
A Systematic Approach for the Application of
Restricted Boltzmann Machines in Network

Intrusion Detection

Arnaldo Gouveia Miguel Correia

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Abstract. A few exploratory works studied Restricted Boltzmann Ma-
chines (RBMs) as an approach for network intrusion detection, but did
it in a rather empirical way. It is possible to go one step further tak-
ing advantage from already mature theoretical work in the area. In this
paper, we use RBMs for network intrusion detection showing that it is
capable of learning complex datasets. We also illustrate an integrated
and systematic way of learning. We analyze learning procedures and ap-
plications of RBMs and show experimental results for training RBMs on
a standard network intrusion detection dataset.

1 Introduction

Deep neural networks have become increasingly popular due to their success
in machine learning. Their history goes as far back as 1958 when Rosenblatt
published his work on the perceptron concept [19]. Present day forms of deep
learning networks include Hopfield Networks, Self-Organizing Maps, Boltzmann
Machines, Multi-Layer Perceptrons, Autoencoders or Deep Belief networks.

Most of present day machine learning algorithms are not classifiable as deep
since they use at most one layer of hidden variables. Bengio and LeCun [2, 3],
have shown that the internal representations learned by such systems are neces-
sarily simple due to their simple internal structure, being incapable of extracting
certain types of complex structure. However this limitation does not apply to
specific types of energy-based learning approaches.

Two important classes of Boltzmann Machine (BMs) are the Restricted
Boltzmann Machine (RBM) described by a complete bipartite graph, and the
Deep RBM that is composed of several layers of RBMs. The BM derived from
Hopfield networks and in its initial form was fully node-connected. The concept
of RBMs came about due to the difficulty of training a fully connected BM
in classification problems. RBMs are designated restricted due to the fact that
there are no connections among the hidden layer nodes or among the visible
layer nodes.

Recently the notion of deep learning gained a lot of attention as a method
to model high-level abstractions by composing multiple non-linear layers [15].
Several deep learning network architectures, like deep belief networks [8], deep



BMs [20], convolutional neural networks [15], and deep denoising auto-encoders
[26], have shown their advantages in specific areas.

Despite their interest, these approaches have barely been applied in Network
Intrusion Detection Systems (NIDSs), i.e., for detecting cyber-attacks by inspect-
ing computer network traffic. This paper aims to contribute for closing this gap
by introducing a systematic approach for training RBMs for network intrusion
detection. The approach considers three important aspects: weight initialization,
pre-training, and fine-tuning.

The paper seeks to demonstrate the effectiveness of the approach with an
analysis based on a dataset carefully crafted for this purpose: the UNB ISCX
intrusion detection evaluation dataset [21]. This dataset is reasonably recent but
has been gaining increasing adoption for evaluating NIDSs.

2 The Ising Model

Fig. 1. Illustrating a 2-
dimensional interaction with
only the nearest nodes

The RBM formalism, specifically in terms of
synonymous of objective or loss function, is
similar to the Ising Model formalism, so it is
relevant to address the similarities. Energy-
based models are popular in machine learn-
ing due to the elegance of their formulation
and their relationship to statistical physics.
Among these, the Restricted Boltzmann Ma-
chine (RBM) is the focus of our work.

The Ising model was defined by Lenz in
1920 and named after his student Ising, who
developed the model in his PhD thesis [14].
Ising solved the model optimization problem
in one dimension. The two-dimensional square
lattice Ising model was given an analytic de-
scription much later [18]. Such physical models, having two alternate states in
an array with mutual interactions, are currently described in physics as spinor
Ising models. The mutual interaction among spin units is modeled by an in-
teraction parameter commonly named coupling. Interactions between particles
is small and restricted to their neighbourhood. In this model the states align
among themselves spontaneously in a way that minimizes a global parameter,
e.g., the global energy. In 2D the model topology is usually described as a regular
lattice as illustrated in Figure 1.

3 Restricted Boltzmann Machines

3.1 Energy-Based Models (EBM)

Energy-based models associate an energy figure to each configuration of the state
variables. Energy in this context is synonymous of objective or loss function.



