
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identi�er 10.1109/ACCESS.2017.DOI

SRX – Secure Data Backup and Recovery
for SGX Applications
DANIEL ANDRADE1, JOÃO SILVA2 (MEMBER, IEEE), AND MIGUEL CORREIA3 (Senior
Member, IEEE)
1INESC-ID
Instituto Superior Técnico
Universidade de Lisboa, Portugal (e-mail: daniel.andrade@tecnico.ulisboa.pt)
2INESC-ID
Instituto Superior Técnico
Universidade de Lisboa, Portugal (e-mail: joao.n.silva@inesc-id.pt)
3INESC-ID
Instituto Superior Técnico
Universidade de Lisboa, Portugal (e-mail: miguel.p.correia@tecnico.ulisboa.pt)

Corresponding author: Miguel Correia (e-mail: miguel.p.correia@tecnico.ulisboa.pt).

This work was supported by the European Commission through contract 870635 (DE4A); by national funds through Fundação para a
Ciência e Tecnologia (FCT) grant number UIDB/50021/2020; and by Universidade de Lisboa (ULisboa), Instituto Superior Técnico (IST),
and Instituto de Engenharia de Sistemas e Computadores – Investigação e Desenvolvimento (INESC-ID).

ABSTRACT Intel SGX improves the security of applications by shielding code and data from untrusted
software in enclaves. Since enclaves lose their state when closed, that state has to be sealed, i.e.,
cryptographically protected with a secret key, and stored outside the enclave boundary. In SGX, the
used key is bound to both the enclave and the processor that sealed the data, so it is unfeasible for
any enclave in another computer to derive the same secret key to unseal such data. This o�ers security
to the data, but also makes it impossible to recover that data if the original computer is damaged or
stolen. In order to support backup and recovery of data sealed by enclaves, we propose SRX, a solution
for sharing sealed data amongst a restricted set of SGX-enabled computers executing the same enclave
code. Enclaves using SRX have access to common keys to seal and unseal enclave data, allowing the
sharing of sealed data among the trusted domain. SRX guarantees that these secret keys are never
exposed outside the trusted domain. SRX was implemented and evaluated with two applications: a
bitcoin wallet and a password manager.

INDEX TERMS Intel SGX, sealing, backup, recovery, TEE

I. INTRODUCTION
The Intel Software Guard Extensions (SGX) technol-
ogy [1]–[3] enables user-level applications to allocate pro-
tected regions of memory to run sensitive code [4]–[6].
These regions of memory are called enclaves and ensure
the con�dentiality and integrity of the enclosed code and
data, even from privileged software. A measurement of the
initial enclave code and data is taken during its building
process, and is used by veri�ers during local or remote
attestation [7] to prove that: (i) the code is executing
inside an enclave, (ii) the platform (SGX-enabled computer)
running the enclave has not been revoked, and (iii) that
neither code nor data have been tampered with. A platform
is an SGX-enabled computer, that is, a computer containing
and using a processor that supports SGX.

Enclaves are stateless in the sense that they lose their

state when closed, e.g., when the platform hibernates
or shuts down. Their state can only be preserved if
stored outside the enclave. For that purpose, the state
is cryptographically protected before being exported, i.e.,
encrypted and added an integrity code. This encryption
process is referred to as sealing and the secret key is called
sealing key [2]. The sealing key is unique and bound to
a speci�c enclave in a particular platform (i.e., bound to
the processor), meaning that the sealed data can only be
decrypted in the same enclave–platform pair.

The standard sealing procedure is adequate when only a
single platform is supposed to access the enclave data, and
there is no need to share data among multiple platforms.
Since each processor has a unique sealing key per enclave,
only the processor and enclave pair that sealed the data
can unseal it.

VOLUME 4, 2016 1

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

This scenario can be relaxed to allow the data sealed
by an enclave–platform pair to be unsealed by a di�erent
enclave signed by the same vendor and running on the
same platform. This is useful when an application receives
an update and needs to unseal data from an older version of
itself. However, even in this case a processor is still unable
to unseal data sealed by those same enclaves on other
platforms because the sealing key continues to be bound to
the processor. The intrinsic security characteristics of SGX
become a shortcoming for data backups. If the platform
that seals the data is lost then the user permanently loses
access to the data even if there is a backup of the sealed
data. A possible solution is to export private keys, but this
is far from ideal, since it impairs the strong feature of
SGX of preventing secrets from being accessible outside
the enclave.

To allow data backup and recovery across platforms,
we propose the SGX Recovery Extension (SRX) library for
sharing sealed data between platforms of a group. In SRX,
sealed data is data of an application enclave (e.g., the
passwords’ �le of a password manager) that is stored
outside the enclave boundary and only accessible by a
con�gurable group of platforms. SRX allows the creation
of groups Gi of platforms in such a way that an enclave
e can access data sealed by itself or by members of its
group of platforms. In other words, e can seal data in
platform p ∈ Gi and unseal that sealed data in platform
q ∈ Gi even if p ≠ q. Isolation amongst enclaves remains
in place and enclaves from other groups do not have
access to data sealed by e. To accommodate this, SRX
uses deterministic key pairs for an enclave–platform pair
created by the SGX EGETKEY instruction and uses those key
pairs in a key-exchange protocol between the platform and
a common entity representing the group. To add legitimate
platforms to the group, the SGX attestation mechanism
guarantees the authenticity of the platform, along with a
user authorization via a trusted user interface. The end
user (i) is the single user of its own group, (ii) is dealing
with a small group of computers it has access to, and (iii)
manages backups and recovery of their own data. This is
similar to how an end user would handle their backups.

SRX supports shareability and recovery of data. We
use the term shareability to designate the ability of all
platforms of a certain group to unseal data sealed by
any other platform of the same group. Shareability allows
applications to recover sealed data. Recovery means data
sealed by one platform is accessible to all other platforms
members of the same group, even after the platform that
sealed the data becomes permanently unavailable.

SRX uses standard SGX mechanisms and has been imple-
mented as a library, and integrated in two applications, to
show the feasibility and applicability of our proposal. These
test applications are a bitcoin wallet built on top of libbtc
and a password manager based on Titan, and we use SRX
to allow enclaves in the same group to unseal each other’s
sealed data. We evaluated SRX experimentally with the two

applications. The results show an overhead under 30 ms
to create the enclave, when comparing the SRX version
with the SGX-only version of an application, and under 1
ms to subsequently retrieve a secret key accessible only to
members of a particular group to unseal data. These two
costs, enclave setup and deriving a secret key shared by
group members, are paid only once and are independent
of the size of the sealed data.

This works’ contributions are: (i) a novel mechanism
that enables the recovery of sealed data on an SGX-
enabled platform di�erent from the one that sealed the
data, supporting securely moving data between platforms
and data backup; and (ii) a prototype of SRX, its integration
with two relevant applications we adapted to work within
an enclave, and its experimental evaluation.

Section II introduces our approach, and presents the
threat model and security properties of SRX. Section III
details our sealing mechanism for SRX data and the pro-
tocols of SRX. Section IV describes the prototype and the
two applications. Section V and Section VI evaluate the
prototype. Section VII overviews related work. Section VIII
presents our conclusions. The appendix presents a proof
sketch of the correctness of the solution and a �gure with
the keying material derivation.

II. A RECOVERY EXTENSION
SRX provides new functionality not available in SGX.
This section describes its application context, threat model,
architecture, interface, and security properties.

A. APPLICATION CONTEXT
One possible use for SRX is a software house providing
an enclaved password manager application to end users.
Backups are an essential feature of a password manager,
but sealed data cannot be decrypted by a processor dif-
ferent than the one that sealed that data. Having the
enclaved password manager export the secret encryption
key outside the enclave would expose that key to potential
attackers who, additionally, could develop malware to
exploit the export/import interface of such application,
weakening the isolation bene�ts of SGX. Transferring the
secret encryption key via a trusted service of the vendor
would expose the keying material to the vendor and turn
such service into a target for attackers.

SRX is a trusted library imported into enclave-based
applications developed by an Independent Software Vendor
(ISV) [8]. The ISV provides these enclaved applications to
its employees and/or third parties as a service. These en-
claved applications run locally on the end users’ computers,
but the ISV has access to a computational environment to
run application support services that may be required.

For the example of the password manager, SRX supports
backing up these passwords without the two mentioned
problems, i.e., exporting the secret key outside the enclave
and in the process exposing it to potential attackers, and
trusting the ISV with the secret key. The ISV can build

2 VOLUME 4, 2016

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

backup/recovery functionality on top of SRX for the bene�t
of end users, without exposing the secret encryption key
outside the enclave, because SRX gives a secure mechanism
to the programmer and user to share secret keys across
SGX-enabled computers.

Fig. 1 provides a high-level view of two groups of
platforms using SRX in their applications. Group 1 is
composed of platforms p and q that share SRX sealed data
sx.1 with one another, and similarly, Group 2 is composed
of platforms r , s and t that share SRX sealed data sx.2
with each other. The secret keys that encrypt sx.1 and sx.2
are never exposed outside the respective enclaves, and this
data is always encrypted before being transferred from one
enclave to another or stored outside the enclave.

The transfer of encrypted data from one enclave to
another is the responsibility of the application enclave
software, developed by the ISV. SRX only provides the
keying material to encrypt the enclave data.

B. THREAT MODEL
The trusted computing base (TCB) consists of the plat-
forms’ processors and enclaves. The SRX trusted library is
statically linked with the application enclave and therefore
implicitly part of the TCB. In addition, the Intel Attestation
Service (IAS), controlled by Intel, is part of the TCB since it
certi�es enclaves as legitimate and up to date. The Remote
Attestation Proxy (RAP), controlled by the ISV, is outside of
the TCB. We trust the platforms’ processors and assume all
hardware is implemented correctly and that any guarantees
provided by SGX cannot be circumvented. Side-channel
attacks [9]–[12] are beyond the scope of this paper.

The adversary controls the network, all unprivileged and
privileged software on the platforms, can initiate multiple
instances of the same enclave, restart those instances, and
restart the platforms.

In SRX, each group of platforms is composed of a small
number of computers and controlled by one end user that
manages the backup and recovery of their own data.

We assume the existence of an Authenticated Encryption
with Associated Data (AEAD) scheme [13] that is both
IND-CPA and INT-CTXT. This form of encryption provides
con�dentiality, integrity, and authenticity to the input
plaintext, and integrity and authenticity of some Associ-
ated Data (AD), which is not encrypted. We also assume
the existence of a Key Derivation Function (KDF) using
a pseudorandom function and a 2-party key exchange
protocol, Elliptic Curve Di�e-Hellman (ECDH) [14], that
is secure against eavesdroppers.

