
Spin One’s Wheels?
Byzantine Fault Tolerance with a Spinning Primary

Giuliana Santos Veronese1, Miguel Correia1,2, Alysson Neves Bessani1, Lau Cheuk Lung3

1Universidade de Lisboa, Faculdade de Ciências, LASIGE – Portugal
2Carnegie Mellon University, Information Networking Institute – USA

3Departamento de Informática e Estatística, Centro Tecnológico, Universidade Federal de Santa Catarina – Brazil

Abstract—Most Byzantine fault-tolerant state machine repli-
cation (BFT) algorithms have a primary replica that is in
charge of ordering the clients requests. Recently it was shown
that this dependence allows a faulty primary to degrade the
performance of the system to a small fraction of what the
environment allows. In this paper we present Spinning, a novel
BFT algorithm that mitigates such performance attacks by
changing the primary after every batch of pending requests
is accepted for execution. This novel mode of operation deals
with those attacks at a much lower cost than previous solutions,
maintaining a throughput equal or better to the algorithm that
is usually consider to be the baseline in the area, Castro and
Liskov’s PBFT.

I. INTRODUCTION

Many applications with high security and fault tolerance
requirements can benefit from Byzantine fault-tolerant al-
gorithms. These algorithms allow systems to continue to
provide a correct service even when some of their com-
ponents fail, either accidentally (e.g., by crashing) or due
to malicious faults (arbitrarily). Systems based on those
algorithms are often said to be intrusion-tolerant and several
have already been presented in the literature: network file
systems [1], cooperative backup [2], coordination services
[3], certification authorities [4].

Intrusion-tolerant systems are usually built using repli-
cation techniques. The idea is that there is a service that
is replicated in a set of servers that execute requests from
the clients. State machine replication (SMR) is one of
these techniques, which allows making any deterministic
distributed service fault- or intrusion-tolerant [5]. In this
form of replication all (non-faulty) servers have to execute
all clients’ requests in the same order. Several leader-based
Byzantine fault-tolerant state machine replication algorithms
– that we call BFT in the paper – have been presented [1],
[2], [6], [7], [8] (SMR algorithms that are not leader-based
have also been presented [9]). Among these algorithms,
Castro and Liskov’s PBFT [1] is often considered to be a
baseline in terms of performance, probably because it was
the first efficient algorithm in the area and many others
derive from it (e.g., [6], [7], [8], [10]).

In BFT algorithms, the servers move through a succession
of configurations called views. Each view has a primary
server (or leader) that is in charge of defining the order in
which the requests are executed by all servers. In all previous

BFT algorithms, including PBFT, the primary remains the
same as long as no faults are detected. When a subset of
the servers suspect that the primary is faulty, they choose
another server to be the primary.

This basic scheme has been shown to be vulnerable to
performance attacks by Amir et al. [8]. More precisely,
these authors have shown two attacks that can degrade the
performance of PBFT to let it so slow that it is barely usable.
In the first attack, pre-prepare delay, a faulty server delays
the ordering of requests from some of the clients, causing
a considerable increase of the latency of those requests
and a great reduction of the throughput. PBFT imposes a
maximum delay on the execution of requests, but only on
the first request of a queue of pending requests, so a faulty
primary can process one request at a time, strongly delaying
most requests. In the second attack, timeout manipulation,
faulty servers manage to increase the timeouts used in PBFT,
seriously degrading the performance of the system. These
attacks also apply to some of the algorithms that derive from
PBFT (e.g., [7]).

Amir et al. presented an algorithm, Prime [8], that tol-
erates these attacks by adding a pre-ordering phase of 3
communication steps to PBFT. Clement et al. also presented
a system, Aardvark [10], that tolerates these attacks by
monitoring the performance of the primary and changing
the view in case it seems to be performing slowly. Aardvark
is also based on PBFT.

This paper presents Spinning, an algorithm that modifies
the usual form of operation of BFT algorithms: instead of
changing the primary when it is suspected of being faulty,
it changes the primary whenever it defines the order of a
single batch of requests. Putting it more simply: in each
view the primary orders only one batch. The name of the
algorithm comes precisely from the fact that the primary is
always changing, i.e., spinning.

Spinning was also designed as a modification of PBFT,
just like Prime and Aardvark. Its normal operation is similar
to PBFT’s, with its three communication steps. It has no
view change operation, since views are always changing,
but it has a merge operation, which is in charge of putting
together the information from different servers to decide if
requests in views that “went wrong” are to be executed or
not. A view can go wrong essentially for the same reasons

as a view change can be needed in PBFT: the primary is
faulty and does not send (some of) the messages it should,
or the network becomes slow and timeouts expire.

This basic operation of Spinning has an obvious problem:
the primary is always changing so faulty servers go on
being the primary, becoming able to impair the average
performance of the service. To avoid this problem, we use a
mechanism that punishes misbehavior, basically by putting
in a blacklist the servers that were the primaries when
something went wrong. When a server is in the blacklist,
it does not become the primary.

Spinning has two main benefits. The first is that it avoids
the above-mentioned performance attacks made by faulty
primaries in a very simple and efficient way: by always
changing the primary. View changes in Spinning do not incur
in the cost of running a distributed algorithm with several
communication steps; the view is changed automatically
after the 3 communication steps executed by the servers,
which are essentially the same as in PBFT. Theoretically,
rotating the primary after each request can make the system
lose less than 1

3 of its throughput when under attack. This
leads to better performance than Prime and Aardvark.

The second benefit is that Spinning manages to improve
the throughput of PBFT when there are no faulty servers by
balancing the load of ordering requests among all (correct)
servers. Although ordering requests requires that all servers
exchange messages, thus causes load in all of them, most
load is in the primary so changing the primary improves the
throughput of the algorithm by a factor of 20%. Something
similar was recently explored by Mao et al. in the Mencius
algorithm [11], but they consider only crash faults, so
manage to avoid communication between the servers other
than the primary, thus obtaining a much higher improvement
of the throughput.