Learning, again in this context, corresponds to modifying the energy function as
to find minima. In the probabilistic model associated with RBMs the associated
probability distribution is described through an energy type function:

p(x) =
e−E(x)

Z
(1)

The normalizing factor Z is the partition function in the context of physical
systems. The normalization is achieved by summing across all available sates
and divide.

Z =
∑
x

e−E(x) (2)

An energy-based model can be learnt by performing (stochastic) gradient de-
scent on the empirical negative log-likelihood of the training data. As for logistic
regression, we will first define the log-likelihood and then the loss function as
being he negative log-likelihood.

L(θ,D) =
1

N

∑
x(i)∈D

log p(x(i)) (3)

The stochastic gradient is −∂ log p(x(i))
∂θ where θ are the model parameters.

However, computationally this is not the best option for this type of energy
function (see Section 3.4).

3.2 The Concept of Restricted Boltzmann Machine

From the physical analogy, BMs model the data with an Ising model that is in
thermal equilibrium. In this analogy the equivalent to physical spins are called
RBM units or nodes. The set of nodes that encode the observed data and the
output are called the visible units {vi}, whereas the nodes used to model the
latent concept and feature space are called the hidden units {hi}. For the pur-
pose of explanation, we assume that the visible and hidden units are binary.
Alternatives are discussed later.

The RBM concept is similar to the BM concept [1], except that no con-
nections between neurons of the same layer are allowed. Figure 2 depicts the
architecture of a RBM, consisting of two layers: the visible layer {vi} and the
hidden layer {hi}, with Nv and Mh nodes, respectively. Hidden units are used
to capture higher level correlations in the data, and the visible units to mir-
ror the data itself. Connections between nodes are restricted so that there are
no visible-visible and hidden-hidden connections. Hidden-visible connections are
strictly symmetrical. Hence, we have a restricted BM. An RBM is a bi-partite
(visible and hidden) BM with full interactivity between visible and hidden units,
and no interactivity between units of the same type. RBMs are usually described
as energy-based stochastic neural networks composed by two layers of neurons



Hidden
Nodes
hj

Weights
wij

Input
(visible)
Nodes vi

v(1) v(2) v(3) v(4)

Fig. 2. A RBM with 4 inputs and 5 hidden nodes.

(visible and hidden), in which the learning phase is conducted in an unsuper-
vised fashion. RBMs are a variant of the BM model [1, 7]. Here we consider the
case where hj can only take binary values, and σi as the standard deviation for
each input dimension.

Convergence in BMs can be slow, particularly when the number of units
and layers increases. RBMs were introduced to mitigate this issue [23]. The
simplification consists of having only one layer of visible and one layer of hidden
units with links between units on the same layer erased, allowing for parallel
updates of hidden and visible units (Figure 2).

In Figure 2, v = (v1, v2 · · · vn) and h = (h1, h2 · · ·hm) are the visible and the
hidden vectors, ai and bj are their biases, n andm are the dimension of the visible
layer and the hidden layer, and wij is the connection weight matrix between
the visible layer and the hidden layer. The visible stochastic binary variables
v ∈ {0, 1}N are connected to hidden stochastic binary variables h ∈ {0, 1}M .

For binary RBMs the energy E (v,h), which defines the bipartite structure,
is given by:

E(v,h) = −
∑

i ε visible

aivk −
∑

j ε hidden

bjhj −
∑
i

∑
j

viwi,jhj (4)

or equivalently:

E (v,h) = −vTa− bTh− vTWh (5)

The weight matrix W, the visible bias vector b and the hidden bias vector
c are the parameters of the model.

RBM satisfies a Boltzmann-Gibbs distribution over all its units. The joint
probability of (v,h) is given by a probability distribution function P (v,h), where
Z is the normalization term to obtain a proper probability distribution function:

P (v, h) =
1

Z
e−E(v,h) (6)



By definition the partition function, which sums over all possible visible and
hidden states, is given by:

Z =
∑
v

∑
h

e−E(v,h) (7)

The normalizing factor Z is called the partition function by analogy with
physical systems. To find p(v), we marginalize over the hidden units. Given a
set of training vectors, V, to train a RBM, one aims to maximize the average
probability, p(v),v ε V , where

p(v) =
1

Z

∑
h

e−E(v,h) (8)

which can also be written as

p(v) =
1

Z
e−F (v) (9)

where F (v) is the logarithm of the energy function summed over h:

F (v) = −log
∑
h

e−E(v,h) (10)

For training efficiency, BMs can be restricted to a bipartite graph with one set
of visible neurons and one set of hidden neurons. As shown in Figure 2 there are
only visible-hidden and hidden-visible connections (still symmetric). Therefore
hidden units hj only depend on the visible units vj and vice-versa, with bj as
the biases for the visible units and cj for the hidden units:

p(hj = 1|v) = σ(cj +
∑
i

wijvi) (11)

p(vj = 1|h) = σ(bj +
∑
i

wijhi) (12)

3.3 Gibbs sampling

Gibbs sampling is commonly used for obtaining a sequence of observations which
are approximated from a specified multivariate probability distribution, when
direct sampling is difficult. This sequence can be used to approximate a joint
distribution function, e.g., the joint distribution function expressed in Eq. 6 in
our case.

In its simplest theoretical description this is how Gibbs sampling would work,
with all updates done in parallel, as illustrated in Figure 3. The most common
algorithm for Gibbs sampling is Contrastive Divergence (CD), used inside a
gradient-descent. A single-step contrastive divergence (CD-1) procedure for a
single training example can be summarized as follows [9]:

1. Sample hidden units h from training example v



v(0)

h(0)

v(1)

h(1)

v(2)

h(t)

v(t+1)

h(t+1)

v(t+2)

· · ·

Fig. 3. Gibbs sampling in a RBM

2. Sample reconstruction v′ of visible units using h and then resample h′ from
it. (Gibbs sampling step)

3. wij ← wij − ε(< vihj >data − < vihj >sampled)

In the previous equation < . > denotes an internal product. In practice, wait-
ing till t → ∞ is not practical. However, an alternative consists in modulating
the number of iterations for a limited number and extract a final sample:

– After t steps, (h(t), v(t)) is available for sampling
– Sample (h(t), v(t)) assuming a sample accurate enough as an approximation

of P (v, h) as t→∞

As t → ∞, (v(t), h(t)), vt and ht will be ever more accurate samples drawn
from the RBM’s distribution. Nevertheless, one can further speed up the process
by using the contrastive divergence (CD) algorithm as explained next.

3.4 Contrastive Divergence Algorithm in Detail

It is easy to calculate < vihj >data because there is no direct connections
among the hidden units. However, it is difficult to get an unbiased sample of
< vihj >model. Hinton proposed a faster learning algorithm with contrastive
divergence (CD) learning and the change of learning parameter [10]. The partial
derivative of the log probability of Eq. 8 with respect to a weight is given by:

∂ log p(v)

∂wij
= (< vihj >data − < vihj >model) (13)

where the angle brackets < vihj >data and < vihj >model are used to denote
expectations of the distribution specified by the subscript data and model. In
the log probability, a very simple learning rule for performing stochastic steepest
ascent is given by:

∆wij = ε(< vihj >data − < vihj >model) (14)

where ε is a learning rate.
The CD algorithm computes an approximation of the gradient by performing

Gibbs sampling for a finite number of steps. This involves initializing the RBM



with a training example v ε V and running the RBM for k (often with k = 1)
steps. CD-k is a generalization k iterations by repeating the sampling process k
times. CD makes the following simplifications for computing the gradient:

1. Replace the first term (expectation over all input samples) with a single
sample.

2. For the second term, run the chain for fixed k steps:

∆wij = ε(< vihj >data − < vihj >sampled), (15)

The bias updates for the visible and hidden layers respectively can be defined
by these expressions:

∆ai = ε(< vi >data − < vi >sampled), (16)

∆bj = ε(< hj >data − < hj >sampled) (17)

where < vihj >sampled, or reconstructed by means of the CD algorithm can be
computed more efficiently than < vihj >model.

3.5 Applying RBMs to Continuous-Valued Inputs

With the binary units introduced for RBMs in [8], one can handle continuous-
valued inputs by scaling them to the [0, 1] interval and considering each input
as the probability for a binary random variable to take the value 1. Previous
work on continuous-valued input in RBMs include [4], in which noise is added
to sigmoidal units, and the RBM forms a special form of Diffusion Network [16].
The approach followed in this paper starts by acquiring the RBM weights in the
pre-training phase by using Rectified Linear Units (for the hidden units) and
training with Sigmoid units, which has shown to work very well [6], something
that our results confirm.