AEAD [15] has functions Encrypt(K,N,P,A) → C,T for
authenticated encryption and Decrypt(K,N,C,A,T) → P
or FAIL for authenticated decryption, where K is a secret
key, N is a nonce, P is the data to be encrypted and
authenticated, A is the data to be authenticated but not
encrypted, C is the ciphertext which is of the same length
as the plaintext P, T is the authentication tag, and the FAIL
error code means the input is not authentic. KDF has

one function KDF(salt,IKM,info,L) → OKM where salt
is an optional non-secret random value, IKM is the input
keying material, and info is an optional string binding
the derived output keying material, OKM of length L, to
context-speci�c information. ECDH has one function ECDH
(KR,KU) → K where KR is the private key of one entity A,
KU is the public key of a distinct entity B, and K is a secret
shared between A and B.

C. SRX OVERVIEW
This section presents an overview of the architecture and
functioning of SRX.

1) Components

Fig. 2 shows the key components of the system and
their logical connections. The architecture is composed of
an SGX application containing an enclave using SRX, a
trusted user interface, and a remote attestation proxy that
communicates with Intel during attestation.

a: SGX applications

SGX applications, also known as enclaved applications, use
Intel SGX to secure their secrets and are divided into two
logical components, the trusted component (application
enclave) and the untrusted component. The SRX trusted
library is added to the trusted component by the ISV
responsible for development of the application enclave.
Requests made by the SGX application are understood to
have originated in untrusted code and requests made by
the application enclave are understood to have originated
in trusted code (from within the enclave).

b: SRX

SRX is a trusted library, imported by the application
enclave, that o�ers developers mechanisms to share se-
cret keys across SGX-enabled computers. This enables a
platform to unseal data that was previously sealed by a
di�erent platform without exposing the secret key outside
the enclave and without requiring the two platform to
establish a live communication channel.

In SGX, sealed data is bound to a single platform.
Transferring data to a di�erent platform, without exposing
the secret key outside the enclave, can be achieved by
using an encrypted communication channel between two
mutually-attested enclaves.

In SRX, sealed data is bound to a group of platforms.
Any platform in the group can unseal data sealed by other
platforms in the same group by using a shared secret key
provided by SRX. In comparison with SGX, this task can
be achieved in SRX without having a live communication
channel. This is useful for backups because data sealed by
a platform using SRX can later be retrieved by a di�erent
platform even when the platform that sealed the data is
unavailable because it is o�ine, or because, for example,
it was damaged or stolen.

VOLUME 4, 2016 3

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

Group 1

sx.1

Application

SRX Enclave

Platform q

CSK1

sx.1

Application

SRX Enclave

Platform p

CSK1

Encrypted Data

sx.2

Application

SRX Enclave

Platform s

CSK2

sx.2

Application

SRX Enclave

Platform r

CSK2

Group 2

sx.2

Application

SRX Enclave

Platform t

CSK2

Encrypted Data

FIGURE 1. High-level view of SRX depicting two distinct groups of platforms. Platforms in Group 1 share SRX sealed data with one another, without exposing their Common
Sealing Key (CSK1) outside the respective enclaves, but not with platforms in Group 2 which have their own Common Sealing Key (CSK2).

Trusted
Code

Untrusted
Code

SRX

 Enclave

 SGX Application

TUIProcessor

RAP

IAS

 Platform

 Remote Entities

①
⑩

⑥

③
⑤

⑧
⑨
② ④

⑦
TCB

FIGURE 2. Typical architecture of a system using the SRX trusted library. The
circled step numbers are used in the protocols’ description (§ III).

SRX provides the building block to share data across
SGX-enabled computers. Issues such as managing data
backups, building a trusted path between application en-
clave and user, concurrency, and consistency are the re-
sponsibility of the ISV and should be implemented at
the application level. The SRX trusted library is part of
the trusted code and thus implicitly attested when the
application enclave attests itself.

c: RAP
IAS attests the integrity and authenticity of the trusted
code of the SGX application and is provided by, and under
the control of Intel [16]. The RAP proxy communicates
with IAS during remote attestation (§ III-G) forwarding
enclave quotes from application to IAS and attestation ver-
i�cation reports from IAS to application. The ISV provides
and controls RAP.

We assume there is a single RAP per ISV, serving all
of their enclaved applications. For example, a company
providing enclaved applications to its employees could use

SRX to enable those applications to backup their sealed
data and recover it in di�erent platforms (in the same
group), and all of these platforms would attest to the RAP
deployed by the ISV.

Recall from Section II-B that RAP is outside of the TCB.
If compromised it can block some SRX operations while
not recovered (create group, add platform to group), but
not steal any secrets.

d: TUI

SRX assumes the existence of a Trusted User Interface
(TUI) that provides a trusted path from the ISV application
enclave to the user. SRX uses the TUI for actions deemed
sensitive, such as adding a new platform to the group
(§ III-D) and requesting secret keys when policy requires
it (§ III-F). Work in this area applied to SGX [17], [18]
and other environments [19], [20] could be reused by ISV
developers.

2) Functionalities

During typical operation, the application enclave provides
SRX with an identi�er and asks for the corresponding
secret key. The secret key returned by SRX is then used
by the application enclave to seal its application data. The
application enclave can ask for multiple secret keys by
providing SRX with di�erent identi�ers. SRX ensures all
enclave–platform pairs in the same group can access the
same set of secret keys.

Recovering from the latest sealed data may happen
when the original processor that sealed that data becomes
unavailable, for example, due to damage. Recovering from
old sealed data is useful to rollback state to a previous
version due to, for example, accidental deletion of data.
Usually, accessing older data could be considered a rollback
attack [21], [22] but in SRX rollback protection would
hinder data recovery at the application level.

In SRX a group is composed of a few platforms and
managed by a single end user who also handles their

4 VOLUME 4, 2016

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

own backups, not multiple users on a distributed backup
system or cloud environment. SRX stores a timestamp in
sx when it is modi�ed, and this timestamp is displayed
to the end user via TUI. SRX does not store a timestamp
in application enclave sealed data, but it can be added by
the ISV developer. The timestamp is not a security feature
but it works as a memory aid for the end user. When the
timestamp comes from the computer executing the enclave
it is untrusted but this could be updated to use a trusted
time source [23], [24].

Trusted timestamps can mitigate rollback attacks but
proper rollback protection requires storing the persistent
state, or integrity information pertaining to that state, of
enclaves in non-volatile trusted memory or on a trusted
server. Intel supports monotonic counters for rollback
protection using non-volatile replay-protected storage on
the platform [25]. However, monotonic counters are not a
solution for SRX which works across multiple platforms.
Using a trusted server available to all group platforms
also has its drawbacks because it requires placing trust
in yet another entity, namely that this trusted server will
always provide its clients with the latest data and not serve
obsolete data. This could be mitigated if Intel itself, which
is already trusted and part of the TCB, complemented IAS
with a centralized monotonic counter service accessible to
all SGX-enabled computers.

Data synchronization and consistency is an orthogonal
problem and out of scope for SRX. This should be solved
by the ISV at the application-enclave level when invoking
SRX functionality. For example, when needed the ISV
should provide mechanisms for: copying data between
platforms, solving inconsistencies namely merging data,
and handling di�erent versions of the data. SRX supports
multiple groups with overlapping membership (each sx
represents a group with its own Group ID), however,
modifying two copies of the same sx (same Group ID) in
di�erent platforms in parallel is not supported by SRX and
may cause the group to fork. For instance, updating the
TCB (§ III-B) or removing a platform (§ III-E) triggers a
seed update which leads to a fork when done over di�erent
copies of sx . When that occurs, both instances of sx retain
access to past application enclave sealed data but have
diverging future application enclave sealed data because
the seed used for generating shared secret keys is di�erent.

D. SRX PROGRAMMING INTERFACE
In the SGX programming model, an enclave call (ecall) is
the invocation of a function located within the enclave
from untrusted code, and an outside call (ocall) is the
invocation of a function located outside the enclave made
from within the enclave. These functions are speci�ed by
the ISV in an Enclave De�nition Language [26] �le con-
taining the function prototypes of all trusted and untrusted
functions. In SRX, the programmer continues to use this
programming model to develop the trusted components of
the application.

The application enclave can access SRX functionality
using an interface called the SRX Trusted API. This API
de�nes a set of functions that are implemented by the SRX
trusted library and three functions that are implemented by
the ISV (auth, attest, and time). The API does not provide
encryption functions since SRX only provides the shared
keying material, via get_sk, to the application enclave.
The application enclave then uses this keying material
to encrypt its data using encryption functions o�ered by
the Intel SGX SDK or other third-party libraries. Table 1
provides an overview of the ecalls of this API and Table 2
lists its symbols.

The meaning of the symbols is the following: sx repre-
sents SRX sealed data (dx is the unsealed version of that
data); dp represents the details of a platform (pid, nonce,
and public key); pid is the unique platform identi�er; gid
is the group identi�er; n is a nonce; L is the length of the
output secret key K ; p is a policy (§ III-F); spos is the seed
position; m represents a message; din is user data added
to the quote sent from application enclave to IAS during
remote attestation and dout is the certi�ed report replied
by IAS during remote attestation.

Functions are grouped in three categories: group man-
agement, key management, and external interactions.
Group management is composed of functions setup that
initializes the SRX state essentially creating the group with
the �rst platform (the one currently executing the enclave);
init_p that initializes the metadata of some platform
to be added to the group; add_p that adds a platform,
previously initialized with init_p, to the group; remove_p
that removes a platform from the group; and list that

lists the platforms currently in the group. Key management
is composed of functions get_sk that retrieves a secret
K shared by all platforms in the group; and update that
refreshes the keying material of the group, which is useful
after a security update. External interactions is composed
of functions auth which asks the user for authorization,
via TUI, before proceeding with an operation described
in m, for example, before adding a new platform to the
group; attest that invokes the remote attestation protocol,
for example, during group creation with setup and when
initializing a platform with init_p to ensure the platforms
being initialized (and then added) to the group are legit-
imate and up to date; and time that returns a timestamp
that is added to sx when it changes, for example, during
security updates. Functions auth, attest and time are in-
voked internally by SRX during its operation, although the
application enclave can also invoke these three functions,
and are implemented by the ISV.

E. SECURITY PROPERTIES
The following security properties arise from the use of
SRX:

1) S1 Authorization: Consider the set of functions F =

{add_p, remove_p, get_sk} of the SRX API. For any
function f ∈ F, f is only executed for a group Gi

VOLUME 4, 2016 5

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

TABLE 1. The Trusted API of SRX

Category Function (ecall) Description

Group management setup() → sx Creates the group
init_p() → dp Initializes a new platform
add_p(sx, dp) → s′x Adds a new platform to the group
remove_p(sx, pid) → s′x Removes a platform from the group
list(sx) → {gid, pid0, . . . } Lists group members

Key management get_sk(sx, n, L, p, spos) → K Retrieves shared secret keys
update(sx) → s′x, spos Updates group keying material

External Interactions auth(m, gid) → bool Requests user authorization via TUI *
attest(din) → dout Requests attestation with IAS via RAP *
time() → timestamp Requests a timestamp *

* Implemented by the ISV.