The main contributions of the paper are the following:
(1) it presents a novel style of leader-based Byzantine fault-
tolerant state machine replication algorithm that changes the
primary whenever the current primary defines the order of
a batch of requests, instead of only when it is suspected of
being faulty; (2) it presents Spinning, a BFT algorithm that
is less vulnerable to performance degradation attacks caused
by a faulty primary, attaining a throughput similar to the
baseline algorithm in the area (better in the fault-free case)
and better than other algorithms that tolerate these attacks.

II. SYSTEM MODEL

The system is composed by a set of n servers Π =
{s0, ...,sn−1} that provide a Byzantine fault-tolerant service
to a set of clients C = {c0,c1, ...}. Clients and servers are
interconnected by a network and communicate only by
message passing. We assume that the communication is
done using reliable authenticated point-to-point channels, but
that these channels may be disconnected and reconnected

later, causing sequences of messages to be lost1. This
communication model is equivalent to PBFT’s [1] and other
BFT systems. All servers are equipped with a local clock
used to compute message timeouts. These clocks are not
synchronized so their values can drift.

We assume a partial synchrony system model [12]: in all
executions of the system, there is a bound ∆ and an instant
GST (Global Stabilization Time), so that every message sent
by a correct server to another correct server at instant u >
GST is received before u + ∆, with ∆ and GST unknown.
The intuition behind this model is that the system can work
asynchronously (with no bounds on delays) most of the time
but there are stable periods in which the communication and
processing delays are bounded2. This assumption is required
to ensure the liveness of BFT algorithms (e.g., [1], [6], [7]).

Servers and clients can be correct or faulty. Correct
servers and clients follow the algorithm that they are sup-
posed to execute. We assume that any number of clients
can be faulty, but the number of servers that can be faulty is
limited to f = b(n−1)/3c, thus n≥ 3 f +1. For simplicity we
present the algorithm for the tight case, i.e., with n = 3 f +1.
The failures can be Byzantine or arbitrary, meaning that
the processes can deviate arbitrarily from their algorithm,
even by colluding with some malicious purpose. For the
server to be intrusion-tolerant, they can not share the same
vulnerabilities, so they have to be diverse [13].

The authenticity of the messages exchanged by the al-
gorithm is protected with signatures based on public-key
cryptography or message authentication codes (MACs) pro-
duced with collision-resistant hash functions. Each server
and client has a public/private key pair. Each server knows
the public keys of all servers and clients, and each client
knows the public keys of all servers. The servers use their
key pairs to establish shared keys among themselves and use
the latter to create and verify MACs. A signature σc is said
to be valid iff it was created with its sender’s (c) private key
and corresponds to the message. A message digest is said to
be valid iff it was created with the key shared between its
sender and its recipient. We also use hash functions to obtain
digests of requests and other data. We make the standard
assumptions about cryptography, i.e., that hash functions are
collision-resistant and that signatures can not be forged. We
assume all public and private keys are distributed before the
algorithm is executed.

III. SPINNING

In state machine replication, each server in Π is modeled
as a functionally identical state machine [5]. Each server
maintains a set of state variables that are modified by a set

1These channels can easily be implemented in practice assuming fair
links and using retransmissions, or in a more practical view, using TCP
over IPsec or SSL/TLS.

2In practice this stable period has to be long enough for the algorithm
to terminate, but does not need to be forever.

1

2

3

4

primary
v

primary

primary

primary

v+1

v+2

v+3

s

s

s

s

MERGE
MERGE

PREPARE−
PRE−

primary
v

primary

primary

primary

v+1

v+2

v+3

PREPARE
PRE−

PREPARE COMMIT
PREPARE

PRE−
PREPARE COMMIT

s

s

s

1

2

3

4
s

c c

REPLYREPLYREQUEST REQUEST

(b)(a)

Figure 1. (a) Normal operation, communication pattern between the servers, with the communication with a client for one
request superimposed. (b) Merge operation.

of operations. Clients of the service issue requests with op-
erations through a replication algorithm which ensures that,
despite concurrency and failures, servers perform requests
in the same order. The properties that the algorithm has to
enforce are: (1) all correct servers execute the same requests
in the same order (safety); (2) all correct clients’ requests
are eventually executed (liveness). This section presents the
Spinning algorithm.

A. Algorithm overview

In the initial presentation of the algorithm we do several
simplifications that we remove later in Section III-F, e.g.,
that requests are not processed in batches but one at a time.
We also do not consider the blacklist mechanism, which is
described later in Section III-D.

The servers move through successive configurations called
views. Each view has a primary server that changes in a
round-robin fashion. The primary is the server sp , v mod n,
where v is the current view number. The purpose of the
algorithm is to force all correct servers to execute the
requests in the same order, but only one request is executed
per view. Notice that there are no sequence numbers in
the algorithm. The number of sequence for each request
is simply the number of the view in which it is accepted
for execution. The primary has the task of defining which
request is the one to be executed in the current view.

The normal operation of the algorithm follows essentially
the communication pattern of PBFT’s normal operation. The
primary sends a PRE-PREPARE message with a pending
request to all servers. When a correct server receives this
PRE-PREPARE message, it validates it and sends all servers
a PREPARE message. When a correct server receives 2 f +1
PREPARE messages, it sends a COMMIT message. Each
correct server that receives 2 f +1 COMMIT messages accepts
and executes the request, then increments its view number.
Notice that the 3 steps have the same names as the messages
sent in each of them: pre-prepare, prepare, commit.

A faulty primary may not send the PRE-PREPARE mes-
sage, or send it only to some of the servers (but not all).
Therefore, if a server has client requests in its buffer to be
ordered, it waits a maximum time interval Tacc to accept the

request of that view. If a server does not receive enough
COMMIT messages to accept the request during Tacc, then it
sends a MERGE message to all servers.

