autoencoders can process large datasets;
autoencoders are capable of online processing, processing new
data as it arrives.

We use a quantum version of SVM, Quantum Support
Vector Machine (QSVM), that uses a quantum kernel estimator
and optimizer [22], [23].

In this work we aim at answering the following questions:
1) How effectively can autoencoders, with known NIDS

datasets, produce an encoding with probability distribu-
tion functions (PDFs) – in other terms a latent space –
related to the input variables so that they can processed
by other ML algorithms, in an unsupervised fashion?

2) Can this result be used to interface with quantum compu-
tation systems in line with a quantum-enhanced approach
for network intrusion detection?

The contributions of the this work are: (1) a study of
autoencoders in the scope of unsupervised learning; (2) a study
on quantum unsupervised ML by interfacing a dimensional-
ity reduction technique based on autoencoders and quantum
processors. We evaluate our approach using IBM QX and two
well-established network intrusion detections datasets (UNB
NSL KDD and UNSW NB15).

II. BACKGROUND

A. Support Vector Machines

The SVM classification algorithm can classify data into two
sub-groups. Let us assume there are M training data points
~xi, i = 1, . . . ,M , and each data has a label +1 or −1. Let
us also assume that the number of dimensions of the feature
space is N . In this case, the training data can be written as
{(~xi, yi) : ~xi ∈ RN , yi = ±1}.

φ

Fig. 1. SVM kernel trick illustrated with samples from two classes here
represented by black and white dots.

The frontier between two classes can be represented by the
distance between two support hyperplanes ~w · ~x + b = 1 and
~w·~x+b = −1. With the expressions of the support hyperplanes
defined, the distance between them can be represented by

2
‖~w‖ . Thus, SVM aims at maximizing the margin 2

‖~w‖ , which

is the same as minimizing ‖~w‖2
2 . Originally SVM learning

algorithms could only solve linearly separable problems. To
address this limitation the kernel trick was introduced. The
mapping, represented in the figure, is characterized by the
choice of a class of functions known as kernels. Kernels
use specific functions φ(x) to map the data into a higher-
dimensional space, see Figure 1. This procedure is justified
by Cover’s theorem [24], which guarantees that any data set
becomes (linearly) separable as the data dimension grows.
In this situation SVM finds the hyperplane in a new space
that maximizes the margin and minimizes misclassifications.
A classifier with a large margin is prone to be more accurate.

B. Quantum-Assisted Machine Learning

Quantum computing can help speed up some types of
problems. It may be able to find new, easier ways to achieve
economic optimisation. Nevertheless, as stated above, the
existing quantum computers are very small. We therefore plan
to use QAML, a hybrid classical / quantum solution where
data and function learning are classical, while the classification
algorithm is quantum.

An example of a classical / quantum hybrid algorithm that
relies on quantum circuits considered to be inefficiently scaled
by classical methods was provided in [23]. In this work, the
authors define and apply two binary classification approaches
utilizing supervised learning. Such classification algorithms
are related to regular SVMs. The aim in this research is to
introduce a non-linear function map that takes the data to be
graded into a space where it can be linearly segregated.

The method used in this work is the second method ex-
plained in [23] directly exploits this connection to classical
SVMs. Here only the overlap of the feature map circuits is
estimated for each pair in the training set. That is, the quantum
computer is only used once to compute the kernel matrix for
the training set. The optimal separating hyperplane and the
support vectors can be obtained efficiently in the training set
size by solving the conventional dual optimization problem on
a classical computer. This problem is concave and therefore
efficiently solvable on a classical computer. Once the support
vectors have been determined the quantum computer needs to
be queried again for classification, when the kernel for a new
datum is estimated. The quantum processor is thus used twice:
once during training and then again in the classification phase,
in both cases to estimate the quantum kernel.