TABLE 2. Symbols of the Trusted API of SRX

Symbol Description

sx SRX sealed data
dx Unsealed version of sx
dp Platform’s details (pid, nonce, and public key)
pid Unique platform identi�er
gid Unique group identi�er
n Nonce
K Shared secret key
L Length of output secret key K
p Policy

spos Seed position
m Message displayed to user via TUI
din User data added to quote during remote attestation
dout Certi�ed report replied by IAS

without returning an error if the execution of f is
requested by a platform p ∈ Gi and the execution is
authorized by the user.

2) S2 Shareability: If platform p ∈ Gi seals data a
obtaining sa , then any other platform q ∈ Gi with
access to sx and sa can disclose the content of a.

3) S3 Con�dentiality: No platform q ∉ Gi can disclose
the content of a from sx and sa sealed by platform
p ∈ Gi .

Appendix A presents an argument that SRX satis�es
these security properties.

III. SRX PROTOCOLS
Section III-A details how SRX obtains the keying material
that seals SRX data, dx , and unseals SRX sealed data, sx .
Section III-B explains the mechanism for generating deter-
ministic keys used in the previous section. The remaining

sections describe the initialization protocol that creates the
group (§ III-C), the group management protocols for adding
platforms to the group (§ III-D) and removing platforms
from the group (§ III-E), how the application enclave
obtains secret keys, from the SRX component, for sealing
its data, da , and unsealing its data, sa (§ III-F), and how
remote attestation works in SGX and SRX (§ III-G). The
protocols’ description follows the steps in Fig. 2 (signalled
with), and uses the ecalls from Table 1.

A. SEALING IN SRX
SRX implements a custom-built sealing mechanism based
on an AEAD scheme: all keying material (nonces, public
keys, and secret keys) is encrypted except if needed to
derive the SRX sealed data decryption key, in which case
it is only authenticated.

The intuition behind this custom-built sealing mech-
anism is that a combination of the ECDH key agree-
ment [27] scheme and the SGX EGETKEY instruction [28]
can be used to obtain the same secret key and initialization
vector (provided as input to the AEAD algorithm) in all
platforms of a group but not in any other platform.

Each platform in a group Gi has a Platform Sealing Key
Pair (PSKP) which is used in unsealing sx . A set of plat-
forms, forming a group Gi , establish a secret among them-
selves using ECDH with their PSKP as input. These key
pairs need to be derived deterministically, not randomly, by
each platform because they are used in reconstructing the
secret keying material that unseals sx and are lost when
the enclave is destroyed. For this purpose each platform
retrieves a secret (to use as private key) from an SGX-
based processor-speci�c key hierarchy via EGETKEY. The
key pair of a platform is therefore bound to a speci�c
enclave–platform pair much like the original SGX sealing
key.

The ECDH public keys are static [29, § 6.3] and are
validated by placing their hash in the user data �eld of the

6 VOLUME 4, 2016

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

quote sent to IAS during remote attestation. IAS validates
the platform, ensuring it is legitimate, and signs the quote
implicitly certifying the keying material as belonging to
a legitimate platform. The user authorizes the addition of
a new platform to the group via TUI, further controlling
which platforms can join the group (from all those that are
legitimate to only those that are legitimate and authorized
by the end user).

a: Sealed data

We consider two kinds of sealed data: SRX sealed data and
application enclave sealed data.
• SRX sealed data (sx) is group data (dx when unsealed)

accessible only to SRX and cryptographically pro-
tected using the AEAD scheme. This is where keying
material is stored.

• Application enclave sealed data (sa, sb, . . .) is ap-
plication data (da, db, . . . when unsealed) accessible
only to the application enclave and cryptographically
protected using keying material derived from dx .

Enclave

 SGX Application
sx

Processor

 Platform Persistent
Storage

sa

sb

EGETKEY

FIGURE 3. Storage of sealed data sa of the application enclave and sx of SRX.

Fig. 3 shows how the application enclave sealed data
is stored. SRX and the application enclave seal and store
their data independently from one another, that is, data
is not sealed and stored in a single common bundle as
one might expect. This is done to increase the �exibility:
although SRX requires only one sealed data bundle, sx , the
application enclave can have many, sa, . . . , sn. The secret
shared by members of group Gi is used to unseal sx , and
within sx we �nd the keying material to unseal sa, . . . , sn.
Fig. 4 shows the contents of sx and sa .

b: Derivation

Table 3 summarizes the keying material used in SRX
where column Entity shows the owner and the symbol
in the last column indicates whether the entry is stored
in sx encrypted and authenticated (µ), is stored in sx
only authenticated (b), or is derived on demand from the
keying material stored in sx (õ).

Fig. 10 in Appendix B depicts the derivation of the
keying material for unsealing sx and subsequently sa; and
the relationship between the public, private, and secret
keys of SRX.

TABLE 3. Keying material

Entity Name Acronym

Group seed µ

Base Key BK õ

Common Sealing Key CSK õ

Common Initialization Vector CIV õ

Group Sealing Public Key GSKU b

Group Sealing Private Key GSKR µ

Encryption Nonce EN b

Sealing Nonce SN b

Platform Platform Sealing Nonce PSN b

Platform Sealing Public Key PSKU b

Platform Sealing Private Key PSKR õ

Platform Sealing Key Pair PSKP õ

Final Shared Key FSK õ

Final Initialization Vector FIV õ

Encrypted Base Key EBK b

µ Stored encrypted in sx b Stored as cleartext in sx õ Derived

The amount of keying material is: one per group for entries under
Group; and one per platform in the group for entries under Platform.

The SRX sealed data, sx , is decrypted using a Common
Sealing Key (CSK) and a Common Initialization Vector
(CIV) that all platforms in group Gi can derive. CSK and
CIV are derived from a Base Key (BK) and a Sealing Nonce
(SN). BK is randomly generated, once, when the data is
sealed for the �rst time, and SN is randomly generated
each time the data is sealed to prevent key wear-out.

BK and SN are stored in sx as AD. However, BK is not
stored in cleartext but encrypted by a Final Shared Key
(FSK) and a Final Initialization Vector (FIV), and the result
of this encryption is called the Encrypted Base Key (EBK).
There is one EBK for each platform in Gi but only one SN,
which is stored in cleartext, shared by all platforms.

FSK and FIV are derived using a KDF that receives as
input an Encryption Nonce (EN) and a shared secret. This
shared secret is the result of ECDH between the Platform
Sealing Private Key (PSKR) and the Group Sealing Public
Key (GSKU). Each platform derives its own PSKR from a
Platform Sealing Nonce (PSN) using the method detailed
in Section III-B; and the group, as a whole, has a Group
Sealing Key Pair where the private key (GSKR) is stored
encrypted in sx and the corresponding public key (GSKU)
is stored in cleartext in sx as AD.

1) Sealing algorithm

Algorithm 1 depicts the procedure for sealing the SRX data
dx . The seal function receives as input dx (1). Then, it
generates a random SN and updates the SN �eld in dx

with the new SN value (2). CSK and CIV are derived from
BK and the new SN (3), and used to encrypt the updated

VOLUME 4, 2016 7

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

seed GSKR GSKU EN SN PSN PSKU EBK

 Encrypted For each platform

 Authenticated

gid ISV
SVN

CPU
SVNpidtime

stamp

(a)

application
enclave data spos

 Encrypted

 Authenticated

nonce

(b)
FIGURE 4. Contents of (a) sx and (b) sa . The acronyms are listed in Table 2 and Table 3.

dx (4). Finally, the function returns the SRX sealed data, sx
(5).

BK is �xed, but SN is randomly generated on every re-
seal to prevent key wear-out. For the sealing algorithm we
assume BK is available, since this key must be decrypted
during unsealing.

Algorithm 1 Sealing
Require: BK

1: function seal(dx)
2: Generate random SN and update dx with new SN
3: Derive CSK and CIV from BK and SN
4: Encrypt d′x using CSK and CIV
5: return sx
6: end function

† Keying material in bold is derived or generated in that step.

2) Unsealing algorithm

Algorithm 2 depicts the unsealing procedure for the SRX
sealed data, sx . The unseal function receives as input sx
(1). Then, it derives PSKP from PSN (2); PSKP contains
both PSKR and PSKU. SRX computes a shared secret, using
ECDH, from PSKR and GSKU (3), and derives FSK and FIV
from the shared secret and EN (4). BK is decrypted from
EBK using FSK and FIV, and the AEAD scheme (5). CSK
and CIV are derived from BK and SN (6), and used to
decrypt sx (7). Finally, the function returns the SRX data,
dx (8).

BK is kept in enclave memory for later use during
sealing. For the unsealing algorithm we assume GSKU, EN,
SN, PSN and EBK are stored in sx as AD and therefore
available to the unsealing procedure.

Algorithm 2 Unsealing
Require: PSN, GSKU, EN, EBK, SN

1: function unseal(sx)
2: Derive PSKP from PSN
3: Compute shared secret from PSKP and GSKU
4: Derive FSK and FIV from shared secret and EN
5: Decrypt BK from EBK using FSK and FIV
6: Derive CSK and CIV from BK and SN
7: Decrypt sx using CSK and CIV
8: return dx

9: end function

† Keying material in bold is derived or generated in that step.

B. DETERMINISTIC KEY GENERATION IN SGX
The SGX SDK does not o�er a mechanism to derive deter-
ministic keys, for the enclaves of an ISV, out of the box.
SRX requires this capability to generate the application
enclave’s Platform Sealing Private Key, PSKR, used in the
algorithms of the previous section to derive the Common
Sealing Key, CSK, that decrypts sx . We constructed one
such mechanism using the SGX instruction EGETKEY. The
original use of the EGETKEY instruction, executed only
inside an enclave, is to derive the seal, report, launch,
and provision secret keys [2], [28], and return a 128-bit
secret key from the processor-speci�c key hierarchy. In
addition to being bound to the platform, this secret key
is also bound to either the enclave measurement or the
enclave signer.
EGETKEY receives as input a KEYREQUEST data structure

containing parameters for the key derivation. These pa-
rameters include the KEYNAME, KEYPOLICY, KEYID, ISVSVN,
and CPUSVN. KEYNAME identi�es the type of key, KEYPOLICY
identi�es the derivation policy namely whether the sealing
key is bound to the Enclave Identity (MRENCLAVE) or the
Sealing Identity (MRSIGNER), KEYID is a value for key
wear-out protection [8], [26], and ISVSVN and CPUSVN
are the security version numbers of enclave and platform
respectively. Invoking EGETKEY with the same KEYREQUEST
structure produces the same output for the same enclave–
platform pair.