The merge operation plays a role somewhat similar, but
different, to the view change in PBFT. The generic objective
is the same: to ensure liveness if the primary is faulty. The
specific objective is different: not to change of view, but to
agree on which requests of the previous views were accepted
and have to be executed by all (correct) servers. The main
problem is when some of the messages are lost or not sent,
and some of the correct servers accept the requests, but other
correct servers do not. In that case, the algorithm has to
merge the information from the different servers to agree on
the requests that were accepted and go to the next view.

Details about how a server processes each message of the
algorithm are given in the next section and the algorithm
is formalized in the long version of the paper, which also
presents its proof of correctness [14]. Figure 1 shows the
algorithm communication pattern.

B. Algorithm

This section provides a more in depth description of the
algorithm. It presents the algorithm in terms of the sequence
of operations executed in a view, first in normal operation
and later in the merge operation. Each server is always in
one of two states that correspond to these two operations:
normal and merge.

Normal Operation: In normal operation a request is
processed the following way:
1. Client sends a request to all servers. A client c issues
a request for the execution of an operation op by sending a
message 〈REQUEST,c,seq,op〉σc to all servers. The seq field
is the request identifier that is used to ensure exactly-once
semantics: the servers do not execute a request for a client
with a seq lower than the last executed of that client to avoid
executing the same request twice.
2. Upon server si becoming the primary of view v. When
the view changes and a server si becomes the primary of
v it verifies if: (i) it accepted the request from view v−
1; (ii) it is in the normal state; and (iii) if it has at least
one client request pending to be ordered. If these conditions

are satisfied the primary sends a 〈PRE-PREPARE,si,v,dm〉σsi
message to all servers, where si is the server identifier, v the
view number and dm a digest of the request sent by a client.
3. Upon server s j receiving a PRE-PREPARE message. When
a server s j receives a 〈PRE-PREPARE,v,si,dm〉σsi

message
from si, it evaluates if: (i) the signature is valid; (ii) the view
number v is equal to the current view number on s j and the
sender is the primary of v; and (iii) it is in the normal state.
If these conditions are satisfied the message is said to be
valid and s j sends a 〈PREPARE,v,s j,dm〉σs j

message to all
the other servers. After s j sends its PREPARE message, it
discards any other PRE-PREPARE messages for view v.

A server can also receive a PRE-PREPARE message with
view v′ > v. In this case, it buffers the message and waits
to accept all messages with view less than v′. After that,
if the message with view v′ is valid, the server sends the
PREPARE message of that view. This ensures that, even that
the network mixes the order of messages, the server always
accepts messages following the order defined by the view
number.
4. Upon server s j receiving PREPARE messages from at least
2 f + 1 servers. When a server receives 2 f + 1 PREPARE
messages from different servers (possibly including itself),
with valid signatures, the same view number v and the same
dm, it sends a 〈COMMIT,v,s j〉σs j

message to all servers.

5. Upon server s j receiving COMMIT messages from at least
2 f + 1 servers. When a server receives 2 f + 1 COMMIT
messages from different servers (possibly including itself),
with valid signatures and the same view number v, it accepts
and executes the request. After executing the request, the
server sends 〈REPLY,s,seq,res〉σs j

to the client that issued
the request, where res is the result of the operation. The
server increments its view number and if it is the primary
sends a PRE-PREPARE message. Otherwise it sets a timer
waiting for the request of the new view to be executed.
6. Upon a client receiving matching replies from f +
1 servers. When the client receives f + 1 replies
〈REPLY,s,seq,res〉σs from different servers s with matching
results res, it accepts the result.

Merge Operation: Servers can not wait indefinitely for
messages from the primary because it may be faulty. There-
fore, whenever a new view begins and the servers have
requests pending to be ordered, every correct server starts
a timer, in order to wait at most Tacc for the request of
that view to be accepted. If that timer expires, the merge
operation starts. More precisely, when the timer expires at
a server or it receives f + 1 MERGE messages from f + 1
other servers (at least one of which correct), it changes
its state from normal to merge. When it receives a PRE-
PREPARE-MERGE from the new primary, it sets the state
back to normal. The objective is to change of primary until
one that is not suspected of being faulty is selected.

The main difficulty of this operation is that in a view v the

timer may expire in some correct servers but not in others.
This may lead some correct servers to accept and execute
the request of that view, while others do not. To prevent this
situation from breaking the safety property, the messages
exchanged in the merge operation take information about
the requests accepted in the last views.

If the network is slow, timers can go on expiring suc-
cessively and merge operations can be executed one after
another. However, the partial synchrony model (Section
II) together with the timeout configuration (Section III-E)
ensure that eventually the system becomes stable enough
for the algorithm to change to normal operation.

1. Upon the timer expiring on server si. When the timer
expires, the server sends a 〈MERGE,si,v,P〉σsi

message to all
servers. If the server has at least f + 1 PREPARE messages
from different servers with the current view number, then
it sets the v field in the message to this view number.
Otherwise, the field is set to vlast that is the last view for
which si accepted a request. This mechanism ensures that
if the timer expires on other servers, at least f + 1 servers
will initiate the merge with the same view number. The field
P contains information about requests from the current and
previous views for which si received a valid PRE-PREPARE
message and at least 2 f +1 valid PREPARE messages. More
precisely, P contains one prepared certificate for each of
these requests. Such a certificate is composed by 2 f + 1
valid PREPARE messages corresponding to a certain PRE-
PREPARE message.

Correct servers always keep the last n requests accepted
and their prepare certificates. P contains all certificates that
si has for any views greater or equal to vlast−n, where vlast
is the last view for which si accepted the request. Note that
it is necessary to include only the last n accepted requests
because a correct server only accepts a request in a view v if
si has accepted the request ordered in the view v−1. After
sending a MERGE message, the server changes its state to
merge and increments the view number.