III. QUANTUM SUPPORT VECTOR MACHINES

A. Quantum Encoding Preliminary Concepts

Suppose we have a dataset D of N instances:

D = {x1, ..., xi, ..., xN} (1)

where each xi is a real number. In basis encoding, each
instance xi is encoded as |bi〉 where bi is the binary repre-

sentation of xi. The dataset D can then be represented as a
superposition of all computational basis states:

|ψ〉 =
1√
N

N∑
i=1

|bi〉 (2)

In amplitude encoding, data is encoded in the amplitudes of
quantum states. The above dataset D can be encoded as:

|ψ〉 =

∑N
i=1 xi |i〉
||D||

(3)

The encoding scheme proposed consists of a layer of
Hadamard gates on each qubit, followed by an operator,
UΦ(~x), then another layer of Hadamards, and UΦ(~x) again.

A feature map on n-Qbits is generated by the unitary where
H denotes the conventional Hadamard gate and
UΦ(~x) = UΦ(~x)H

⊗nUΦ(~x)H
⊗n.

The UΦ(~x) gate consists of Φ() gates, which can operate on
one or two qubits. The single-qubit Φ operation is just a Z
rotation by xi on the ith qubit.

Quantum Support Vector Machines (QSVMs) use a quan-
tum kernel estimator to estimate the kernel function and
optimize the classifier directly. QSVMs are an interesting
application for NISQ computers [22], [23]. The scheme we
are proposing deals with the original problem of supervised
learning: the creation of a SVM classifier and is fully explained
in [23]. For this question, we provide data from the training
set T and the test set S from the subset Ω ⊂ Rd. Both are
assumed to be labeled as m : T ∪ S → {+1,−1} unknown
to the algorithm. The algorithm just gets test data labels
T . The aim is to predict an estimated map on the test set
m̃ : s → {+1,−1} in such a way that it fits the true map
m(~s) = m̃(~s) on the test data ~s ∈ S with a high probability.

By means of SVMs, the data is projected non-linearly to a
high dimensional space, a function area , where a hyperplane
is configured to differentiate the named samples. The quantum
variant of this method, QSVM, has already been proposed
by Rebentrost et al. [25]. Their scheme makes it possible to
accomplish incremental progress if data is given in a coherent
superposition.

A feature map on n-Qbits is generated by the unitary
UΦ(~x) = UΦ(~x)H

⊗nUΦ(~x)H
⊗n, where H denotes the con-

ventional Hadamard gate and

UΦ(~x) = exp

i ∑
S⊆[n]

φS(~x)
∏
i∈S

Zi

 , (4)

is a diagonal gate in the Pauli Z basis (Figure 2(b)). This
circuit will act as an initial state on |0〉n. The φS(~x) ∈ R
coefficients encode the ~x ∈ Ω data. In general, any diagonal
UΦ(~x) can be used if it can be implemented efficiently.
This is the case, for example, when only ≤ 2interactions
are considered. The exact evaluation of the inner-product
between two states created from a similar circuit with only
one diagonal layer UΦ(~x) is ¶-hard [26]. Nevertheless, in the
experimentally relevant context of the estimate of the additive

(a)

J(Ω) = 1 J(Ω) = 1

J(Ω) = −1J(Ω) = −1

|1〉

|0〉

60◦

60◦

(b)

Fig. 2. Quantum Kernel Functions: On the left; A classical dataset mapped
into the Bloch sphere. JΩ() returns binary labels (−1, 1) and can be mapped
onto the Bloch sphere by using a non-linear feature map: for a single Qubit
UΦ(x) = Zx is a phase-gate of angle x ∈ Ω. The mapped data can be
separated by the hyperplane given by normal ~w. On the right: For the general
circuit UΦ(~x) is formed by products of single- and two-Qubit unitaries that are
diagonal in the computational basis. The circuit family depends non-linearly
on the data through the coefficients φS(~x) with |S| ≤ 2. The experimental
implementation of the parameterized diagonal two-Qbit operations is done
using CNOTs and Z−gates [23].

defect, the simulation of a single layer preparation circuit can
be effectively performed. by uniform sampling [27].