In our case all parameters in KEYREQUEST are de�ned
as constant with the exception of KEYID, which contains
a nonce per enclave. The nonce can be safely stored in
persistent storage in cleartext. The secret key output by
EGETKEY is di�erent for each enclave in each platform but
is deterministic. This secret key is used as input keying
material to a KDF to (i) prevent key wear-out and (ii)
produce di�erent keys. The output of the KDF has several
potential uses namely secret key, private key, and ID. This
approach can be stateless, for example, by hard coding
the KEYID and using the output of EGETKEY as enclave–
platform pair identi�cation.

a: TCB updates

In order to enable enclave and platform updates, while
maintaining the ability to derive older keying material,
providing a KEYREQUEST data structure to EGETKEY with
previous ISVSVN or CPUSVN values enables retrieving secret
keys corresponding to those security version numbers.

8 VOLUME 4, 2016

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

In SRX the security version numbers used to derive
the keying material granting access to sx are stored as
additional data in sx , enabling access even after a TCB
update. After a security update the application enclave
can call update to reseal sx with the up-to-date security
version numbers as well as update seed and group keying
material.

The shared secret keys granting access to sa (§ III-F) are
based on the seed stored in the encrypted part of sx . The
new seed is added to a set of seeds in sx and is indexed
by spos. Previous seeds are and not discarded to maintain
access to previous application enclave sealed data.

C. INITIALIZATION PROTOCOL
The initialization protocol creates group Gi by initializing
the internal state of SRX, adding platform p executing SRX
to the group after it is attested by IAS, and saving the SRX
sealed state sx to persistent storage. When the initialization
protocol completes successfully we have p ∈ Gi .

The application enclave invokes the setup ecall only
once. This protocol involves SRX, RAP, IAS, and TUI.

a: Protocol

The application enclave 1 calls the function setup of the
SRX Trusted API (see Table 1). SRX 2 generates the keying
material, including PSN and PSKP, for the platform. SRX
3 4 5 computes a hash over PSN and PSKU and invokes
attest to store it as user data in the quote sent to IAS, via
RAP, during attestation of the enclave (see § III-G). SRX 9

veri�es the signature of IAS over the report using the hard-
coded Attestation Report Root CA Certi�cate of Intel [16],
generates the group keying material (seed, BK, CSK, CIV,
GSKU, GSKR, EN, SN, gid), requests a timestamp via time,
and updates its internal state. Finally, SRX 9 seals its data
(dx) (see § III-A) and 10 returns the SRX sealed data (sx)
to the application enclave for writing to persistent storage.

D. ADDING A PLATFORM TO THE GROUP
Adding a new platform q to group Gi is a two-step process.
Any platform p ∈ Gi can add new group members. First q
initializes its own state and attests itself with IAS, which
produces a signed report containing a hash over the keying
material of q. Then p adds q to Gi but only after user
approval via TUI. The process completes after the internal
state of SRX is updated, and dx is sealed and the resulting
sx returned.

Initializing the platform involves SRX, RAP, and IAS.
The new platform q does not need access to sx , dx or
application enclave data during this �rst step.

Adding the platform involves SRX and TUI. The new
platform q is used only during the platform initialization
protocol, and is not involved in this second step. This
means that a new platform can be added to the group
without ever seeing the data it will be granted access to.

a: Protocol in q – initialize new platform

The application enclave 1 calls init_p. SRX 2 generates
the keying material for the new platform, which includes
PSN and PSKP, and 3 4 5 invokes the remote attestation
protocol by calling attest with a hash over the platform
keying material as argument receiving a report certi�ed
by IAS in return. Finally, SRX 9 serializes the platform
keying material and the report produced by IAS, and 10

returns the result, dp , to the caller along with the status
of the operation.

b: Protocol in p – add new platform

The application enclave 1 calls add_p with the details,
dp , of the new platform as argument. SRX 2 unseals
sx obtaining dx . Then, SRX veri�es the signature of IAS
over the report using the hard-coded Attestation Report
Root CA Certi�cate of Intel and veri�es that the hash
stored in the report as user data matches the received
keying material of the new platform, and 6 7 8 with user
approval 9 updates dx by adding the details of the new
platform and refreshing the timestamp. Finally, SRX 9

seals d′x (see § III-A) and 10 returns s′x to the caller.

E. REMOVING A PLATFORM FROM THE GROUP
Removing a group platform requires deleting its details
from dx and generating a new seed. Having a new seed
prevents the removed group member from using a previous
sx , from when it was still in the group, to access future
application enclave data sealed with the up-to-date s′x . Any
platform in the group can remove other group members,
but not itself.

This protocol involves SRX and TUI. The platform being
removed is not needed during this step.

a: Protocol

The application enclave 1 calls remove_p. The request
includes the pid of the platform to remove, which can be
discovered using list. SRX 2 unseals sx obtaining dx .
Then, SRX 6 7 8 gets user authorization via auth, and 9

removes the platform details (PSN, PSKU, and EBK) and
updates the seed and the timestamp in dx . Finally, SRX 9

seals d′x (see § III-A) and 10 returns s′x to the application
enclave to be stored in persistent storage.

F. SHARED SECRET KEYS GENERATION AND USE
Platforms in group Gi can retrieve secret keys shared
by group members. These secret keys are based on a
seed which is randomly generated during the initialization
protocol (§ III-C), or by invoking update, and stored
encrypted in sx . The get_sk ecall receives a nonce, a seed
position, and a policy as input. The nonce enables the
generation of di�erent secret keys based on the same seed
via a KDF used internally by get_sk. This KDF uses the
seed as input keying material and the nonce as salt. The
seed position, spos, identi�es which seed to use. The policy

VOLUME 4, 2016 9

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

decides whether a user-authorization request via auth is
needed before providing the secret key to the caller.

a: Protocol

The application enclave 1 calls get_sk. SRX 2 unseals
sx obtaining dx . There are now two options depending
on the policy, p, received as input. If the policy is 0,
then SRX 9 derives and 10 returns the secret key to the
application enclave immediately without requesting user
authorization. If the policy is 1, then SRX 6 7 8 requests
user authorization via TUI to satisfy the request, and only
after such authorization is granted does it 9 derive and
10 return the secret key to the application enclave.

G. REMOTE ATTESTATION
We explain how remote attestation works in SGX, and how
it applies to SRX.

a: In SGX

Remote attestation is part of SGX and ensures enclaves are
legitimate and executing on authentic and up-to-date hard-
ware. During remote attestation the enclaved application
communicates with IAS via a service we call RAP in this
paper. Enclaved applications do not communicate directly
with IAS because IAS processes requests only from clients
in possession of a subscription key that is licensed by Intel
to service providers [16].

This subscription key must be kept con�dential and
can be rotated on demand by the ISV using an Intel-
provided API. Having the subscription key stored in clients
would greatly increase the possibility of compromise of
this secret key, and would be a deployment problem when
the key is rotated. For these reasons, providers do not
store the subscription key in clients but in a remote
service (RAP in our case), possibly in a hardware security
module. Since this remote service mediates data exchanges
between enclaved applications and IAS, it has access to all
quotes and reports it forwards. This allows it to inspect
IAS-certi�ed reports during remote attestation, and refuse
service to clients that have failed the attestation.

Authentication between RAP and IAS proceeds as fol-
lows. IAS authenticates itself to RAP using a certi�cate
issued by a trusted certi�cate authority, and RAP authen-
ticates itself to IAS by including in each HTTP request
header the subscription key obtained by the ISV during
registration with Intel [16]. The subscription key is pro-
tected during requests due to the use of TLS.

b: In SRX

RAP is a pure proxy in SRX forwarding quotes from
applications to IAS and reports from IAS to applications.
SRX requires no other service from RAP although the
ISV could use RAP to provide additional functionality to
enclaved applications. Remote attestation is used by the
system initialization protocol (§ III-C) and by the platform

initialization protocol (§ III-D) to ensure platforms being
added to the group are legitimate.

In both cases, the enclaved application sends a quote,
during attestation, to IAS to be validated and signed.
The quote contains a user data �eld where SRX stores
a hash computed over the nonce and public key of the
new platform. The signed quote, which we call a report,
and the nonce and public key of the new platform are
returned from IAS to the application which can verify the
authenticity of the data using the hard-coded public key
of IAS.

SRX triggers the remote attestation process using the
ecall attest of its Trusted API. However, this ecall is
implemented by the ISV, and not by SRX. SRX cannot be
attested on its own since it is part of the application en-
clave as a trusted library and is therefore implicitly attested
when the application enclave is attested. The details of the
communication protocol between the application enclave
and RAP are not part of this work since this protocol is
the responsibility of the ISV.

Note that the SRX functionality remains secure even
when RAP is compromised since it is IAS that attests
enclaves and platforms and certi�es reports, not RAP.
And these certi�ed reports are validated, and the IAS
signature over such reports veri�ed, by enclaved applica-
tions. A compromised RAP can deny service to enclaved
applications but can neither change group membership
(§ III-D, § III-E) nor retrieve secret keys (§ III-F) to access
application enclave sealed data.

IV. IMPLEMENTATION
This section describes the implementation of SRX and two
applications that use it.

A. SRX AND RAP
The implementation follows the architecture in Fig. 2.
SRX and RAP are implemented in C. The cryptographic
functionality relies on OpenSSL and SGX SSL, when the
functions provided by the SGX SDK are insu�cient, and
the communication between entities is based on ASN.1
using the asn1c [30] compiler adapted for SGX.

B. EXAMPLE APPLICATION – BITCOIN WALLET
The bitcoin wallet is based on two libraries: libbtc [31] for
handling bitcoin data structures and exchanging data with
the bitcoin network; and libsecp256k1 [32] for handling
ECDSA signatures. libsecp256k1 is used internally by libbtc.
The libraries were adapted to work on SGX and SRX, and
are used by the two versions of the bitcoin wallet: the �rst
version uses SGX (Wallet SGX) and the second version uses
SGX plus SRX (Wallet SRX).

Wallet SGX sealed data is accessible only on the platform
that sealed the data. Wallet SRX sealed data, however, is
accessible to all platforms in the group of the enclave-
platform pair that sealed the data.

10 VOLUME 4, 2016

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

TABLE 4. Lines of code of SRX and applications

Module LoC Change

SRX API 56
SRX Implementation 4956

Wallet SGX 1070
Wallet SRX 1516 +41.7%

Titan Raw 2067
Titan SGX 2117 +2.4%
Titan SRX 2464 +16.4%

C. EXAMPLE APPLICATION – PASSWORD MANAGER
We adapted the text-based Titan [33] password manager,
as well as SQLite [34], to work on SGX and SRX. We
refer to the original, untrusted, Titan as Titan Raw, and
to the two versions we implemented as Titan SGX and
Titan SRX. All versions use the SQLite library, internally,
to store data. In Titan Raw the application decrypts and
encrypts the database when explicitly requested by the
user. In the period between decryption and encryption,
the database is in an open state and accessible. In Titan
SGX and Titan SRX, encryption is handled on the �y: the
database is accessible only from within the enclave and
only the requested password is handled in an open state
outside the enclave.