2. Upon server s j receiving f + 1 MERGE messages from
different servers. When s j receives at least f + 1 MERGE
messages for a view v, if v is higher or equal to its current
view and it has not sent a MERGE message for this view, it
sends 〈MERGE,s j,v,P〉σs j

to all servers. It changes the state
to merge and increments the view number. The verification
that v is higher or equal to its current view is needed to
prevent faulty servers from doing a merge operation of a
past view.

3. Upon server si becoming the primary of a new view v.
When si receives 2 f +1 MERGE messages for view v−1 and
becomes the primary of the new view v (i.e., si = v mod n),
it sends a 〈PRE-PREPARE-MERGE,si,v,VP,M〉σsi

message to
all servers. VP is a vector of digests of requests taken from
the P field of the MERGE messages, ordered by view number.
Only digests from views vmin to vmax are included: vmax is the

highest view number in the prepared certificates from the P
fields received in the MERGE messages; vmin = vmax−n. M is
a merge certificate composed by the 2 f +1 MERGE messages
received. This certificate is used by the recipients of the
message to verify if the primary computed VP correctly,
i.e., if it is valid.
4. Upon server s j receiving a PRE-PREPARE-MERGE
message. When a server s j receives a valid message
〈PRE-PREPARE-MERGE,si,v,VP,M〉σsi

from si it evaluates
if: (i) the signature of the message is valid; (ii) the sender
is the primary of v; and (iii) VP is valid (using the merge
certificate M to do the same computation as the primary).

Consider that the last request accepted by s j has the
view number vlast and that the lowest view number in VP
is vmin. If vlast + 1 ≥ vmin, the server state is changed to
normal and s j sends a 〈PREPARE,v,s j,dm〉σs j

message to all
servers, where dm is the digest of VP. After that, the server
follows the steps 4 and 5 of normal operation. Servers use
the information about previously executed requests to avoid
re-executing clients’ requests. Otherwise, if the server have
missed some messages before the view vmin, it must obtain
missing information from another server. The mechanism to
bring a server up to date is discussed below.

C. Garbage collection

If a server becomes unable to communicate with the rest
for some time because its channels are disconnected, it
may miss some of the messages exchanged. Therefore, each
server has to store messages in a buffer and retransmit them
when necessary.

Each correct server keeps the messages for the last l
requests accepted in its buffer. The algorithm does not allow
accepting requests out of order, therefore we can use the
view number to limit the value of l. l is a system parameter
that can be set to n, which represents a full cycle of the
algorithm (each server is primary once). Even when there
are subsequent merge operations, at least 2 f +1 servers keep
in their buffers the last l requests accepted (and all related
algorithm messages). These messages are only discarded
when 2 f +1 servers accept the next l messages.

If a server si missed some messages but all servers
discarded them already, the correct servers send to si the
most recent prepared certificate proving that the system
made progress and that it is no longer possible to recover
the messages. The solution to this situation is to do a state
transfer from the correct servers to si.

Messages received for a view higher than the current one
(v) are buffered. In order to avoid buffer exhaustion when
malicious servers send messages with high view numbers,
correct servers discard messages with view higher than v+n
when the buffer free space drops below some low water mark
L (a system parameter).

The garbage collection does not need PBFT’s checkpoint
mechanism to advance the low and high water marks of

the buffer [1]. Servers do not exchange checkpoint mes-
sages. However state transfers may be needed, as already
mentioned. Therefore, servers compute checkpoints to be
used for this single purpose. The checkpoints are generated
periodically, when a view number is divisible by some
constant (e.g. 10). After a server generates a checkpoint it
discards all PRE-PREPARE, PREPARE and COMMIT messages
with view number less than v from its buffer. It also discards
all earlier checkpoints as every server has to store a single
checkpoint. When a server that missed some messages needs
a state transfer, it requests the checkpoint from other servers.
The server accepts a checkpoint state when it receives the
same checkpoint reply from at least f +1 different servers.

D. Punishing misbehavior

In the basic version of the algorithm described, every
server becomes the primary periodically. This is an opportu-
nity for faulty servers to periodically impair the performance
of the algorithm, although only during the window of time
in which they are the primary. Therefore, in order to punish
the misbehavior of faulty primaries we defined the blacklist
mechanism that is presented in this section.

Normally the algorithm works in cycles of n primaries.
Each server keeps a blacklist of servers. When a server is
included in the blacklist it does not become the primary.
When a correct server s accepts a request and increments
the view number, it verifies if the primary of the next view
is not in its blacklist. If it is, the server increments the view
number again until it finds a new primary that is not in the
list. Notice that a server can be wrongly suspected of being
faulty due to long network delays. Therefore, servers in the
blacklist are not excluded from the algorithm in any other
way than not being the primary.

The blacklist has to be updated by all correct servers in a
coordinated way, so all servers have to apply the same crite-
ria in the same order to insert and remove servers from the
list. The basic mechanism is the following. When a server
receives a valid PRE-PREPARE-MERGE message in view v,
this means that 2 f + 1 servers agreed that some problem
occurred in view v− 1. All correct servers that receive the
PRE-PREPARE-MERGE message include the primary of v−1
in the blacklist. The size of the blacklist is f , since it is the
maximum number of faulty servers. If the list is full and a
server has to be inserted, the oldest one in the list is removed
(i.e., FIFO policy).

The basic scheme has to be modified in the following way.
If there is a merge operation and the new primary is faulty,
it may not send valid PRE-PREPARE-MERGE messages to all
correct servers, leading to different blacklists. However, if
the new primary does this attack, a new merge operation
must be executed. Therefore, the servers only keep in the
blacklist the primary’s identifier that caused the last merge
operation. When a server understands that a merge operation
started after another one, it replaces –not adds– the last

server inserted in the blacklist by the server that caused the
new merge operation. The idea is that all merge operations
that occurred before the last one are ignored, simply because
it is not possible to know if all correct servers received all
PRE-PREPARE-MERGE messages. Notice that there is no risk
of confusion about which is the next primary because the
server that is removed from the blacklist is always the one
before the last one, which can never be the next primary.