Every n-Qbit device operation can be approximated to an
appropriate level of accuracy by the gates of the universal gate
collection. The nearly universal set contains only two types of
gates: the Toffoli Gate and the Hadamard Gate [28] [29].

The Toffoli Gate is common for (reversible) classical com-
puting and has a totally classical character in quantum circuits
as it preserves its computational basis. This seems to suggest
that the quantum benefit is provided by gates which do not
maintain the theoretical base, i.e. the Hadamard gates. Since
circuits such as those used in this simulation are likely to result
in the successful testing of a purely classical computer.

B. Quantum kernel estimation

Quantum kernel estimation: The protocol chosen imple-
ments the SVM directly. A classical SVM is used for classifi-
cation. The quantum computer is used twice in this protocol:
• First, the kernel K(~xi, ~xj) is estimated on a quantum

computer for all pairs of training data ~xi, ~xj ∈ T . Here
it will be convenient to write T = {~x1, . . . , ~xt} with
t = |T |; also let yi = m(~xi) be the corresponding label.
The optimization problem for the optimal SVM can be
formulated in terms of a dual quadratic program that only
uses access to the kernel.

LD(α) =

t∑
i=1

αi −
1

2

t∑
i,j=1

yiyjαiαjK(~xi, ~xj), (5)

subject to
∑t

i=1 αiyi = 0 and αi ≥ 0 for each i. This
problem is concave whenever K(~xi, ~xj) is a positive
definite matrix. The solution to this problem will be given
by a nonnegative vector ~α = (α1, . . . , αt).

• The quantum computer is used a second time to estimate
the kernel for a new datum ~s ∈ S with all the support

vectors. The optimal solution ~α∗ is used to construct the
classifier

m̃(~s) = sign

(
t∑

i=1

yiα
∗
iK(~xi, ~s) + b

)
. (6)

IV. DESCRIPTION OF THE EXPERIMENT

This section presents the full quantum-enhanced intrusion
detection scheme. The scheme can be divided in the following
phases:

1) Obtain the input data, i.e., network flows corresponding
to a period of time. The NIDS can be configured to detect
intrusions by inspecting from the last T period of time.
For example, T can be set to 10 minutes, 30 minutes, or
1 hour.

2) Preprocess the data, e.g., do feature normalization.
3) Encode the data. This phase does dimensionality re-

duction, i.e., summarizes the input data to a size that
is appropriate in terms of dimension to be inputted to
the QSVM() function. As explained before, this phase is
processing the data with an Autoencoder and obtaining
its latent space.

4) Normalize the data returned by the autoencoder for
preparing it for the next phase.

5) Quantum processing, done by a quantum computer, in
order to detect intrusions in the input data. As explained,
this phase involves running a QSVM() function algorithm
to classify flows as normal or anomalous.

6) Repeat for the next period of time or data sample in
parallel. Notice that the period may overlap the previous
if that is considered useful for some reason.

The detection process has to be preceded by a training
process. Training involves the same phases 1 to 5 above, except
that the QSVM in phase 5 is executed in training mode.

V. EXPERIMENTAL EVALUATION

An important component of a NIDS evaluation is a good
benchmarking dataset. We use two recent datasets that have
been designed specifically and carefully to evaluate NIDSs.
They contain a large number of attacks and are labelled with
information about which network flows are normal traffic and
which are malicious. We designate them NSL-KDD [30] and
NB15 [5], [6].

A. Data encoding and preparation

The phases presented in Section IV were executed the
following way:

1) Obtaining the input data: the flows were extracted from
the KDD-NSL and NB15 datasets:
• NSL-KDD: a sample of 100 data samples for training

and 50 data samples for testing has been extracted from
the KDDTrain+.arff file.