Similarly to the bitcoin wallet example application, Titan
SGX sealed data is accessible only to the platform that
sealed it whereas Titan SRX sealed data is accessible to all
platforms of the group owning that sealed data.

D. LINES OF CODE
Table 4 shows how many lines of code (LoC) are required
for SRX and applications. For SRX the table shows LoC
for the SRX API (i.e., the public interface) and for its
implementation, excluding RAP and TUI since these are
provided by the ISV and excluding the ASN.1 library we
adapted for SGX. For the bitcoin wallet the table shows
LoC for Wallet SGX and Wallet SRX excluding code for
libbtc. For the password manager the table shows LoC for
Titan Raw, Titan SGX and Titan SRX excluding code for
SQLite.

V. ANALYTICAL EVALUATION
This section looks at the overhead of the library in terms
of ecalls and ocalls, space requirements and scalability, and
sealing and unsealing cost.

A. ENCLAVE CALLS AND OUTSIDE CALLS
In applications that use SGX there is a performance
penalty when crossing the boundary between trusted and
untrusted code [35], [36]. When the application enclave
calls functions of the Trusted API all SRX functions are
called from inside the trusted code and most of them

are executed completely there. With respect to boundary
crossing penalties, the corresponding overhead is only
related to the regular interaction of the application with
SGX.

Some SRX functions (setup, init_p, add_p, remove_p,
update, and, depending on policy, get_sk) use auth,
attest or time internally, as described in Section III. The
execution of these functions requires boundary crossings.
Nonetheless the main overhead from these functions comes
from the ISV developed code and not from the boundary
crossing. In addition, libraries used internally by the SRX
implementation may cause boundary crossings during their
invocation. For example, the SGX SSL library invokes
the sgx_cpuid ocall during its setup routine which we
con�rmed using sgx-perf [37].

B. SPACE REQUIREMENTS AND SCALABILITY
The data storage requirements of SRX grow linearly with
the number of platforms in a group Gi , i.e., is O(n). Each
platform in Gi requires space to store: pid, PSN, PSKU, and
EBK with the respective tag. Additionally, there is a �xed
cost for the keying material and metadata common to all
group members: seed, GSKU, GSKR, EN, SN, gid, CPUSVN
and ISVSVN. The exact space needed depends on the length
of the cryptographic material but should be in the order
of hundreds of bytes per platform. This data is stored in
sx which is shared by all platforms.

In terms of scalability all functions in Table 1 have
a constant cost, O(1), with the exception of list and
update, which are Θ(n) where n is the number of members
of the group.

C. DATA SEALING AND UNSEALING COST
This section evaluates the cost of sealing and unsealing
data. There are three cases to consider:

1) The standard SGX sealing process that binds the
sealed data to the processor and to either the cur-
rent enclave measurement (MRENCLAVE) or the same
enclave author (MRSIGNER);

2) The Intel Protected File System Library that encrypts
data written to untrusted storage, and decrypts data
read from untrusted storage, transparently using a
subset of the C �le API; and

3) The SRX sealing process.
Data encryption and data decryption is performed inside
the enclave, in all these cases, using functions provided
by the trusted cryptography library of the SGX SDK [26].
These functions are sgx_rijndael128GCM_encrypt and
sgx_rijndael128GCM_decrypt.

The secret key for encryption and decryption, called
sealing key, is obtained in di�erent ways but all three
cases rely on the sgx_get_key trusted function which is a
wrapper for the EGETKEY instruction of SGX. Section III-B
provides details on EGETKEY.

In SGX sealing the caller instantiates a key request
structure, sgx_key_request_t, and invokes sgx_get_key

VOLUME 4, 2016 11

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

using the key request structure as input to obtain the secret
sealing key, sgx_key_128bit_t.

The Protected File System Library either uses a 128-bit
secret key provided by the caller or the automatic keys
functionality where the secret key is obtained using the
same process of the standard SGX sealing and bound to
the enclave author (MRSIGNER).

In SRX the caller �rst derives CSK to decrypt sx
(§ III-A) and then invokes get_sk to obtain a shared secret
key (§ III-F). SRX also uses a key request structure and
sgx_get_key during the decryption of sx (§ III-B).

The cost of sealing and unsealing data can be divided in
two parts: data encryption and decryption; and acquiring
the sealing key. The cost of encrypting and decrypting
the application enclave data depends on the size of the
data, and is the same in all cases because they use the
same encryption and decryption functions. The cost of
obtaining the sealing key is constant for both SGX sealing
and SRX sealing, and for the Protected File System Library
when using the automatic keys functionality. Acquiring the
sealing key in SRX sealing involves a longer process but
the cost is still O(1).

VI. EXPERIMENTAL EVALUATION
The performance impact is evaluated with the support of
the two applications described in Section IV. The focus
of the experiment is to quantify the overhead of the
SRX library implementation. This is done by comparing
the performance of the applications with and without
integration with SRX.

Results do not include end user time to authorize op-
erations via TUI because such operations are dependent
on the user and also on the TUI implementation. TUI
authorizations are �lled in automatically via xdotool [38].
RAP is not used during the experimental evaluation since
it is not necessary for the operations derive and sign of the
bitcoin wallet, and add and get of the password manager.
In addition, RAP latency and processing times would be
dependent on the implementation which is provided by
the ISV.

A. EXPERIMENTAL SETUP
The experimental evaluation has been carried out on a
computer with an i5-7600 Intel processor running Ubuntu
18.04 LTS, and with an SSD. The Intel SGX software stack
uses Intel SGX SDK 2.7.1, Intel SGX PSW 2.7.1, Intel SGX
driver 2.6.0, and Intel SGX SSL 2.5. Untrusted cryptographic
operations use OpenSSL 1.1.1a.

Experiments were executed on a shielded core, set to
performance mode, and with CPU frequency scaling and
turbo boost disabled. The applications’ database and sealed
�les were stored on a tmpfs [39] memory-based �le system.
Each experiment was repeated 200 times, and each repe-
tition is composed of a warm-up loop of 100 iterations
followed by a collection loop of 500 iterations. Values are

collected in nanoseconds using clock_gettime, during the
collection phase, but presented in milliseconds.

B. EVALUATION OF SRX WITH THE BITCOIN WALLET
This experiment compares the SGX and the SRX versions
of the bitcoin wallet for two operations: derive and sign.
The operation derive returns an address for receiving funds,
based on a derivation path [40], [41]. A derivation path
de�nes a wallet structure that maps strings such as m
/44'/1'/0'/0/0 to accounts and addresses, based on a se-
cret seed. The operation sign returns a signed transaction,
based on the given inputs including the derivation path of
the private signing key (which is never exposed outside
the enclave). The secret seed is stored in application
enclave sealed data sa which is loaded into the enclave
and unsealed, after sx , on every derive and sign operation.

sgx srx
0

20

40

60

80

100

71

41

E
x
ec
u
ti
on

T
im

e
(m

s) Derive

sgx srx

74

42

Sign Remainder
Derive
Sign

FIGURE 5. Total execution time of operations derive and sign of the bitcoin wallet.
The remainder block includes the enclave life cycle.

Fig. 5 shows the total execution time of the bitcoin wal-
lets. The execution time for the derive and sign functions
is separate from the application life cycle, which includes
creating and destroying the enclave as well as loading data
from persistent storage into the enclave and unsealing that
data. The overhead of SRX for the application life cycle is
27.8 ms for derive and 27.6 ms for sign and corresponds to
the di�erence in total execution time minus the di�erence
in execution time of these operations.

sgx srx
0

2

4

6

8

2.4

0.2E
x
ec
u
ti
on

T
im

e
(m

s) Derive

sgx srx

5.0

0.6

Sign Derive
Sign

FIGURE 6. Execution time of functions derive and sign of the bitcoin wallet.

Fig. 6 shows only the derive and sign functions. These
are a small part of the total execution time and are not
easily seen in the previous �gure. The implementation
of derive and sign is similar for both SGX and SRX,

12 VOLUME 4, 2016

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

but in SRX it includes an additional step to request user
authorization before proceeding with the operation. User
authorization is requested once for derive and twice for
sign: before deriving a receiving address for the derive
function; and before deriving the signing address and again
before signing the transaction for the sign function. This is
unnoticeable in an operation involving end-user input, as
is the case with user authorization which was automated
in these experiments, since such step is likely to take in
the orders of seconds.

C. EVALUATION OF SRX WITH THE PASSWORD
MANAGER
This experiment compares the raw, the SGX and the SRX
versions of the password manager for two operations: add
and get. The operation add inserts a new entry into the
database. The operation get retrieves an existing entry from
the database. Titan Raw handles all data processing in
non-SGX space, and Titan SGX and Titan SRX decrypt
the SQLite database when it is loaded into the enclave,
then handle data processing inside the enclave, and �nally
encrypt the SQLite database when it is saved outside the
enclave using the Intel Protected File System library. There
are two versions of Titan SRX, one with secret key caching
and the other without. In Titan SRX, the secret key that
seals data is computed by invoking the function get_sk of
SRX. The �rst version of Titan SRX, srx+o in the �gures,
computes the secret key once and then caches it (inside the
enclave), whereas the second version of Titan SRX, srx-o
in the �gures, computes the secret key on every request.
The +o or -o stands for with or without optimization.

The insertion of a new entry into the database asks
for a description, a username, a website, a notes �eld,
and a password. The �elds are not mandatory. When the
password is not speci�ed then one is generated by the
application; for the SGX-based versions of the password
manager this is done inside the enclave. In this experiment
the input is received from a �le that contains random
strings generated using pwgen [42].

ra
w

sg
x

sr
x
+
o

sr
x
-o

0

20

40

60

80

100

7877

54

25

E
x
ec
u
ti
o
n
T
im

e
(m

s) Add

ra
w

sg
x

sr
x
+
o

sr
x
-o

7776

54

25

Get Decrypt
Encrypt
Create Enclave
Destroy Enclave
Add
Get

FIGURE 7. Total execution time of operations add and get of the password manager.