E. Timeout configuration

Tacc is the maximum time interval for a message to be
accepted in a view. This value is not constant. It starts with
an initial value defined by the system parameter Tstart and
is multiplied by two whenever there is a merge operation.
Just like in PBFT, the objective is to ensure the liveness of
the system when there are long communication delays, i.e.,
to ensure that eventually Tstart > ∆ .

To avoid that a malicious primary forces this timeout to be
high and the progress of the system slow, each server divides
by two the value of Tacc whenever it detects that the system is
stable (only if Tacc > Tstart). In order to detect if the system
is stable, all correct servers calculate the time Tavg that a
request takes to be accepted. If after r cycles a server verifies
that Tavg is lower than Tacc/2, the server resets the value of
Tacc to Tacc/2 (r is a system parameter). After r cycles if all
requests have been accepted it is possible to infer that the
system is stable. Due to delays in the network, some servers
can reduce their timeouts while others do not. However, this
is not a problem because the partial synchrony assumption
guarantees that the system stabilizes and all correct servers
eventually reset Tacc.

F. Optimizations

This section presents several optimizations to the basic
Spinning algorithm.

Batches of requests: The basic algorithm only “orders”
one request per view or, more precisely, only agrees on the
execution of one request per view. The algorithm can be
trivially modified to agree on the execution of a batch (i.e.,
a set) of requests per view. The difference is that the primary
has to send in the PRE-PREPARE message the digests of the
pending requests, instead of only one. After being accepted,
the requests are executed in some deterministic order.

Piggybacking PRE-PREPARE messages: The PRE-
PREPARE messages can be sent together with COMMIT
messages, reducing the cycle of the communication among
the servers from 3 communication steps to 2. When a server
sends a COMMIT message in view v, if it is the primary of
the next view (v+1), it appends a PRE-PREPARE message to
the COMMIT messages. Therefore, the next primary sends a
〈〈COMMIT,v,s j〉,〈PRE-PREPARE,v + 1,s j,dm′〉〉σs j

message
where dm′ is the digest of a client’s request that has not
yet been accepted. When a correct server receives such a
message, it stores the PRE-PREPARE and only sends the

corresponding PREPARE message when the view changes,
i.e., when the request from view v is accepted.

Using MAC vectors: Signatures based on public-key
cryptography are known to be much slower to create and
verify than MACs. PBFT uses vectors of MACs instead of
signatures to improve the performance of BFT algorithms
[1]. The idea is to authenticate a message with a vector
of MACs, called an authenticator, each one obtained with
a secret key shared between the sender and each of the
recipients. However, authenticators are less powerful than
signatures because a faulty sender can falsify a subset of
the MACs, while signatures are all or nothing: either valid
or invalid.

In order to improve the performance of the Spinning
algorithm, the messages sent in the algorithm can be au-
thenticated using authenticators instead of signatures, like
in PBFT. In order to prevent a request with a partially valid
vector of MACs to be accepted only by some of the correct
servers, we use a mechanism similar to the one described in
[1]: a server si authenticates a message if either the MAC
for si is correct or si has 2 f PREPARE messages with the
same request’s digest.

Parallel executions: The basic Spinning algorithm accepts
and executes a single batch of requests per view. However,
this basic functioning can be generalized to run a pre-
configured maximum number of parallel agreements, which
we call the window size (w). When a request is received
during a view, if the primary still did not start w agreements
in the current view (i.e., sent PRE-PREPARE messages), it
starts a new one. Otherwise, the request is kept for the
next view. The messages exchanged between the servers
take an order number local to the view (from 1 to w). This
mechanism works similarly to the way PBFT does batching
of requests.

IV. EVALUATION

In this section we assess the advantages of Spinning
comparing it with related protocols both experimentally and
analytically. Our evaluation makes three points. First, we
show experimentally that rotating the primary does not im-
pair the performance of the system, but instead brings some
throughput gains in fault-free executions (Section IV-A1).
Second, we show that rotating the primary is a simple
and effective strategy to make a BFT replication algorithm
tolerate performance attacks from malicious servers (Section
IV-A2). Finally, we show analytically that Spinning presents
important advantages when compared with other solutions
to deal with performance attacks (Section IV-B).

A. Experimental Evaluation

Protocol Implementations: We implemented our proto-
type of Spinning in Java. We chose Java because it is
considered a much more secure language than C/C++ due
to the existence of features like memory protection, strong

typing and access control. These features can make a BFT
implementation much more dependable. Java has also the
advantage of improving the system portability (hardware and
operating system) making it easier to deploy in different
environments, a crutial requirement for BFT systems due
to the need of diversity to justify the fault independence
assumption.

PBFT [1] is often considered to be the baseline for BFT
algorithms, so we were interested in comparing Spinning
with the C++ implementation available at http://www.pmg.
lcs.mit.edu/bft/. We also implemented a version of PBFT’s
normal case operation in Java (JPBFT) in order to better
compare Spinning with a “fixed-leader” algorithm based on
the same codebase.

The prototypes (Spinning and JPBFT) were implemented
for scalability, i.e., for delivering a throughput as high
as possible when receiving requests from a large num-
ber of clients. To achieve this goal, we built a scalable
event-driven I/O architecture and implemented an adaptive
batching algorithm and window congestion control similar
to the one used in PBFT (the algorithm can run a pre-
configured maximum number of parallel agreements, the
window size; requests received when there are no slots
for running agreements are batched in the next agreement
possible). Additionally, we used recent Java features such
as non-blocking I/O and the concurrent API (packages
java.nio and java.util.concurrent). Finally, we used
TCP sockets for communication and message authentication
is done using HMACs based on SHA1.