• NB15: a sample of 150 data samples for training and
50 data samples for testing has been extracted from the
NB15 train file.

2) Preprocessing of the data: the non-numeric features were
encoded into numeric values, then normalized into the
interval [0, 1].

3) Encoding of the data: we considered an implementation
based on the autoencode() function provided by the Ruta
package [31], [32] for the R statistical computing package
[33].
• NSL-KDD: For the NSL-KDD dataset autoencode()

has been tested with four activation functions – Linear,
Hyperbolic Tangent, Relu and Sigmoid –, in order to
understand the performance in the four cases.

• NB15: For the NB15 dataset the autoencode() has been
tested with a single activation function, sigmoid, as
there was no point in repeating the previous evaluation.

4) Normalization: the data returned by autoencode() was
normalized to the range [−1, 1].

5) Quantum processing: the resulting dataset has been pro-
cessed by the QSVM() function1 of the Qiskit quantum
computing framework. This function runs the binary
classification at the quantum simulation level.

For comparison purposes, a classical SVM algorithm was
run over the entire datasets after being processed by the
autoencoder. Specifically, we used the liquidSVM, a package
that implements SVMs and configures hyper-parameters auto-
matically using k-fold cross validation.2

B. Experimental process for the Quantum component

1) For each data point, the process of encoding data
involves a series of gates that will transform the initial
state, |0〉, into some state that depends on ~x|Φ(~x)〉.
One such method is amplitude encoding, in which the
resulting state would be. In this scheme, the data is
encoded into the basis state amplitudes of the state: a1

...
a2n

↔
 x1

...
x2n

 ,
∑
i

|xi|2 = 1, xi ∈ R

2) According to [23], [34] , classifiers based on quantum
circuits should only provide a quantum advantage if the
kernel used in the quantum space is difficult to estimate
classically: K(~x, ~z) = | 〈Φ(~x) |Φ(~z) 〉 |2 .

3) Inference: Inference in quantum machine learning
amounts to the unitary operation, U , such that the loss
is minimized when measuring U 〈Φ(~x)|. Mathematically,
U is a matrix with complex elements which is unitary,
where n is the number of qubits; However, in practice,
such a general matrix cannot be directly trained, since
a real quantum computer has to employ combinations
of a limited set of gates rather than arbitrary unitary
operations. What is used are layers of rotation gates
separated by entangling layers composed of controlled
Pauli gates [35].

1Qiskit Aqua algorithms on Qiskit
2liquidSVM on GitHub

4) Measurement: After all the operations in the circuit have
been performed, some observable is measured f = Z1Z2

as the parity function and a random unitary V ∈ SU(4).
Each measurement provides one of a number of dis-
crete values. For calculating the expected value for an
observable, so measurements are made repeatedly in
order to obtain the mean. The end result is that the
expected value of a measurement from the entire circuit is
〈Φ(~x)|V †fV |Φ(~x)〉), where f represents the observable
measured. The measurement is then used to produce a
label and a value for the loss which is used to optimize
the parameters used in the inference step.

(a)

(b)

Fig. 3. Distribution at the encoding layer (Linear activation and Elu function
case). This diagram shows the location of the different encoding for normal
and malicious samples. Weak superposition can be seen with a continuous
distribution between the two types of samples. Data obtained from the autoen-
code() Ruta package function applied to the NSL-KDD dataset. Two cases are
shown: (a) NSL-KDD test dataset processed with sigmoid activation.Training
loss: 9.4375; (b) NSL-KDD test dataset processed with Hyperbolic activation.
Training loss: 9.3450.