Fig. 7 shows the total execution time of the password
manager. That time is composed of database encryption
and decryption for Titan Raw, enclave life cycle for Titan

SGX and Titan SRX, and either the add or get function.
In Titan Raw the database is decrypted or encrypted on-
demand by the user whereas in Titan SGX and Titan SRX
the database is decrypted and encrypted on-the-�y when
transferred into, or out of, the enclave. Database encryption
and decryption, and in particular the enclave life cycle,
consume most of the execution time. The overhead of
SRX for the application life cycle is 23.1 ms for add and
22.4 ms for get and corresponds to the di�erence in total
execution time minus the di�erence in execution time of
these operations.

ra
w

sg
x

sr
x
+
o

sr
x
-o

0

0.5

1

1.5

2

1.6

0.70.7

0.3

E
x
ec
u
ti
o
n
T
im

e
(m

s) Add

ra
w

sg
x

sr
x
+
o

sr
x
-o

0.9

0.30.3
0.2

Get Remainder
Integrity
Open+Close
Query
Load+Save

FIGURE 8. Execution time of functions add and get of the password manager.

Fig. 8 shows the breakdown of the add and get functions.
Integrity is a database veri�cation step applied during each
operation, Open+Close refers to opening and closing the
SQLite database, Query is the execution of the statement
that adds data to, or retrieves data from, the database,
and Load+Save is an SGX-only step where the data is
loaded into the enclave and unsealed and vice versa. The
implementation of Load+Save is similar for both Titan SGX
and Titan SRX and is based on the Intel Protected File
System library. However, Titan SGX uses the automatic
keys functionality provided by the library, where secret
keys are derived from the enclave sealing key, while Titan
SRX retrieves the secret key using the function get_sk
of SRX. The overhead of SRX for Load+Save is -2% for

both add and get when using the srx+o implementation,
and 212% for add and 263% for get when using the srx-
o implementation. In the �rst case, the secret key is
computed once during the warm up phase and cached, and
in the second case the secret key is computed on every
iteration of the measurement loop. The integrity check
function opens, internally, the database for reading and
then closes it. This explains why the integrity value is
higher in srx-o when compared to srx+o. The execution
time for Load+Save is greater for the add function than
for the get function, because during the get operation
the database is opened for read-only and closed without
�ushing it to disk whereas during the add operation the
database is opened for read-write and must be �ushed to
disk after the add operation in order to save the entry
insertion.

VOLUME 4, 2016 13

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

D. ENCLAVE CREATION AND DESTRUCTION TIME

This section evaluates the e�ect of the size of the enclave
on its creation time, which helps understanding the 20 to
30 ms overall overhead measured in the previous experi-
ments.

This experiment uses the sample enclave from Intel
SGX SDK to �nd how long it takes to create and de-
stroy an enclave based on the size of the corresponding
shared library. We do not invoke the API of the sample
enclave itself and only measure the times it takes enclave
creation and destruction functions to execute. Function
sgx_create_enclave loads and initializes the enclave, and
function sgx_destroy_enclave destroys the enclave and
releases the previously allocated resources.

For each data point, i.e. enclave shared library size,
the experiment consists of a 100-iterations warm-up loop
followed by a 500-iterations collection loop. The enclave
size is increased by allocating a large array inside the
enclave. The enclave con�guration �le is set to use a single
thread, as is done in the previous experiments.

1 10

0.1

1

10

100

1000

Enclave Size (MB)

E
x
ec
u
ti
on

T
im

e
(m

s)

Create Destroy

FIGURE 9. Execution time for creating and destroying an enclave.

Fig. 9 shows the time, in milliseconds, that it takes
to create the sample enclave and to destroy the sample
enclave. This is done for di�erent enclave sizes ranging
from 200 KB to 5000 KB, in 200 KB increments, and from 5
MB to 45 MB, in 5 MB increments. In both enclave creation
and enclave destruction the execution time increases with
the size of the enclave shared library, called enclave.
signed.so in the case of the sample enclave, but the
increase in the destruction time is small when compared
with the increase in creation time.

All plots have error bars showing the standard devia-
tion. However, the variation between values is small and
therefore the error bars cannot be seen.

E. RECOVERING APPLICATION ENCLAVE SEALED DATA
The SRX API does not have explicit backup and recovery
functions: a backup is created by copying sx and sa
onto another medium as is done with regular �les; and
recovery is performed by decrypting sa using the secret
key obtained from sx . The reason is that any enclave–
platform pair from a group accesses SRX sealed data sx
and application enclave sealed data sa of that group in
the same way, independently of being the creator of the
sealed data or not. Therefore, the recovery process time is
the same as the time it takes for a group member to access
sa , assuming that member is already in the group.

The recovery process, after the enclave is created and
SRX is initialized (§ III-C), is the following:

1) SRX unseals sx obtaining dx (§ III-A2),
2) the application enclave invokes get_sk to retrieve

the secret key (§ III-F), and
3) the application enclave unseals sa using the secret

key.
From previous experiments we know this process takes
less than 1 ms, excluding the enclave life cycle which is
less than 80 ms for both Wallet SRX (Fig. 5) and Titan
SRX (Fig. 7). The Load+Save for function get in Fig. 8 �rst
loads sx into the enclave and decrypts it obtaining dx (step
1), then retrieves the secret key to decrypt sa from the
Trusted API of SRX (step 2), �nally decrypts sa (step 3).
This entire process requires less than 1 ms, which in this
case is the di�erence between Titan SGX (0.3 ms) and the
srx-o version of Titan SRX (0.9 ms).

This assumes the invocation of get_sk with a policy
of 0 which means user authorization via TUI is not
required; with a policy of 1 the recovery time becomes the
previous time plus the end-user authorization time. The
end-user authorization time is variable depending on the
TUI solution implemented by ISV developers and the skill
of the end user in manipulating the equipment, but should
be in the order of seconds and thus dominates the total
recovery time.

VII. RELATED WORK
Multiple applications [43]–[50] use enclaves to strengthen
their security and new tools and frameworks [22], [51]–
[58] have been created to support developers using SGX.
There is no related work that solves our speci�c problem of
securely sharing data among platforms and enclaves from
the same user, e.g., for backup purposes. The remainder
of this section presents work on the migration of SGX-
enabled virtual machines, key escrow and recovery, and
secure group communication that has some relation to
SRX.

A. SGX MIGRATION
Park et al. [59] identify a key challenge of migrating SGX-
enabled virtual machines: the enclave code and data resides
in PRM and is therefore not accessible to the VMM. The

14 VOLUME 4, 2016

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

authors propose a conceptual scheme, without o�ering
an implementation, in which a new hardware instruction
would be used by source and destination machines to
derive migration keys.

Gu et al. [60] present a system that supports the live
migration of virtual machines with enclaves. A source
enclave remotely attests a target enclave located in a
di�erent machine and subsequently passes its execution
context to this enclave followed by a migration key; the
source enclave destroys itself after sending the migration
key thus ensuring no more than one enclave instance
is running this execution context. The migration key is
obtained from the enclave owner. We focus on the mi-
gration and backup/recovery of sealed enclave state across
machines, by proposing a secure mechanism to distributed
group sealing keys, while the authors’ focus on the live
migration of the execution context of the enclave. They
mention checkpoint/resume operations [60, § V-C], which
would be more similar to our own work, but give few
details on how this is supposed to work.

Alder et al. [61] propose a mechanism for migrating
enclaves with persistent state by creating a migration
enclave on source and destination machines. In this case
the enclave data is migrated from source machine to
destination machine becoming unavailable to the source
machine. In our work the data is available to both source
and destination, and SRX is applied only to the data and not
to entire virtual machines. Alder et al. [61, § III-B] consider
having the data available to both source and destination
machines a fork attack.

Park et al. [62] propose adding new instructions to sup-
port the migration of enclaves running in virtual machines
on di�erent hosts. The hosts share a secret key, accessible
only to the enclave in question and the processor, to
support the migration. The prototype is implemented on
top of the open-source SGX emulator OpenSGX [63]. Their
work is focused on migrating the enclave memory and does
not deal with the transfer of sealed data which is relegated
to future work.

Liang et al. [64] design and implement a solution for
checkpoint-based and storage-based migration of contain-
ers. The source and target hosts share monotonic counters
and a migration key via a Boot Enclave Service, which is
essentially a trusted authority that “must be deployed in a
trusted machine.”

B. KEY ESCROW AND RECOVERY AGENTS
Key escrow is an arrangement whereby keying material
granting access to encrypted data is made available to
authorized entities, by one or more trusted third parties,
under prescribed conditions [65], [66]. Recovery agents,
on the other hand, have themselves the ability to recover
keying material or plaintext.

In SRX the entity recovering data is the same entity
that encrypted (sealed) that data. This contrasts with key
escrow and recovery agents where keying material, or

data, is provided to other entities. In addition, the keying
material in SRX is bound to the processors forming the
enclave–platform group.

C. SECURE GROUP COMMUNICATION
Key management and distribution is a challenge in secure
group communication [67] where members may join and
leave the group at any point in time. Backward secrecy
prevents new members from reading messages exchanged
before entering the group and forward secrecy prevents
former members from reading future messages. SRX pre-
vents former group members from reading future sealed
data (§ III-E) but does not prevent new members from
reading past data since this is a requirement for having
data recovery.

VIII. CONCLUSION
The standard sealing procedure of Intel SGX provides
strong guarantees that sealed data is not accessible to
platforms other than the one that sealed the data. This
approach to sealing is su�cient when there is only one
platform using the data, but becomes a limitation when
other platforms require access to the same sealed data. This
is a scenario which could occur when the platform that
seals the data becomes unavailable due to, for example,
damage or theft.

Towards solving this issue we propose SRX where
platforms form groups and platforms within the same
group can access each others’ sealed data. This is achieved
without leaking the secret keys that seal the data outside
the enclave. We built a prototype of SRX to prove its
feasibility and evaluate it using two applications. We show
that the overhead of using SRX is in the order of tens of
milliseconds.

.

APPENDIX A CORRECTNESS
This section presents an argument that SRX satis�es the
security properties of Section II-E. Proofs use four ancillary
functions: authp(f) that user-authenticates function f on
platform p; execp(f) that executes function f in the enclave
on platform p; and sealp(sxi, ai) and unsealp(sxi, sai) that
respectively seals data ai in platform p and unseals data
sai

in platform p.

De�nition. The public keying material of a platform are
the nonces, public keys, and encrypted data which (i) are
available to all parties that have access to sx (but not
necessarily dx), and (ii) are required for deriving some non-
public keying material such as private keys of the platform.

De�nition. A sealed data bundle, s, is composed of two
main parts: an encrypted part C and a cleartext part A.

s = C∥A

Lemma 1 (Authorization). A function f ∈ F, where
F = {add_p, remove_p, get_sk}, is executed by platform

VOLUME 4, 2016 15

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

p ∈ Gi without returning an error only if the execution
of f is requested by p and the execution of f is authorized
by the user.