A continuous RBM (RBM) is a form of RBM that accepts continuous inputs
via a different type of contrastive divergence sampling. This allows the CRBM
to handle things like image pixels or word-count vectors that are normalized to
decimals between zero and one.

4 A Systematic Approach for Training RBMs

This section describes an optimized approach for choosing the training parame-
ters of the specific RBMs configured. It takes advantage of Hinton et al.’s results
[11]. An optimization approach is important in the context of RBMs due to the
complexity of assuring the learning process convergence and for avoiding overfit-
ting. In the end we aim at showing the validity of our approach in the context of
network intrusion detection by using a specific dataset. The approach compre-
hends three major aspects – Weight initialization, Pre-training, and Fine-Tuning
– plus a few other parameter optimization choices (see Table 1).



Fine Tune with Sigmoid
Units

Derive a figure for the
internal nodes number

Linear Units for Pre-Training
Phase

(1) Iterate a number of values with fixed remainder
parameters as suggested by Zhao et al. [28]
(+) and using an approach similar to the gradual drop-
in suggested in [22]

(3) Expected to obtain good performance

Fig. 4. Approach for training RBMs

4.1 The Three Major Aspects

Pre-Training As an alternative or in addition to weight initialization techniques,
layer-wise unsupervised pre-training can be used to initialize the weights for fine-
tuning. For every combination of two adjacent layers, an RBM is trained for a
certain number of epochs, whereas an epoch consists of training the network on
batches of samples.

Fine-Tuning After pre-training, the instance is fine-tuned using one of several
fine-tuning functions (more on those in the next section).

Choosing the Number of Hidden Nodes Dimensioning the RBM internals involves
testing a set of dimensioning options and extracting the best option using the
accuracy maximization criteria.

4.2 Using Rectified Linear Units

Hinton et al. have shown that for problems involving real valued data rectified
linear units provide better results [17]. Although their research has been over
image datasets, there is enough numerical similitude to both problems as the
results obtained have been based on a feature based real valued dataset. The
present proposal uses Rectified Linear Units for the hidden layer during pre-
training. A suggestion over the usage of sigmoid units has been put forward by
pre-training the RBM with Rectified Linear Units and fine tuning with Sigmoid
Units. The advantages of this approach come in the type of output produced
belonging to {0, 1} instead of [0, 1].

4.3 Parameter Optimization

As stated previously we do not try to optimize the whole set of RBM parameters
as it would show to be exhaustive, but instead choose a number of parameters
as optimization enablers, based on the literature. The specific values for each
parameter used in the experiment is in Table 1.



Table 1. Experimental Parameters

Fine Tuning parameters Value Fine Tuning parameters Value

rbm.batchSize 100 DArch.initialMomentum 0.5

rbm.lastLayer True DArch.finalMomentum 0.9

rbm.learnRate 0.001 DArch.momentumRampLength 0.5

rbm.weightDecay 2e-04 DArch.unitFunction sigmoidUnitRbm

rbm.initialMomentum 0.5 bp.learnRate 0.001

rbm.finalMomentum 0.9 DArch.dropout 0

rbm.unitFunction linearUnitRbm DArch.dropout.oneMaskPerEpoch False

rbm.updateFunction rbmUpdate DArch.isClass True

rbm.numCD 10 DArch.numEpochs 50

rbm.numEpochs 50 DArch.errorFunction Mean Square Error

rbm.momentumRampLength 0.5 retainData True

DArch.batchSize 100 normalizeWeights True

bootstrap True preProc.params method=”range”

DArch.fineTuneFunction backpropagation generateWeightsFunction generateWeightsGlorotUniform

Number of Training Epochs. Regularization of neural networks is used to im-
prove generalization by preventing over-fitting. The most straightforward way
of preventing over-fitting is early stopping. One of the options for the regular-
ization approaches used limits the number of iterations is choosing the number
of epochs for the training phase to 50. In practice this number has been chosen
as a limit value based on empirical criteria since it marked the beginning of an
asymptotic behaviour for the error.