Evaluation:The values of accuracy of our quantum clas-
sification algorithm, based on QSVM, are shown in Table I
and Table II. Complementing this table, a depiction of the
accuracy versus circuit depth can be seen in Figure 8. It shows

(a)

(b)

Fig. 4. Distribution at the encoding layer for the NSL KDD test dataset. As
the statistical distribution (SD) does not match the SD of the training set the
data from the test datasets were not used for testing. Data obtained from the
autoencode() Ruta package function applied to the NSL-KDD dataset. Two
cases: (a) NSL-KDD test dataset processed with sigmoid activation: training
loss: 9.3377; (b) NSL-KDD test dataset processed with linear activation:
training loss: 9.4114.

that the accuracy increases with the quantum circuit depth as
theoretically foreseen.

When these performance figures are compared with classical
SVM classification (Table II) we can see that they compare
favourably. In the NSL-KDD case both figures are very
close, 0.92 acuuracy for QSVM and 0.93 accuracy for SVM.
Regarding the NB15 dataset case we can see that the accuracy
values provided by the QSVM classifier are somewhat lower
than the ones provided by the SVM classifier Acc = 0.75.

In Figures 9 and 10 the quantum kernel matrices obtained
in the simulations are shown. More defined matrices are
observable for the best performing cases, in line with what
was expected. A clear visualization of the quality of the kernel
obtained is linked to the capacity to observe clear spots for
the upper left and lower right of the figure denoting a more
distinctive density and as a consequence a better capacity for
SVM to separate data points.

Fig. 5. Distribution at the encoding layer (Linear activation function case).
This diagram shows the location of the different encoding for normal and
malicious samples. Strong superposition can be seen with a continuous
distribution between the several types of samples. Data obtained from the
autoencode() Ruta package function applied to the NB15 dataset.

Accuracy values
Depth 2 3 4 5
NSL KDD 0.8 0.92 0.92 0.92
NB15 0.6 0.64 0.64 0.64

TABLE I
ACCURACY TABLE VERSUS CIRCUIT DEPTH FOR THE QUANTUM SVM

SIMULATION FOR THE NSL KDD DATASET CASE.

The values of accuracy obtained for the NSL-KDD dataset
– Acc = 0.92 for the Quantum SVM and Acc = 0.93
for classical (Tables I and II) are very close. The kernel
matrices show how the SVM algorithm can draw the margin
to differentiate the two classes of traffic (normal/malicious).
In this experiment, we can see kernel matrices can label
the classes properly most of the time. The kernel matrices
are depicted in Figures 10 and 9. One can observe that the
distinctiveness of the matrices are much more evident for the
NSL-KDD case, where at the same time better separability

Accuracy Pos Val Error Neg Val Error
NB15 0.75 0.132 0.383
NSL-KDD 0.93 0.136 0.019

TABLE II
ACCURACY TABLE FOR THE CLASSICAL SVM (LIQUIDSVM,

NON-QUANTUM) EXECUTION OVER THE ENTIRE DATASET FOR BOTH
NSL-KDD AND NB15.

Fig. 6. NB15 train dataset distribution at the encoding layer (Linear activation
function case). This diagram shows the location of the different encoding
for normal and malicious samples. Strong superposition can be seen with
a continuous distribution between the several types of samples, each one
corresponding to a different type of flow. Data obtained from the autoencode()
Ruta package function applied to the NB15 dataset.

was obtained (with better accuracy values).

VI. CONCLUSIONS

An hybrid solution to submit the classification of network
flows to a quantum computer has been demonstrated. The
performance values obtained have shown that the approach
is feasible and may in the future allow NISDs to benefit from
quantum assisted computing. One particular but fundamental
issue relates to the need for statistical similarity between the
testing and training dataset for the test dataset to be used
with the models trained. Hence results also show that some
work has to be done to optimize the datasets for submission
to the quantum algorithms, here used in simulation mode.
Judging from the accuracy values obtained for the classical
SVM and Quantum SVM trials, encouraging data seems to
hint at showing advantage for the quantum processing. This
should be object of further study.

Acknowledgements. This research was supported by by
the European Commission under grant agreement number
830892 (SPARTA) and by national funds through Fun-
dação para a Ciência e a Tecnologia (FCT) with reference
UIDB/50021/2020 (INESC-ID).

