
Wormhole-Aware Byzantine Protocols �

Nuno Ferreira Neves Miguel Correia Paulo Verı́ssimo
Faculdade de Ciências da Universidade de Lisboa

Bloco C5, Campo Grande
1749-016 Lisboa - Portugal
�nuno,mpc,pjv�@di.fc.ul.pt

Abstract

This paper describes a new way of designing intrusion-
tolerant protocols that rely, at certain points of their execu-
tion, on services provided by wormholes. Wormholes are
enhanced components with stronger properties usually not
available in the rest of the system. Our experience with this
type of setting has shown that it is possible to design pro-
tocols with some interesting characteristics such as good
performance, improved resilience, and independence from
the FLP impossibility result.

1 Introduction

As society becomes more and more dependent on com-
puter systems, attacks and intrusions perpetrated by mali-
cious adversaries are important problems that need to be
addressed in any IT infrastructure. In fact, current statis-
tics published by CERT show that these problems are not
disappearing, as indicated by the exponential grow on the
number of reported incidents during the last decade [1].

Usually, protocols developed for these environments,
in particular when there is unpredictable timeliness in the
nodes and network, suffer in efficiency and/or determin-
ism and/or liveness in order to tolerate malicious intru-
sions. In the paper we describe a new way of designing
intrusion-tolerant protocols, also called Byzantine resilient
protocols, which addresses this conflict. The fundamental
characteristic of these protocols is that they rely on a worm-
hole at certain steps of their execution. Wormholes are en-
hanced components with properties usually not available
in the rest of the environment [6]. For instance, in terms
of security, the majority of the system might suffer from
arbitrary (or Byzantine) failures while the wormhole can at
most crash (i.e., intrusions are prevented from occurring in
this component). As a consequence, the services provided

�This work was partially supported by the FCT through project
POSI/CHS/39815/2001 (COPE), and the Large-Scale Informatic Systems
Laboratory (LASIGE).

by the wormhole can not be subverted, and they always re-
turn correct results (or nothing in case of a crash). This
type of behavior, however, can not be naively assumed, but
it has to be enforced during the construction of the system,
using design principles such as architectural hybridization.

In the rest of our discussion we will consider an asyn-
chronous Byzantine environment augmented with a spe-
cific kind of wormhole, named Trusted Timely Computing
Base (TTCB) [5] (see Figure 1). A TTCB can be char-
acterized as a secure real-time and fail-silent (crash) dis-
tributed component. In this setting, processes observe a
typical computing environment – that we call the payload
system – where they can experience undefined delays and
arbitrary failures. However, in our approach, processes
can call the TTCB at certain points of their execution, to
perform correctly “small” crucial operations of the proto-
cols. “Small” is an important objective since the wormhole
should be kept as simple as possible, and with limited re-
sources that have to be shared among all potential users.

To exemplify our approach, we will present a
wormhole-aware consensus protocol. This protocol is rel-
atively simple and has the following nice features. Even
though it is completely time-free, the protocol is not bound
by the FLP impossibility result because all the necessary
time assumptions are concealed in the wormhole. This so-
lution basically has the same merits as the Chandra and
Toueg failure suspector abstraction [2], but without need-
ing to detect failures, which is a relatively difficult task
to accomplish in Byzantine environments. The protocol
potentially performs well because it has a small number
of rounds. Moreover, during runtime, it does not have to
use public-key cryptography, a well-known and significant
overhead in this type of protocols.

2 System Model
The architecture of the system is divided in two parts,

the payload subsystem where processes are executed and
the wormhole (see Figure 1). The payload subsystem en-



Process sends
messages through
the payload network 

TTCB

Pi

Wormhole uses
the secure 
control channel

Process calls a 
service of the 
local wormhole

Figure 1. Architecture of one node (the pay-
load system is represented in dark and the
wormhole in white).

compasses the usually available software of any computer,
such as operating system and middleware libraries, and a
payload network where processes can exchange messages.
The wormhole is a distributed component with a private
network called the control channel. It offers a limited set
of services that can be used by the processes when needed.