Setup and methodology: Unless where noted, we consider
a setup that can tolerate one faulty server (f = 1), with n = 4
servers. We executed from 0 to 120 logical clients distributed
through 6 machines. The servers and clients machines were
2.8 GHz Pentium-4 PCs with 2 GBs RAM running Sun
JDK 1.6 on top of Linux 2.6.18 connected by a Dell gigabit
switch. In all experiments in which Java implementations
were used, we enabled the Just-In-Time (JIT) compiler
and run a warm-up phase to load and verify all classes,
transforming the bytecodes into native code.

We measured the latency of the algorithms using a
simple service with no state that executes null operations,
by varying the requests size between 0 and 4Kbytes. The
latency was measured at the client by reading the local clock
immediately before the request was sent, then immediately
after the response was accepted and subtracting the former
from the latter. Throughput results were obtained calling also
null operations using requests and responses with 0 bytes.
These requests were sent by a variable number of logical
clients in each experiment (1-120). Each client sent opera-
tions periodically (without waiting for replies), in order to
obtain the maximum possible throughput. Each experiment
ran for 100,000 client operations to allow performance to
stabilize, before recording data for the following 100,000
operations.

1) Fault-free Executions: The first part of our experi-
ments aims to compare the performance of Spinning with
PBFT when there are no faults and asynchrony on the
system. Table I present the results for latency.

Req/Res PBFT JPBFT Spinning
0/0 0.4 1.8 1.3

4K/0 0.6 2.2 1.7
0/4K 0.8 2.5 2.1

Table I
LATENCY RESULTS (IN MS) VARYING REQUEST AND RESPONSE SIZE

FOR PBFT, JPBFT AND SPINNING.

In this experiment, PBFT has shown the best performance
of all algorithms/implementations, followed by Spinning
and JPBFT. This experiment shows clearly that our Java
implementation runs an agreement much slower than PBFT,
although they run the same number of communication steps.
One of the possible reasons for this can be the overhead
of our event-driven socket management layer that maintains
several queues and event listeners to deal smoothly with a
high number of connections. Spinning is faster than JPBFT
since it implements the tentative execution optimization
originally proposed and implemented in PBFT [1], which
executes an operation after receiving 2 f +1 PREPARE mes-
sages, i.e., one step earlier.

The second part of the our experiments had the objective
of measuring the peak throughput of the algorithms with
different loads. The results are presented in Figure 2.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 0 10 20 30 40 50 60 70 80 90 100 110 120

T
h
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/s

e
c
)

Number of Clients

PBFT
JPBFT

Spinning (LS)
Spinning (10)

Figure 2. Peak throughput for 0/0 operations for PBFT, JPBFT,
Spinning lock-step and Spinning with window size equals 10.

For our experiments, we defined the window size of PBFT
as 1, which is the optimal value for fast networks, and the
window size of JPBFT as 10. These values are the optimal
ones found on our network. We also executed two versions
of Spinning, one in which at most one consensus is initiated
by each leader (Lock Step - LS) and another in which each
server initiates at most 10 consensuses (possibly in parallel),
which is equivalent to PBFT/JPBFT with window size of 10.
The figure shows that PBFT, JPBFT and Spinning (LS) have
approximately the same peak throughput (22000 to 23000

op/sec). Spinning (10), on the other hand, has a throughput
14% better than PBFT and 20% better than JPBFT.

This improvement can be explained by the better load
balancing between the servers provided by the Spinning
algorithm. In PBFT, the throughput of the system is con-
strained by the amount of messages per batch processed
by the leader, which is 5n. Other servers process only
4n + 1 messages per batch. If we consider this asymmetry
as 5n

4n+1 ≈ 1.2, this means that the leader executes 20%
more work than other servers. This value corresponds to
the throughput improvement we observed from JPBFT to
Spinning (10).

2) BFT Under Attack: To assess the benefits of Spinning
under performance attacks when compared with PBFT, we
run some experiments in which we designated one of the
servers as the faulty one (the primary for (J)PBFT) and
this server waits an attack delay dattack before sending PRE-
PREPARE messages. We evaluated the latency and through-
put of the algorithms with dattack ranging from 0 to 100 ms.

Table II reports the latency values for the algorithms with
one faulty process executing the performance attack, without
expiring any timeout.

dattack PBFT JPBFT Spinning (LS) Spinning (10)
0 0.4 1.8 1.3 1.3
1 1.1 3 3.4 4.2

10 16 13 4.2 5.8
100 103 103 19 22

Table II
LATENCY OF 0/0 OPERATIONS (IN MS) FOR PBFT, JPBFT,

SPINNING (LS) AND SPINNING (10) UNDER DIFFERENT LEVELS
OF ATTACKS (dattack OF 1, 10 AND 100 MS).

In this table it can be seen that the operation latencies
of both PBFT and JPBFT are directly proportional to the
attack delay injected by the malicious leader. However, this
is not the case for Spinning. Assuming that the delay of a
BFT algorithm execution with dattack = 0 is c, the average
delay of PBFT/JPBFT under attack would be approximately
dattack + c, while for Spinning it is the mean between the
latency of the operation for all n processes, which would be
approximately f dattack+(3 f +1)c

3 f +1 = f
3 f +1 dattack + c. This means

that the attack delay will always be diluted by a factor of
f

3 f +1 , which is 1
4 for f = 1 (our setup). This corresponds

approximately to the ratio we observed between the latency
of Spinning and JPBFT.

Our final experiment evaluates the peak throughput of the
algorithms with different dattack values. Figure 3 reports the
observed values.

Based on the results of this figure we can make three
observations regarding the behavior of the algorithms in face
of performance attacks: (1.) PBFT suffers more than JPBFT;
(2.) Spinning (LS) is more resilient than Spinning (10); (3.)
Spinning is more resilient than PBFT.