Fig. 7. NB15 Test dataset distribution at the encoding layer (Sigmoid
activation function case). As the statistical distribution (SD) does not match
the SD of the training set the data from the test datasets were not used for
testing. This diagram shows the location of the different encoding for normal
and malicious samples. Weak superposition can be seen with a continuous
distribution between the two types of samples. Data obtained from the
autoencode() Ruta package function applied to the NB15 dataset. Training
loss: 8.2805

Fig. 8. Accuracy as a function of the quantum circuit depth for both datasets.
These values can be compared with the accuracy obtained for the SVM in the
classical domain executed over the entire datasets: Acc=0.75 for the NB15
dataset and Acc=0.93 for the NSL-KDD dataset.

REFERENCES

[1] H. Debar, M. Dacier, and A. Wespi, “A revised taxonomy of intrusion
detection systems,” Annales des Télécommunications, vol. 55, no. 7, pp.
361–378, 2000.

[2] S. Dhaliwal, A.-A. Nahid, and R. Abbas, “Effective intrusion detection
system using XGBoost,” Information, vol. 9, no. 7, pp. 1–24, 2018.

[3] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Computers & Security, vol. 28, no. 1-2, pp.
18–28, Feb. 2009.

[4] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys, vol. 46, no. 4,
pp. 55:1–55:29, Mar. 2014.

[5] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 Military Communications and Information Systems Conference,
Nov 2015, pp. 1–6.

[6] ——, “The evaluation of network anomaly detection systems: Statistical
analysis of the UNSW-NB15 data set and the comparison with the
KDD99 data set,” Information Security Journal: A Global Perspective,
vol. 25, no. 1-3, pp. 18–31, 2016.

[7] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Proceedings of the 2nd IEEE
International Conference on Computational Intelligence for Security and
Defense Applications, 2009, pp. 53–58.

[8] P. Wheeler and E. Fulp, “A taxonomy of parallel techniques for intrusion
detection,” in Proceedings of the 45th Annual Southeast Regional
Conference, 2007, pp. 278–282.

[9] B. Villalonga, D. Lyakh, S. Boixo, H. Neven, T. S. Humble, R. Biswas,
E. G. Rieffel, A. Ho, and S. Mandrà, “Establishing the quan-
tum supremacy frontier with a 281 Pflop/s simulation,” ArXiv, vol.
abs/1905.00444, 2019.

[10] I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo, “Quantum
supremacy is both closer and farther than it appears,” ArXiv, vol.
abs/1807.10749, 2018.

[11] D. Ristè, M. P. da Silva, C. A. Ryan, A. W. Cross, A. D. Córcoles, J. A.
Smolin, J. M. Gambetta, J. M. Chow, and B. R. Johnson, “Demonstration
of quantum advantage in machine learning,” npj Quantum Information,
vol. 3, no. 1, p. 16, 2017.

[12] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[13] A. Khrennikov, “Echoing the recent Google success: Foundational roots
of quantum supremacy,” arXiv preprint arXiv:1911.10337, 2019.

[14] J. M. Gambetta, J. M. Chow, and M. Steffen, “Building logical qubits
in a superconducting quantum computing system,” npj Quantum Infor-
mation, vol. 3, no. 1, p. 2, 2017.

[15] M. Koppenhöfer, C. Bruder, and A. Roulet, “Quantum synchronization
on the ibm q system,” 2019.

[16] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch, “Variational
quantum algorithms for nonlinear problems,” 2019.

[17] K. Das and A. Sadhu, “Constant time quantum search algorithm over
a datasets: An experimental study using ibm q experience,” ArXiv, vol.
abs/1810.03390, 2018.

[18] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for map-
ping quantum circuits to the IBM QX architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
pp. 1226–1236, 2017.