Mini batches Updating the weights using small “mini-batches” of 10 to 100
samples in size has shown to allow better results. In the experiment we used a
mini batch size of 100.

Momentum By choosing a momentum value it is possible to modulate the speed
of learning in RBM training. At the start of learning, the random initial pa-
rameter values may create very large gradients and the system is unlikely to be
at a minimum, so it is usually best to start with a low momentum of 0.5. This
very conservative momentum typically makes the learning more stable than no
momentum at all [11].

Learning Rate A good rule of thumb for setting the learning rate ε is to look
at a histogram of the weight updates and a histogram of the weights [27]. The
updates should be about 10−3 times the weights (to within about an order of
magnitude). When a unit has a very large fan-in, the updates should be smaller
since many small changes in the same direction can easily reverse the sign of
the gradient. Conversely, for biases, the updates can be bigger: ∆wij = ε(<
vihj >data − < vihj >sampled)

Weight Decay Weight-decay works by adding an extra term to the normal gra-
dient. The extra term is the derivative of a function that penalizes large weights.
The simplest penalty function, called L2, is half of the sum of the squared weights
times a coefficient which will be called the weight-cost. For an RBM, sensible
values for the weight-cost coefficient for L2 weight-decay typically range from
0.01 to 0.00001.



Weight initialization Weight initialization values represents the starting value of
the RBM weights that amplify or mute the input signal coming into each node.
Proper weight initialization help training training time. In our case a trial has
been made with Glorot uniform weight initialization as described in [25], in the
perspective of achieving faster convergence.

5 Dataset Description

The UNB ISCX Intrusion Detection Evaluation Dataset was developed in order
to provide a quality dataset for network intrusion detection research [21]. The
approach for defining this dataset involved identifying features that would allow
effective detection, while minimizing processing costs. Each record of the dataset
is characterized by features that fall into three categories: basic, content, and
traffic. These features are described in [5, 24].

The UNB ISCX dataset is composed of sequences of entries in the form of
records labeled as either normal or attack. Each entry contains a set of charac-
teristics of a flow, i.e., of a sequence of IP packets starting at a time instant and
ending at another, between which data flows between two IP addresses using a
transport-layer protocol (TCP, UDP) and an application-layer protocol (HTTP,
SMTP, SSH, IMAP, POP3, or FTP). The dataset is fairly balanced with prior
class probabilities of 0.466 for the normal class and 0.534 for the anomaly class.

This dataset is composed of two sub-datasets: a train dataset, used for train-
ing a NIDS, and a test dataset, used for testing. Both have the same structure
and contain all four types of attacks. However, the test dataset has more attacks
as shown in Table 2, to allow evaluating the ability of algorithms to generalize.
The train dataset has around 2.2 GB of data; the test dataset has 0.8 GB.

Table 2. Attacks in the UNB ISCX train / test datasets (all attacks from the first
exist also in the second)

Class Train dataset attacks Test dataset only attacks

Probing portsweep, ipsweep, satan, guesspasswd, spy,
nmap

snmpguess, saint, mscan, xsnoop

DoS back, smurf, neptune, land, pod, teardrop, buffer
overflow, warezclient, warezmaster

apache2, worm, udpstorm, xterm

R2L imap, phf, multihop snmpget, httptunnel, xlock, sendmail, ps
U2R loadmodule, ftp write, rootkit sqlattack, mailbomb, processtable, perl

6 The Experiment

We used the DArch R Package package [12, 13] in the experiments. This package
allows generating deep architecture networks and training them. All parameters
not explicitly referred took the default values.



Table 3. Error Estimation (averages for 5 trials)

16 17 18 19 20 25 30

Training MSE 0.137 0.120 0.122 0.123 0.109 0.115 0.106
Training classification error 5.55% 5.92% 6.06% 5.79% 5.86% 5.94% 5.75%
Validation MSE 0.137 0.120 0.122 0.123 0.110 0.115 0.107
.632+ MSE 0.137 0.120 0.122 0.123 0.110 0.115 0.107
Validation classification error 5.65% 5.88% 5.99% 5.73% 5.89% 5.94% 5.75%
.632+ classification error 5.61% 5.89% 6.02% 5.75% 5.88% 5.95% 5.75%

In order to make these features suitable inputs for the visible layer of the
RBM, we normalized them to the range [0,1], and treated them as continuous
values. Cross-validation, sometimes called rotation estimation, is a validation
technique for assessing how the results of a statistical analysis will generalize
to an independent dataset. One round of cross-validation involves partitioning
a sample of data into complementary subsets, performing the analysis on one
subset (the training set), and validating the analysis on the other subset (the val-
idation or testing set). To reduce variability, multiple rounds of cross-validation
are performed using different partitions, and the validation results are averaged
over the rounds.