Any entity running in the payload subsystem can ex-
perience unbounded delays and arbitrary failures. There-
fore, a message will take an unknown interval to be deliv-
ered. Moreover, while in transit, it might be attacked by
an adversary. We make the usual assumption that the ad-
versary controls less than one third of the processes (i.e.,
� � �� � �).

The wormhole is built to be timely and secure. Conse-
quently, once a service starts to be executed, it will take
a well-know period for the answer to be available at the
TTCB’s interface (but it will take an arbitrary time to be
delivered to the process). Even if an adversary manages to
control the payload part of a node, she (or he) will not be
able to subvert the local TTCB.

Payload channel assumptions We make the assumption
that payload channels are fair, which means that if a pro-
cess sends infinitely many messages to a single destina-
tion then infinitely many of those messages are correctly
received. Therefore, if each pair of processes shares a sym-
metric key, it is possible to construct secure channels on the
payload network with the following properties: a) if � and
� are correct and � sends a message M to �, then � eventu-
ally receives M; b) if � and � are correct and � receives a
message M with sender(M) = �, then M was sent by � and
M was not modified in the channel 1.

Wormhole interface The only service used by the pro-
tocol is a low-level agreement on fixed sized values (20

1One can build these channels by adding Message Authentication
Codes (MAC) to the messages and using re-transmissions to ensure de-
livery.

bytes) called TBA. Processes propose a value and then they
get a result. The service interface is:

error, value, prop-ok �
� TTCB TBA(eid, elist, aid, quorum, val)

The first three arguments are mainly used for identifi-
cation: eid is the process identifier, elist is a list with the
processes that will potentially call the service, and aid the
agreement identifier. quorum defines the minimum num-
ber of proposed values val that must be received before the
agreement can start. The result provided by the service is
the val that was proposed by most entities (value). Other
returned information is an error, and a mask prop-ok indi-
cating the processes that proposed the decided value.

3 Solving Consensus

In the consensus problem a group of processes attempts
to find a common value that is calculated using the origi-
naly proposed values. We will solve a consensus with the
following properties: Validity - if all correct processes pro-
pose the same value v, then any correct process that de-
cides, decides v; Agreement - no two correct processes de-
cide differently; Termination - every correct process even-
tually decides.

Before we start a more detailed description of the pro-
tocol, we would like to emphasize that the consensus prob-
lem does not become much easier simply because our solu-
tion utilizes a low level agreement service (the TBA). First,
the difficulties created by the asynchronous setting con-
tinue to exist because any of, process execution, communi-
cation through the payload channel, and wormhole service
invocations, might be delayed by an unknown amount of
time. Second, both the node and the communication chan-
nels might experience Byzantine failures, which means
that wrong, contradictory or malicious data can be received
by the processes.

3.1 The Protocol
Each process running the protocol executes the algo-

rithm 1. The arguments of the function are a list with
the identifiers of the processes (����	), a unique consen-
sus identifier (
��), and the value that will be proposed
(�����). The value can have an arbitrary number of bytes,
ranging for instance from 1 bit (a “yes” or “no” agreement)
to 10 MBytes (the contents of some file).

The protocol is organized in two phases. In the first
phase, processes use the payload network to transmit the
values to the other processes (Lines 4-8). Since commu-
nication is done with secure channels, an adversary that
controls the network is unable to change the message con-
tents, and the right values are received. Processes stay in

2



Algorithm 1 Consensus (executed by every � �)
1 function consensus(elist, cid, ������)
2 hash-v �� �hash of the decided value�
3 bag �� �bag of received values�

4 broadcast(B-value, i, value�) �payload channel�
5 repeat
6 receive(B-value, k, value� )
7 bag �bag � �value��
8 until (bag has �� � � values from different processes)
9 activate task(T1, T2) �start two concurrent tasks�

10 task T1:
11 v �most Common Value(bag)
12 out �TTCB TBA(eid, elist, cid, �� � �, Hash(v))
13 if (at least � � � proposed the same value) then
14 hash-v = out.value
15 else
16 return (default-value)

17 task T2:
18 when (receive(Decide, k, value� )) do
19 bag �bag � �value��
20 when (hash-v �� �) and (����������	 : Hash(value� ) = hash-v))

do
21 broadcast (Decide, i, value� )
22 return (value� )

this phase until �� � � values have been collected from
different senders, which ensures that there is a majority of
values belonging to correct processes (at least � ��) in the
various bags.

In the second phase, processes agree on one of the val-
ues, using the wormhole to accomplish this task. Processes
start by selecting the most common of the stored values in
the bag (Line 11). This simple condition guarantees that
all correct processes choose the same value if they all had
identical proposals. On the other hand, if correct processes
had different proposals, then they can pick distinct values
and even values submitted by a malicious process (it all
depends on the network delays and on the existence of col-
lusion among the processes controlled by the adversary).

Next, processes call the TBA service of the wormhole
with an hash of the chosen value, ������, and wait for
a decision (Line 12). A majority of such calls comes from
correct processes because the ������ parameter is set to
�� � �. When the TBA returns, all processes obtain the
same results, and then they perform a few tests to deter-
mine how they should terminate. Basically, there are two
possible outcomes, depending on the original proposals
(prop-ok is used to make this test at Line 13). If all cor-
rect processes had the same original value, then they can
decide immediately since this value will be supported by
at least ��� votes (Lines 14 and 20-22). Otherwise, either
a default value is chosen (Line 16) or another value that by
luck had � � � or more votes (Lines 14 and 18-22).

It is relatively easy to demonstrate that the protocol ver-

ifies all properties of consensus.

4 Conclusions and Future Directions

The paper introduces a new way of designing intrusion-
tolerant protocols. The distinctive characteristic of our ap-
proach is that processes continue to execute in a Byzantine
asynchronous environment, but they can call the worm-
hole’ services at certain steps of their execution, to perform
correctly “small” crucial operations of the protocols.

In the paper we have described an example protocol
that solves consensus problem. This protocol has some in-
teresting characteristics: good performance since it has a
small number of rounds and does not need to use public-
key signatures; and it is not constrained by the FLP im-
possibility result since all synchrony assumptions can be
hidden inside the wormhole. In other problems we have
shown that is possible to construct wormhole-aware proto-
cols that have better resilience than their counterparts, for
example reliable multicast [3] and state-machine replica-
tion [4].

In the future, there are several avenues that can be ex-
plored:

� Definition of weaker wormholes and services that al-
low the design of protocols with good properties.

� More design, implementation and evaluation of other
wormholes and protocols.

� Better formalization and analysis of the wormhole
model.

References

[1] CERT Coordination Center. CERT/CC Statistics 1988-2003.
http://www.cert.org/stats/cert stats.html, March 2004.

[2] T. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[3] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo. Efficient
Byzantine-resilient reliable multicast on a hybrid failure model. In
Proceedings of the 21st IEEE Symposium on Reliable Distributed
Systems, pages 2–11, October 2002.

[4] M. Correia, N. F. Neves, and P. Verı́ssimo. How to tolerate half
less one Byzantine nodes in pratical distributed systems. Manuscript,
March 2004.

[5] M. Correia, P. Verı́ssimo, and N. F. Neves. The design of a COTS
real-time distributed security kernel. In Proceedings of the Fourth
European Dependable Computing Conference, pages 234–252, Oc-
tober 2002.

[6] P. Verı́ssimo. Uncertainty and predictability: Can they be reconciled?
In Future Directions in Distributed Computing, volume 2584 of Lec-
ture Notes in Computer Science, pages 108–113. Springer-Verlag,
2003.

3