∀ f ∈ F, ∀p ∈ Gi (execp(f) ⇒ authp(f))
Proof. Any function f ∈ F is executed only after (i)
unsealing sxi and (ii) obtaining end user authorization.
The application enclave can unseal sxi only when the
platform is in group Gi (proved in Lemma 3). In addition,
SRX assumes the existence of a trusted path between the
application enclave and the user as stated in Section II-C.
This trusted path is invoked by the code of functions in F
to request user authorization. Therefore a platform e ∉ Gi

cannot successfully invoke functions in F and a platform
p ∈ Gi only executes functions in F successfully when
authorized by the end user. �

Lemma 2 (Shareability). Any platform q ∈ Gi with access
to the application enclave sealed data, sai

, and the SRX sealed
data, sxi , is able to unseal data sai

sealed by platform p ∈
Gi .

∀p, q ∈ Gi (ai = unsealq(sxi , sealp(sxi , ai)))
Proof. Given sxi = Cxi∥Axi and sai

= Cai
∥Aai

we prove
members of the group Gi have their public keying material
in Axi which is used to decrypt Cxi that in turn decrypts
Cai

. Decrypting Cai
is equivalent to unsealing sai

.
1) Any platform p ∈ Gi has its public keying material,

necessary to derive CSK and CIV, in Axi . There are
two ways for a platform to join group Gi : the �rst
is during system initialization and the second is
after the system is set up. During the initialization
protocol, described in Section III-C, the platform p
that initializes the system and creates the group
becomes the �rst platform in the group (Gi = {p}).
After the system is set up, a platform p ∈ Gi can add
a platform not yet in Gi to the group, as described in
Section III-D, resulting in Gi = {p, q}. When either
protocol concludes, the public keying material of the
newly added platform is in Axi .

2) Any platform with its public keying material in Axi

can decrypt Cxi . A platform that has its public keying
material in Axi can use the unsealing algorithm,
detailed in Section III-A, to decrypt Cxi .

3) Any platform able to unseal sxi can unseal sai
. In other

words, the ability to decrypt Cxi implies the ability to
decrypt Cai

. A platform able to unseal sxi can use the
protocol detailed in Section III-F to derive the input
keying material that unseals sai

.
�

Lemma 3 (Con�dentiality). Any platform q ∉ Gi with
access to the application enclave sealed data, sai

, and the
SRX sealed data, sxi , is unable to unseal data sai

sealed by
platform p ∈ Gi .

∀e ∉ Gi, ∄p ∈ Gi (unseale(sxi , sealp(sxi , ai)) = ai)

Proof. Given sxi = Cxi∥Axi and sai
= Cai

∥Aai
we

prove platforms with their public keying material in Axi

are members of the group Gi , platforms without their
public keying material in Axi cannot decrypt Cxi that is
equivalent to unsealing sxi , and that platforms unable to
unseal sxi are unable to unseal sai

. Therefore concluding
that any platform e ∉ Gi is unable to unseal sai

.
1) All platforms with their public keying material in

Axi are in group Gi . As mentioned in the proof of
Lemma 3 (1), a platform joins a group Gi either when
the group is created during the initialization protocol
or at a later stage with the support of a platform
p ∈ Gi . In both cases, data about the platform is
added to sxi , so the presence of its public keying
material in Axi implies this platform is part of group
Gi .

2) All platforms without their public keying material in
Axi cannot decrypt Cxi . The unsealing algorithm,
detailed in Section III-A, requires the platform to
have its public keying material in Axi in order
to decrypt Cxi , and platforms without their public
keying material in Cxi are unable to decrypt Axi .

3) All platforms unable to unseal sxi are unable to unseal
sai

. Unsealing sai
implies verifying the tag over

sai
and decrypting Cai

using input keying material
retrieved according to the protocol in Section III-F.
To retrieve this input keying material the platform
must be able to decrypt Cxi , that is, unseal sxi . The
inability to decrypt Cxi (unseal sxi) therefore implies
the inability to decrypt Cai

(unseal sai
).

Notice that this property is about a platform q that was
never part of the group Gi . If at some point q ∈ Gi

and later q is removed from Gi resulting in sxi+1 , then
q maintains access to sai

using sxi since it already had
access to this data in the past, but is unable to access sai+1
sealed using the newer version of the group sxi+1 . �

APPENDIX B KEYS’ DERIVATION AND HIERARCHY
Fig. 10 depicts the derivation of keying material in SRX
and the relationship between its public, private, and secret
keys. Section III-A describes the sealing mechanism of SRX.

REFERENCES
[1] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Sha�,

V. Shanbhogue, and U. Savagaonkar, “Innovative instructions and soft-
ware model for isolated execution,” in Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy
(HASP), Jun. 2013.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for
CPU based attestation and sealing,” in Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy
(HASP), Jun. 2013.

[3] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Support for dynamic memory management inside
an enclave,” in Proceedings of the 5th International Workshop on Hardware
and Architectural Support for Security and Privacy (HASP), Jun. 2016.

[4] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, V. Phegade, and J. del
Cuvillo, “Using innovative instructions to create trustworthy software
solutions,” in Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy (HASP), Jun. 2013.

16 VOLUME 4, 2016

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

ciphertext

plaintext

ciphertext’

µ

b

µ

SN EN GSKU PSN PSKU EBK ...

KDF

ECDH

KDF

Decrypt

KDF

Decrypt

Generate

KDF

Encrypt

PSKP

shared
secret

FSK
FIV

BK

CSK
CIV

SN’

CSK’
CIV’

seed ... GSKR

2

3

4

5

6

7

2

3

4

get_sk

get_sk

Decrypt

Encrypt

Generate

nonce spos ciphertext
µ

plaintext
b

nonce’ spos ciphertext’
µ

Knonce

nonce’

Knonce’

SRX Unsealing

SRX Sealing

Application
Enclave

(Un)sealing

sx

sa

s′a

Group Sealing
Public Key

(GSKU)

Platform Sealing
Private Key

(PSKR)
3

(shared secret)

Final Shared Key (FSK)

Base Key (BK)

Common Sealing Key (CSK)

4

5

6

SRX keys’ hierarchy:

FIGURE 10. Derivation of keying material for unsealing, and sealing, sx and sa . Steps 2–7 in SRX Unsealing and 2–4 in SRX Sealing match line numbers in Algorithm 1 and
Algorithm 2, respectively. The hierarchy between the SRX keys is shown on the top-right and the numbers match the steps in the function boxes.

[5] B. C. Xing, M. Shanahan, and R. Leslie-Hurd, “Support for dynamic mem-
ory allocation inside an enclave,” in Proceedings of the 5th International
Workshop on Hardware and Architectural Support for Security and Privacy
(HASP), Jun. 2016.

[6] S. Gueron, “Memory encryption for general-purpose processors,” IEEE
Security & Privacy, vol. 14, no. 6, Dec. 2016.

[7] G. Chen, Y. Zhang, and T.-H. Lai, “OPERA: Open remote attestation for
intel’s secure enclaves,” in Proceedings of the ACMConference on Computer
and Communications Security (CCS), Nov. 2019.

[8] Intel Software Guard Extensions (Intel SGX): Developer Guide, Intel Corpo-
ration, Nov. 2019, release v2.7.1 for Linux.

[9] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
and C. A. Gunter, “Leaky cauldron on the dark land: Understanding mem-
ory side-channel hazards in SGX,” in Proceedings of the ACM Conference
on Computer and Communications Security (CCS), Oct. 2017.

[10] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in Proceedings of the USENIX Security Symposium, Aug. 2018.

[11] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre:
Stealing Intel secrets from SGX enclaves via speculative execution,” in
Proceedings of the IEEE European Symposium on Security and Privacy
(EuroS&P), Aug. 2019.

[12] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
Intel SGX,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), Jul. 2020.

[13] P. Rogaway, “Authenticated-encryption with associated-data,” in Proceed-
ings of the ACM Conference on Computer and Communications Security
(CCS), Nov. 2002.

VOLUME 4, 2016 17

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

[14] D. Boneh and I. E. Shparlinski, “On the unpredictability of bits of the
elliptic curve Di�e-Hellman scheme,” in Annual International Cryptology
Conference. Springer, Aug. 2001.

[15] D. A. McGrew, “An interface and algorithms for authenticated
encryption,” RFC Editor, RFC 5116, Jan. 2008. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5116.txt

[16] Attestation Service for Intel Software Guard Extensions: API Documentation,
Intel Corporation, 2020, revision 6.0.

[17] S. Weiser and M. Werner, “SGXIO: Generic trusted I/O path for Intel SGX,”
in Proceedings of the 7th ACM Conference on Data and Application Security
and Privacy (CODASPY), Mar. 2017.

[18] H. Liang, M. Li, Y. Chen, L. Jiang, Z. Xie, and T. Yang, “Establishing
trusted I/O paths for SGX client systems with Aurora,” IEEE Transactions
on Information Forensics and Security, vol. 15, 2020.

[19] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building veri�able
trusted path on commodity x86 computers,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), Jul. 2012.

[20] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li, “Building trusted
path on untrusted device drivers for mobile devices,” in Proceedings of the
5th Asia-Paci�c Workshop on Systems (APSys), Jun. 2014.

[21] M. Brandenburguer, C. Cachin, M. Lorenz, and R. Kapitza, “Rollback and
forking detection for trusted execution environments using lightweight
collective memory,” in Proceedings of the Annual IEEE/IFIP Conference on
Dependable Systems and Networks (DSN), Jun. 2017.

[22] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted execu-
tion,” in Proceedings of the 26th USENIX Security Symposium (SEC), Aug.
2017.

[23] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato, “Internet x.509 public
key infrastructure time-stamp protocol (TSP),” RFC Editor, RFC 3161,
Aug. 2001. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3161.txt

[24] H. Liang and M. Li, “Bring the missing jigsaw back: TrustedClock for
SGX enclaves,” in Proceedings of the 11th European Workshop on Systems
Security, Apr. 2018.

[25] Trusted Time and Monotonic Counters with Intel SGX Platform Services,
Intel Corporation, 2017.

[26] Intel Software Guard Extensions (Intel SGX) SDK for Linux OS: Developer
Reference, Intel Corporation, Nov. 2019, release v2.7.1 for Linux.

[27] W. Di�e and M. Hellman, “New directions in cryptography,” IEEE Trans-
actions on Information Theory, vol. 22, no. 6, Nov. 1976.

[28] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3:
System Programming Guide, Intel Corporation, Oct. 2019, 325384-071US.

[29] E. Barker, L. Chen, A. Roginsky, A. Vassilev, and R. Davis, “Recommen-
dation for pair-wise key-establishment schemes using discrete logarithm
cryptography,” National Institute of Standards and Technology, NIST
Special Publication (SP) 800-56Ar3, Apr. 2018.

[30] L. Walkin, asn1c, ASN.1 compiler. [Online]. Available: https://github.
com/vlm/asn1c

[31] libbtc, bitcoin library. [Online]. Available: https://libbtc.github.io/
[32] libsecp256k1, library for cryptographic operations on curve secp256k1.