For the starting RBM hidden nodes dimensioning in the experiment, a tech-
nique similar to the gradual drop-in of nodes (increasing the number of nodes in
each step of the experience) was used with reference values near the dv/2e. The
numbers of nodes used in the experience were 16, 17, 18, 19, 20, plus 25, 30 for
comparison purposes. This has been suggested to be a sufficient approximation
for obtaining good results in training RBMs [28]. The most relevant parameters
for the RBM as used are depicted in Table 1. This thesis has been validated
since the best performance figures are shown to be obtained for an internal node
number of 16.

We performed an empirical study to compare the .632+ bootstrap estimator
with the repeated 10-fold cross-validation. The results for the pre-training and
fine tuning phases were obtained with 125973 samples and 40 predictor variables.
The accuracy was used to select the optimal model using the largest value. Pre-
processing was used to re-scale the features to the range [0, 1]. Bootstrapping was
started with 125973 samples and resulted in 79598 unique training samples and
46375 validation samples for this run. Training data was shuffled before each
epoch and the final result for each run was taken from the average results of
each epoch. The results for the classification and network errors are summarized
in Table 3 and put in contrast in Figures 5 and 6. By looking at the .632+
statistics value we can observe that a negligible amount of bias for the error
values is present, since this statistics results similar to the respective values.

In Figure 5 the training and validation Classification Errors are presented as
a graphical example of the results from Table 3. The classification error is the
error of the classification given by the RBM for a validation and a training set.
In Figure 6(a) an example of error convergence for the case of an RBM with
16 internal nodes is presented. Similarly, in Figure 6 the training and validation
Mean Square Errors are presented as a graphical example of the results from



N=16 N=17 N=18 N=19 N=20 N=25 N=30
0

2

4

65
.5

5

5
.9

2

6
.0

6

5
.7

9

5
.8

6

5
.9

4

5
.7

5

5
.6

5

5
.8

8

5
.9

9

5
.7

3

5
.8

9

5
.9

4

5
.7

5

5
.6

1

5
.8

9

6
.0

2

5
.7

5

5
.8

8

5
.9

5

5
.7

5

P
er

ce
n
ta

g
e

(%
)

Train Class Error Val Class Error .632+ Val Class Error

Fig. 5. Experimental results for training and validation classification errors (Table 3)

N=16 N=17 N=18 N=19 N=20 N=25 N=30
0

5 · 10−2

0.1

0.15

0.2

0
.1

4

0
.1

2

0
.1

2

0
.1

2

0
.1

1

0
.1

2

0
.1

10
.1

4

0
.1

2

0
.1

2

0
.1

2

0
.1

1

0
.1

2

0
.1

10
.1

4

0
.1

2

0
.1

2

0
.1

2

0
.1

1

0
.1

2

0
.1

1

R
a
ti

o

Training MSE Validation MSE .632+ MSE

Fig. 6. Experimental results for network training and validation errors from Table 3

Table 3. The MSE is the average difference between the expected and the actual
output, and it contains both the variance and bias of the estimator. In Figure
7(b) an example of MSE convergence for the case of a RBM with 16 internal
nodes is presented.

Figure 7 presents the results for an example with internal node number of
16, showing good convergence properties (with maximum of 50 epochs).