[19] Z. Elkhadir, K. Chougdali, and M. Benattou, “Intrusion detection system
using PCA and kernel PCA methods,” in Proceedings of the Mediter-
ranean Conference on Information & Communication Technologies,
A. El Oualkadi, F. Choubani, and A. El Moussati, Eds., 2016, pp. 489–
497.

[20] K. K. Vasan and B. Surendiran, “Dimensionality reduction using prin-
cipal component analysis for network intrusion detection,” Perspectives
in Science, vol. 8, pp. 510–512, 2016.

[21] E. Plaut, “From principal subspaces to principal components with linear
autoencoders,” ArXiv, vol. abs/1804.10253, 2018.

[22] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, Aug. 2018.

[23] V. Havlíček, A. Córcoles, K. Temme, A. Harrow, A. Kandala, J. Chow,
and J. Gambetta, “Supervised learning with quantum-enhanced feature
spaces,” Nature, vol. 567, pp. 209–212, 03 2019.

[24] T. M. Cover, “Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition,” IEEE Transactions
on Electronic Computers, vol. 14, no. 3, pp. 326–334, June 1965.

[25] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector
machine for big data classification,” Physical Review Letters, vol. 113,
07 2013.

(a) (b) (c) (d)

Fig. 9. Kernel matrices for several depth figures. Ideal kernel matrices containing the inner products of all data points used for training with the NSL-KDD
dataset. Data obtained with a Qiskit simulation. (a) Kernel matrix for depth=2, Accuracy=0.8; (b) Kernel matrix for depth=3, Accuracy=0.92; (c) Kernel
matrix for depth=4, Accuracy=0.92; (d) Kernel matrix for depth=5, Accuracy=0.92. Clearly visible the correlation between distinguishability of the kernel
space and the accuracy values obtained.

(a) (b) (c) (d)

Fig. 10. Kernel matrices for several depth figures. Ideal kernel matrices containing the inner products of all data points used for training with the NB15
dataset. Data obtained with a Qiskit simulation. (a) Kernel matrix for depth=2. Accuracy=0.60; (b) Kernel matrix for depth=3. Accuracy=0.64; (c) Kernel
matrix for depth=4. Accuracy=0.64; (d) Kernel matrix for depth=5.Accuracy=0.64. Clearly visible the correlation between distinguishability of the kernel
space and the accuracy values obtained.

[26] L. A. Goldberg and H. Guo, “The complexity of approximating complex-
valued ising and tutte partition functions,” Computational Complexity,
vol. 26, pp. 765–833, 2014.

[27] T. F. Demarie, Y. Ouyang, and J. F. Fitzsimons, “Classical verification
of quantum circuits containing few basis changes,” Physical Review A,
vol. 97, no. 4, Apr 2018.

[28] Y. Shi, “Both Toffoli and controlled-not need little help to do universal
quantum computing,” Quantum Info. Comput., vol. 3, no. 1, pp. 84–92,
Jan. 2003.

[29] D. Aharonov, “A simple proof that Toffoli and Hadamard are quantum
universal,” 2003.

[30] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357–374,
May 2012.

[31] D. Charte, F. Herrera, and F. Charte, “Ruta: Implementations of neural
autoencoders in r,” Knowledge-Based Systems, vol. 174, pp. 4 – 8, 2019.

[32] D. Charte, F. Charte, S. García, M. J. del Jesús, and F. Herrera, “A
practical tutorial on autoencoders for nonlinear feature fusion: Taxon-
omy, models, software and guidelines,” Information Fusion, vol. 44, pp.
78–96, 2018.

[33] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2019. [Online]. Available: https://www.R-project.org/

[34] M. Schuld and N. Killoran, “Quantum machine learning in feature
Hilbert spaces,” Phys. Rev. Lett., vol. 122, p. 040504, Feb 2019.

[35] M. Schuld and F. Petruccione, “Supervised learning with quantum
computers,” 2018.