[Online]. Available: https://github.com/bitcoin-core/secp256k1
[33] N. Rosvall, Titan, password manager. [Online]. Available: https://github.

com/nrosvall/titan
[34] SQLite, database library. [Online]. Available: https://sqlite.org/
[35] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with HotCalls:

A fast interface for SGX secure enclaves,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA), Jun. 2017.

[36] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber, and
D. Hagimont, “Everything you should know about Intel SGX performance
on virtualized systems,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems (POMACS), vol. 3, no. 1, Mar. 2019.

[37] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A performance
analysis tool for intel SGX enclaves,” in Proceedings of the 19th ACM/IFIP
International Middleware Conference, Dec. 2018.

[38] J. Sissel, xdotool(1), automation tool. [Online]. Available: https://
manpages.ubuntu.com/manpages/bionic/en/man1/xdotool.1.html

[39] P. Snyder, “tmpfs: A virtual memory �le system,” in Proceedings of the
Autumn 1990 EUUG Conference, Oct. 1990.

[40] P. Wuille, “Hierarchical deterministic wallets,” BIP, BIP 32, 2012.
[41] M. Palatinus and P. Rusnak, “Multi-account hierarchy for deterministic

wallets,” BIP, BIP 44, 2014.
[42] pwgen(1), Ubuntu 18.04 LTS. [Online]. Available: https://manpages.

ubuntu.com/manpages/bionic/en/man1/pwgen.1.html

[43] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), Jul. 2015.

[44] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and
C. Fetzer, “PESOS: Policy enhanced secure object store,” in Proceedings of
the 13th EuroSys Conference, Apr. 2018.

[45] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A secure database using
sgx,” in Proceedings of the 39th IEEE Symposium on Security and Privacy
(SP), May 2018.

[46] D. Goltzsche, S. Rüsch, M. Nieke, S. Vaucher, N. Weichbrodt, V. Schiavoni,
V. Schiavoni, P.-L. Aublin, P. Cosa, C. Fetzer, P. Felber, P. Pietzuch,
and R. Kapitza, “EndBox: Scalable middlebox functions using client-side
trusted execution,” in Proceedings of the Annual IEEE/IFIP Conference on
Dependable Systems and Networks (DSN), Jul. 2018.

[47] S. Arnautov, A. Brito, P. Felber, C. Fetzer, F. Gregor, R. Krahn, W. Ozga,
A. Martin, V. Schiavoni, F. Silva, M. Tenorio, and N. Thummel, “PubSub-
SGX: Exploiting trusted execution environments for privacy-preserving
publish/subscribe systems,” in Proceedings of the 37th IEEE Symposium on
Reliable Distributed Systems (SRDS), Oct. 2018.

[48] B. Fuhry, L. Hirscho�, S. Koesnadi, and F. Kerschbaum, “SeGShare: Secure
group �le sharing in the cloud using enclaves,” in Proceedings of the
Annual IEEE/IFIP Conference on Dependable Systems and Networks (DSN),
Jul. 2020.

[49] F. Gregor, W. Ozga, S. Vaucher, R. Pires, D. L. Quoc, S. Arnautov, A. Martin,
V. Schiavoni, P. Felber, and C. Fetzer, “Trust management as a service:
Enabling trusted execution in the face of byzantine stakeholders,” in
Proceedings of the Annual IEEE/IFIP Conference on Dependable Systems and
Networks (DSN), Jul. 2020.

[50] J. Guerreiro, R. Moura, and J. N. Silva, “TEEnder: SGX enclave migration
using HSMs,” Computers & Security, vol. 96, Sep. 2020.

[51] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” in Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), Oct. 2014.

[52] C.-C. Tsai, D. E. Porter, and M. Viji, “Graphene-SGX: A practical library OS
for unmodi�ed applications on SGX,” in Proceedings of the 2017 USENIX
Annual Technical Conference (ATC), Jul. 2017.

[53] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Kee�e, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure linux containers
with Intel SGX,” in Proceedings of the 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), Nov. 2016.

[54] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB linux ap-
plications with SGX enclaves,” in Proceedings of the 24th Annual Network
and Distributed System Security Symposium (NDSS), Feb. 2017.

[55] J. Lind, C. Priebe, D. Muthukumaran, D. O’Kee�e, P.-L. Aublin, F. Kelbert,
T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer, and P. Pietzuch,
“Glamdring: Automatic application partitioning for Intel SGX,” in Proceed-
ings of the 2017 USENIX Annual Technical Conference (ATC), Jul. 2017.

[56] S. Wang, W. Wang, Q. Bao, P. Wang, X. Wang, and D. Wu, “Binary code
retro�tting and hardening using SGX,” in Proceedings of the 2017Workshop
on Forming an Ecosystem Around Software Transformation (FEAST), Nov.
2017.

[57] T. Lazard, J. Götzfried, T. Müller, G. Santinelli, and V. Lefebvre, “TEEshift:
Protecting code con�dentiality by selectively shifting functions into
TEEs,” in Proceedings of the 3rd Workshop on System Software for Trusted
Execution (SysTEX), Jan. 2018.

[58] V. A. Sartakov, S. Brenner, S. B. Mokhtar, S. Bouchenak, G. Thomas, and
R. Kapitza, “EActors: Fast and �exible trusted computing using SGX,”
in Proceedings of the 19th ACM/IFIP International Middleware Conference,
Dec. 2018.

[59] J. Park, S. Park, J. Oh, and J.-J. Won, “Toward live migration of SGX-
enabled virtual machines,” in Proceedings of the 2016 IEEE World Congress
on Services (SERVICES), Jun. 2016, Short Paper.

[60] J. Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li, “Secure live
migration of SGX enclaves on untrusted cloud,” in Proceedings of the 47th
IEEE/IFIP Conference on Dependable Systems and Networks (DSN), Jun.
2017.

[61] F. Alder, A. Kurnikov, A. Paverd, and N. Asokan, “Migrating SGX enclaves
with persistent state,” in Proceedings of the 48th IEEE/IFIP Conference on
Dependable Systems and Networks (DSN), Jun. 2018.

[62] J. Park, S. Park, B. B. Kang, and K. Kim, “eMotion: An SGX extension for
migrating enclaves,” Computers & Security, vol. 80, Sep. 2019.

18 VOLUME 4, 2016

http://www.rfc-editor.org/rfc/rfc5116.txt
http://www.rfc-editor.org/rfc/rfc3161.txt
https://github.com/vlm/asn1c
https://github.com/vlm/asn1c
https://libbtc.github.io/
https://github.com/bitcoin-core/secp256k1
https://github.com/nrosvall/titan
https://github.com/nrosvall/titan
https://sqlite.org/
https://manpages.ubuntu.com/manpages/bionic/en/man1/xdotool.1.html
https://manpages.ubuntu.com/manpages/bionic/en/man1/xdotool.1.html
https://manpages.ubuntu.com/manpages/bionic/en/man1/pwgen.1.html
https://manpages.ubuntu.com/manpages/bionic/en/man1/pwgen.1.html

Andrade et al.: SRX – Secure Data Backup and Recovery for SGX Applications

[63] P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin, T. Kim, B. B.
Kang, and D. Han, “OpenSGX: An open platform for SGX research,” in
Proceedings of the 24th Annual Network and Distributed System Security
Symposium (NDSS), Feb. 2016.

[64] H. Liang, Q. Zhang, M. Li, and J. Li, “Toward migration of SGX-
enabled containers,” in IEEE Symposium on Computers and Communica-
tions (ISCC), Jun. 2019.

[65] D. E. Denning and D. K. Branstad, “A taxonomy for key escrow encryption
systems,” Communications of the ACM, vol. 39, no. 3, Mar. 1996.

[66] H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze, W. Di�e,
J. Gilmore, P. G. Neumann, R. L. Rivest, J. I. Schiller, and B. Schneier, “The
risks of key recovery, key escrow, and trusted third-party encryption,”
May 1997.

[67] S. Rafaeli and D. Hutchison, “A survey of key management for secure
group communication,” ACM Computing Surveys (CSUR), vol. 35, no. 3,
Sep. 2003.

DANIEL ANDRADE is currently working to-
wards a PhD degree in Computer Science and
Engineering at Instituto Superior Técnico, Por-
tugal. He is a junior researcher at INESC-ID.
His research interests include systems security,
applications of Intel SGX, and systems program-
ming.

JOÃO SILVA is an Assistant Professor at the
Electrical Engineering Department at Instituto
Superior Técnico, Lisbon University, Portugal.
He has a PhD in Computer Science and has been
doing research in distributed systems, including
their security, for many years, with a focus on
mobile computing.

MIGUEL CORREIA is a Full Professor at Instituto
Superior Técnico (IST), Universidade de Lisboa,
in Lisboa, Portugal. He is coordinator of the
Doctoral Program in Information Security at
IST. He is member of the board and senior
researcher at INESC-ID. He has been involved
in many international and national research
projects related to cybersecurity, including the
DE4A, BIG, QualiChain, SPARTA, SafeCloud,
PCAS, TCLOUDS, ReSIST, CRUTIAL, and MAF-

TIA European projects. He has more than 200 publications and is Senior
Member of the IEEE.

VOLUME 4, 2016 19

	I Introduction
	II A Recovery Extension
	II-A Application Context
	II-B Threat Model
	II-C SRX Overview
	II-C1 Components
	II-C2 Functionalities

	II-D SRX Programming Interface
	II-E Security Properties

	III SRX Protocols
	III-A Sealing in SRX
	III-A1 Sealing algorithm
	III-A2 Unsealing algorithm

	III-B Deterministic Key Generation in SGX
	III-C Initialization Protocol
	III-D Adding a platform to the group
	III-E Removing a platform from the group
	III-F Shared Secret Keys Generation and Use
	III-G Remote Attestation

	IV Implementation
	IV-A SRX and RAP
	IV-B Example Application – Bitcoin Wallet
	IV-C Example Application – Password Manager
	IV-D Lines of Code

	V Analytical Evaluation
	V-A Enclave Calls and Outside Calls
	V-B Space Requirements and Scalability
	V-C Data Sealing and Unsealing Cost

	VI Experimental Evaluation
	VI-A Experimental Setup
	VI-B Evaluation of SRX with the Bitcoin Wallet
	VI-C Evaluation of SRX with the Password Manager
	VI-D Enclave Creation and Destruction Time
	VI-E Recovering Application Enclave Sealed Data

	VII Related Work
	VII-A SGX Migration
	VII-B Key Escrow and Recovery Agents
	VII-C Secure Group Communication

	VIII Conclusion
	A Correctness
	B Keys' Derivation and Hierarchy
	REFERENCES
	Daniel Andrade
	João Silva
	Miguel Correia