7 Conclusions

The application of Restricted Boltzmann Machines in the network intrusion de-
tection field has been gaining momentum. In this work it has been shown that it
is possible to surpass some performance obstacles by means of proper RBM op-
timization given a set of optimized choices for the remaining parameters. Among
these the most troublesome is the fact that for using RBMs it is relevant to pro-
cess real valued features in the [0, 1] range therefore the need for transforming
the original values accordingly for this range. Good results have been obtained

Table 4. Performance metrics

Metrics Drop = 0 Drop = 0.1 Drop = 0.5

Accuracy 0.7609 0.7634 0.7549
Kappa 0.5400 0.5414 0.5258
Specificity 0.9666 0.9368 0.9353
Sensitivity 0.6063 0.6331 0.6194
Neg Pred Value 0.6485 0.6574 0.6487
Pos Pred Valuee 0.9603 0.9302 0.9272
Balanced Accuracy 0.7865 0.7850 0.7773



(a) (b)

Fig. 7. Errors for iterations with 16 internal nodes: (a) Classification error; (b) MSE

for the Network Training MSE and Network Validation MSE. In terms of classi-
fication the results obtained were also comparable to the best obtained till now
in NIDS using RBMs [5].

Acknowledgements. This work was supported by national funds through Fun-
dação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013
(INESC-ID).

References

1. D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltz-
mann machines. Cognitive science, 9(1):147–169, 1985.

2. Y. Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn.,
2(1):1–127, Jan. 2009.

3. Y. Bengio and Y. LeCun. Scaling learning algorithms towards ai. In L. Bottou,
O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines.
MIT Press, 2007.

4. H. Chen and A. F. Murray. Continuous restricted Boltzmann machine with an
implementable training algorithm. Vision, Image and Signal Processing, IEEE
Proceedings, 150(3):153–158, 2003.

5. U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis. Network anomaly detection
with the restricted boltzmann machine. Neurocomput., 122:13–23, Dec. 2013.

6. G. Hinton. A practical guide to training restricted Boltzmann machines. In
G. Montavon, G. B. Orr, and K.-R. Müller, editors, Neural Networks: Tricks of the
Trade, volume 7700 of LNCS, pages 599–619. Springer, 2012.

7. G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

8. G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, July 2006.

9. G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors.
arXiv:1207.0580 [cs.NE], July 2012.

10. G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800, 2002.



11. G. E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines. In
G. Montavon, G. B. Orr, and K.-R. Müller, editors, Neural Networks: Tricks of the
Trade, volume 7700 of LNCS, chapter 24, pages 599–619. Springer, 2nd edition,
2012.

12. G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets. Neural Comput., 18(7):1527–1554, July 2006.

13. G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

14. E. Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik,
31(1):253–258, 1925.

15. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, 2012.

16. J. R. Movellan, P. Mineiro, and R. J. Williams. A monte carlo em approach for par-
tially observable diffusion processes: Theory and applications to neural networks.
Neural Computation, 14:1507–1544, 2002.

17. V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In J. Frnkranz and T. Joachims, editors, Proceedings of the 27th Inter-
national Conference on Machine Learning, pages 807–814. Omnipress, 2010.

18. L. Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder
transition. Phys. Rev., 65:117–149, Feb 1944.

19. F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, Nov. 1958.

20. R. Salakhutdinov. Learning in markov random fields using tempered transitions.
In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta,
editors, NIPS, pages 1598–1606. Curran Associates, 2009.

21. A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani. Toward developing
a systematic approach to generate benchmark datasets for intrusion detection.
Computers & Security, 31(3):357–374, May 2012.

22. L. N. Smith, E. M. Hand, and T. Doster. Gradual dropin of layers to train very
deep neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4763–4771, 2016.

23. P. Smolensky. Information processing in dynamical systems: foundations of har-
mony theory. In Parallel distributed processing: explorations in the microstructure
of cognition, vol. 1: foundations, pages 194–281. MIT Press, 1986.

24. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the
kdd cup 99 data set. In Proceedings of the Second IEEE International Conference
on Computational Intelligence for Security and Defense Applications, CISDA’09,
pages 53–58, 2009.

25. Y. W. Teh and D. M. Titterington, editors. Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, 2010.

26. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion. Journal of Machine Learning Research, 11:3371–3408,
Dec. 2010.

27. M. Welling and Y. W. Teh. Linear response algorithms for approximate inference
in graphical models. Neural Computation, 16:197–221, 2004.

28. X. Zhao, Y. Hou, Q. Yu, D. Song, and W. Li. Understanding deep learning
by revisiting Boltzmann machines: An information geometry approach. CoRR,
abs/1302.3931, 2013.