Observations (1.) and (2.) show that algorithms that ex-

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 24000

 27000

 30000

0 ms 1 ms 10 ms 100 ms

P
e
a
k
 T

h
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/s

e
c
o
n
d
)

PBFT
JPBFT

Spinning (LS)
Spinning (10)

Figure 3. Peak throughput for 0/0 operations for PBFT, JPBFT,
Spinning (LS) and Spinning (10) under different levels of attacks
(dattack of 1, 10 and 100 ms).

ecute more consensus instances are more affected by these
attacks when compared with algorithms that execute less
instances, which take more time to execute and order more
messages in their batches. This is not a surprise since the
attack affects each consensus initiated by faulty servers,
so more consensuses lead to more attacks. The conclusion
here is that, while Spinning (10) provides better throughput
when there are no attacks in the system, Spinning (LS) is
more resilient to performance attacks, and thus there is a
tradeoff here relating the window size of the algorithms and
performance under this type of attack.

Observation (3.) shows that our main motivation for
developing Spinning actually holds in practice: changing the
leader periodically makes a BFT algorithm more resilient
to performance attacks. Theoretically, the ratio between the
throughput of PBFT and Spinning when under attack should
be approximately f

3 f +1 , which would be 1
4 for f = 1. In

practice, as seen in Figure 3, this does not happen since
the adaptive batching algorithm employed in the algorithms
dilutes the throughput loss when the attack is not so se-
vere. Take for example, JPBFT and Spinning (LS), when
dattack = 1 and dattack = 10, the throughput of JPBFT is 40%
and 50% worse than Spinning, respectively, instead of the
expected 75%. However, when dattack = 100 ms, JPBFT is
83% worse than Spinning (instead of 75%), which means
that after some point, batching does not help.

B. Spinning vs. Related Solutions

In this section we compare Spinning with two very recent
algorithms designed to be resilient in face of performance
attacks: Prime [8] and Aardvark [10]. Since the implemen-
tations of these algorithms are not available, we do an
analytical comparison based on their theoretical properties.

The Prime replication algorithm introduces a pre-order
phase with three communication steps before the global-
order (which is based on PBFT) that, together with the
constant monitoring of the performance of the primary,
make the system able to detect several performance attacks

and change the leader when it degrades the performance
of the system. One important advantage of Spinning when
compared with Prime is that in our algorithm the primary
of a view always processes less messages than Prime,
which means less network I/O and, more important, less
cryptographic operations.

Considering b as the number of messages in a batch, in
Spinning the primary processes 2 + 8 f

b messages per client
request while in Prime it processes 2 + 9 f + 14 f

b . Figure 4
ilustrastes these costs for different values of f and b. The
figure shows that even with batching, the processing costs
of Prime are much higher than the costs of Spinning, and
thus, the expected throughput of the former should be much
lower than the later. Notice also that this evaluation does
not consider that Prime uses public-key signatures while
Spinning does not.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 1 2 3 4 5

M
e
s
s
a
g
e
s
 p

ro
c
e
s
s
e
d
 (

s
e
n
t
a
n
d
 r

e
c
e
iv

e
d
)

b
y
 t
h
e
 p

ri
m

a
ry

Faults Tolerated (f)

Prime (no batch)
Prime (b=10)

Spinning (no batch)
Spinning (b=10)

Figure 4. Number of messages processed by the primary per client
request in Spinning and Prime for several values of f and b.

Aardvark is a BFT library developed concurrently with
this work in which a set of engineering principles are applied
to PBFT to make it more resilient against several kinds
of attacks from clients and servers. One of the attacks
addressed by Aardvark is the pre-prepare delay injected by a
malicious primary. This attack is mitigated through constant
monitoring of the throughput sustained during a view plus
the periodic change of primary through the execution of
PBFT’s view change operation.

Theorem 3 of the Aardvark paper [10] states that under
certain conditions (e.g., timely network, correct clients),
the ratio between the throughput of the system with a
malicious primary and the fault-free throughput is bounded
by tgrace

2 f timeout+tgrace

2 f +1
3 f +1 , being tgrace the minimum amount of

time that a correct server stays as a primary and timeout
the timeout used to trigger view changes (e.g., in case of a
malicious primary).

For Spinning, under the same conditions, this ratio can be
calculated in the following way: if in a fault-free execution,
a stable Spinning execution sustains a throughput of k oper-
ations per second, when there are f faulty servers executing
performance attacks (delaying messages less than timeout),
the same k operations would take at most 1 + f timeout

seconds. Consequently, the ratio between the throughput of
the system on fault-free and faulty executions is 1

1+ f timeout .
Figure 5 shows the ratio for both Spinning and Aardvark

considering timeout values of 40 and 100 ms (which ulti-
mately define the maximum delay for a performance attack).
For Aardvark we consider tgrace = 5 s, as described in [10].
The figure shows that Spinning is potentially more resilient
to performance attacks than Aardvark, and the difference
between the ratios for the two protocols only increases as f
and timeout increase.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

T
h
ro

u
g
h
p
u
t
ra

ti
o
 w

it
h
/w

it
h
o
u
t
p
e
rf

o
rm

a
n
c
e
 a

tt
a
c
k
s

Faults Tolerated (f)

Spinning (timeout = 40 ms)
Spinning (timeout = 100 ms)
Aardvark (timeout = 40 ms)

Aardvark (timeout = 100 ms)

Figure 5. Calculated ratio between the throughput with and with-
out performance attacks for Spinning and Aardvark for different
different values of f and timeout.

The analysis presented in this section shows some ev-
idence that systematically rotating the primary after each
request makes Spinning more efficient and resilient than
other recent BFT systems that use complex mechanisms to
ensure acceptable throughput when the primary is faulty.

V. RELATED WORK

Many Byzantine fault-tolerant algorithms rely on a pri-
mary/leader server that tries to impose a decision; when
this primary fails a new one substitutes it. Some examples
of leader-based Byzantine fault-tolerant algorithms can be
found in [1], [2], [6], [7].

These current leader-based BFT algorithms share the
same vulnerability: a faulty primary can slow the system
down undetected, until its performance is a fraction of what
the conditions allow. Amir et al. [8] brought to light this
vulnerability and proposed a bounded delay property to
complement the liveness property, requiring the primary to
impose a timely decision in order not to be replaced. They
also proposed the Prime algorithm to solve the problem, but
as shown in Section IV-B Spinning solves it more efficiently.

Even more recently, Clement et al. proposed the Aardvark
algorithm that modifies PBFT in order to protect it from
attacks against performance [10]. Aardvark includes a set of
mechanisms that also solve other problems, but the solution
to prevent faulty servers from delaying the service is less
efficient than Spinning, as shown in Section IV-B. Aardvark
also changes of primary whenever the primary seems to be

performing slowly, but it does this change by running a view
change operation, while Spinning is constantly changing
the primary without the need of executing a distributed
algorithm to do it.

There are several consensus algorithms that are based
on a rotating coordinator, i.e., that change of process that
imposes the decision until the algorithm manages to reach a
final decision (e.g., [12]). However, these algorithms do one
consensus, while Spinning does a sequence of consensuses.
Furthermore, these algorithms rotate the coordinator with
the single purpose of skipping faulty coordinators, while
Spinning rotates the primary with the purpose of tolerating
performance degradation attacks made by faulty primaries
and for load balancing.

To the best of our knowledge the only Byzantine fault-
tolerant algorithm that rotates the leader without a timeout
expiring or the primary misbehaving is BAR-B [2]. However,
BAR-B does it differently and with other purposes. BAR-
B is an algorithm to implement cooperative systems that
considers three kinds of nodes: Byzantine (what we call
faulty), altruistic (what we call correct) and rational. Rational
nodes participate in the system to gain some benefit and can
depart from the algorithm to increase their benefits. BAR-
B rotates the leader to guarantee that every node has the
opportunity to submit proposals to the system. Each primary
starts a sequence of 6 communication steps. The nodes
follow a pattern of communication similar to PBFT but
have additional steps because the primary does terminating
reliable broadcast instead of consensus. Besides needing
more steps, no steps are run in parallel, unlike Spinning.

Very recently, Mao et al. presented Mencius, an algorithm
for efficient state machine replication in WANs [11]. Men-
cius also changes the primary for each consensus instance,
just like Spinning, but has several important differences. The
main one is that Mencius only tolerates crash faults, not
Byzantine faults, so it has a completely different purpose, as
it assumes that the primary can not be malicious. It balances
the load among the servers and reduces the communication
delays by making each client communicate only with the
server that is closest to it. Mencius achieves great perfor-
mance benefits because with crash faults servers other than
the primary do not have to communicate directly among
them, something that is not true with Byzantine faults.

VI. CONCLUSION

The paper presents Spinning, a novel Byzantine fault-
tolerant state machine replication algorithm that tolerates
performance attacks by changing the primary whenever a
batch of pending requests is accepted for execution. This
way of tolerating these attacks is much simpler and more
efficient that other solutions in the literature (Prime, Aard-
vark). This novel mode of operation also does some load
balancing among the servers, allowing an improvement of
PBFT’s throughput in the fault-free case.

Acknowledgments: We warmly thank Yair Amir and Jonathan
Kirsch for discussions on the paper that greatly assisted us in
improving it. This work was partially supported by the Alban schol-
arship E05D057126BR and by the FCT through the Multiannual
and the CMU-Portugal Programmes.

REFERENCES

[1] M. Castro and B. Liskov, “Practical Byzantine fault tolerance
and proactive recovery,” ACM Transactions on Computer
Systems, vol. 20, no. 4, Nov. 2002.

[2] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin,
and C. Porth, “BAR fault tolerance for cooperative services,”
in Proceedings of the 20th ACM Symposium on Operating
Systems Principles, Oct. 2005.

[3] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga,
“DepSpace: a Byzantine fault-tolerant coordination service,”
in Proceedings of the 3rd ACM SIGOPS/EuroSys European
Systems Conference, Apr. 2008.

[4] L. Zhou, F. Schneider, and R. van Renesse, “COCA: A secure
distributed on-line certification authority,” ACM Transactions
on Computer Systems, vol. 20, no. 4, Nov. 2002.

[5] F. B. Schneider, “Implementing faul-tolerant services using
the state machine approach: A tutorial,” ACM Computing
Surveys, vol. 22, no. 4, Dec. 1990.

[6] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira,
“HQ-Replication: A hybrid quorum protocol for Byzantine
fault tolerance,” in Proceedings of 7th USENIX Symposium on
Operating Systems Design and Implementations, Nov. 2006.

[7] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative Byzantine fault tolerance,” in Proceed-
ings of the 21st ACM Symposium on Operating Systems
Principles, Oct. 2007.

[8] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Byzantine replica-
tion under attack,” in Proceedings of the IEEE International
Conference on Dependable Systems and Networks, Jun. 2008.

[9] M. Correia, N. F. Neves, and P. Verissimo, “How to tol-
erate half less one Byzantine nodes in practical distributed
systems,” in Proceedings of the 23rd IEEE Symposium on
Reliable Distributed Systems, Oct. 2004.

[10] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making Byzantine fault tolerant systems tolerate Byzantine
faults,” in Proceedings of the 6th USENIX Symposium on
Networked Systems Design & Implementation, Apr. 2009.

[11] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building
efficient replicated state machines for WANs,” in Proceedings
of the 8th USENIX Symposium on Operating systems Design
and Implementation, Dec. 2008.

[12] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” Journal of the ACM, vol. 35,
no. 2, Apr. 1988.

[13] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia,
“How practical are intrusion-tolerant distributed systems?”
Department of Informatics, University of Lisbon, DI-FCUL
TR 06–15, Sep. 2006.

[14] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung,
“Spin one’s wheels? Byzantine fault tolerance with a spinning
primary,” Department of Informatics, University of Lisbon,
DI-FCUL TR 09-16, Jul. 2009.

