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Abstract—Cloud storage services are top-rated, but there are
often concerns about the security of the files there stored. Clouds-
of-clouds or multi-clouds are being explored in order to improve
that security. The idea is to store the files in several clouds,
ensuring integrity and availability. Confidentiality, however, is
obtained by encrypting the files with block ciphers that do
not provide provable security. Secret sharing allows distributing
files among the clouds providing information-theoretic secu-
rity/secrecy. However, existing secret sharing schemes are space-
inefficient (the size of the shares is much larger than the size of
the secret) or purely theoretical. In this paper, we propose the
first practical space-efficient secret sharing scheme that provides
information-theoretic security, which we denominate PRactical
Efficient Secret Sharing (PRESS). Moreover, we present the
Secure CloUD storage (SCUD) service, a new cloud-of-clouds
storage service that leverages PRESS to provide file confidential-
ity. Additionally, SCUD provides data integrity and availability,
leveraging replication.

Index Terms—Secret Sharing, Space Efficiency, Cloud Storage,
Cloud Services

I. INTRODUCTION

Cloud storage services like Amazon S3, Microsoft
OneDrive, Google Drive, and Dropbox are extremely popular,
both among companies and private users. However, the fact
that with such services data is stored outside of the premises
of the company/user, often raises concerns about data security,
in terms of confidentiality, integrity, and availability [1], [2].

Clouds-of-clouds or multi-clouds, the idea of using several
clouds to mask faults in some of them, is getting a lot of
traction [3] with offers like Google Anthos1 and startups like
Vawlt2 or Multcloud.3 Clouds-of-clouds are being explored in
order to improve that security [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18]. The approach
consists in storing the data in a set of different cloud stor-
age services, directly guaranteeing integrity and availability.
However, confidentiality is obtained by encrypting the files,
typically with block ciphers such as AES in CBC mode [5],
[6], [8], [10], [12], [13], [18].

Block ciphers and, more generically, symmetric encryption
are widely adopted today. However, their security is problem-
atic. Katz and Lindell provide a proof that “any perfectly-secret
encryption scheme must have a key space that is at least as
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large as the message [i.e., plaintext] space” [19]. The best-
known of such schemes is the one-time pad. However, such a
scheme is unusable in practice, because it requires solving the
same problem we have in the first place: protecting the secrecy
of data of a certain size. Therefore, block ciphers and other
symmetric encryption schemes do not provide perfectly-secret
encryption, but approximations that allow fixed-size keys (e.g.,
256 bits). The practical consequence of using approximations
is that these schemes are often vulnerable to attacks (e.g.,
known-plaintext attacks, chosen-plaintext attacks, differential
cryptanalysis) or become insecure with time. For example, the
previous block cipher security standard, DES, is no longer
considered secure, and the current standard, AES, has been
shown to be vulnerable to a few (non-critical) attacks that
reduce its strength [20]. Moreover, if quantum computers
become available, they may lead to an extreme reduction
on the time to brute-force encrypted data by running the
Grover algorithm [21]. Therefore, although using block cipher
schemes like AES today is arguably a secure option, this may
not be the case in the future.

Secret sharing is a set of methods to distribute a secret
among a set of participants [22], [23]. Specifically, a (t, n)
secret sharing like Shamir’s [22] generates n shares of the
secret in such a way that any t –but no less– can be used
to recover the secret. On the contrary of block ciphers, many
secret sharing schemes provide information-theoretic security
[24], [25], i.e., they provide the same secrecy guarantees as
a perfectly-secret encryption scheme; their security does not
rely on approximations [26]. Secret sharing can be used to
obtain confidentiality by breaking a file in shares and storing
each share in a cloud of a multi-cloud [7], [9], [27].

Despite the security offered by this combination of secret
sharing and cloud-of-clouds, most information-theoretic secure
secret sharing schemes are space-inefficient in the sense that
they generate shares of a size similar to the size of the secret.
This means that storing a secret (a file) of size |S| using such a
scheme requires n×|S| storage space, which costs an average
of n times the cost of storing the file in a single cloud, as
storage space used in public clouds is paid.

There are a few solutions to this problem in the literature.
A first class of solutions are multi-secret sharing schemes,
i.e., schemes that improve space efficiency by sharing several
secrets together [28], [29], [30], [31]. However, this approach
is not suitable for cloud storage as files are typically stored
one by one in the cloud, not in groups of several files of the
same size. Moreover, these schemes reveal some information
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[32].
A second set of solutions provide only computational se-

curity [31], so they raise similar concerns as those of block
ciphers. A space-efficient scheme proposed by Krawczyk
encrypts the secret (or file) with a block cipher and a random
secret key, breaks the encrypted secret into redundant parts
using an erasure code scheme, then generates shares of the
secret key using an information-theoretic secure secret sharing
scheme [33]. This scheme is used in cloud storage systems
like DepSky and SCFS [5], [6]. There are also deduplication
schemes that allow sparing much storage space, but that again
use block ciphers to encrypt the files [34], [35], [36], [37],
[15].

In this paper we seek to bring together the information-
theoretic security of secret-sharing with space efficiency. The
optimal storage space bound for secret sharing (the optimal
share size) is |S|t as we need at least t × |S|t ≥ |S| bits
to recover the secret S, assuming that the file cannot be
compressed. Parakh and Kak presented a recursive scheme
that has a near-optimal share size of |S|

t−1 [32]. They prove
that the scheme provides information-theoretic security, but
their scheme is not practical as it has several limitations: it
works for reasonably small secrets, not files; the presentation
of the dealing algorithm has obscure parts; the recovery
scheme is not fully defined (the interpolation scheme must be
different from Shamir’s and this is not even discussed), and
the main dealing algorithm is limited by the relation between
the number of the data pieces and the number of cloud servers
(share numbers) which are assigned to store the data shares.
An obvious consequence of the scheme being incompletely
defined is that there is no implementation available.

In this paper, we propose the first practical space-efficient
secret sharing scheme that provides information-theoretic se-
curity, which we denominate PRactical Efficient Secret Shar-
ing (PRESS). The scheme is inspired by Parakh and Kak’s
scheme but solves the limitations that make it unpractical.
PRESS is fully defined and implemented. Utilizing secret
sharing in data security and its boundaries, limitations, and
the corresponding computation and storage costs are discussed
extensively in [38], [39], and [40].

Moreover, we present the Secure CloUD storage (SCUD)
service, a new cloud-of-clouds storage service that leverages
our secret sharing scheme to provide file confidentiality. The
service also provides data integrity and availability by storing
files in several clouds. SCUD provides a block storage service
similar to DepSky’s, in which files are stored in several
clouds. However, DepSky and similar systems use block
ciphers to encrypt files, while SCUD uses PRESS that provides
information-theoretic security.

We did an experimental evaluation of SCUD with files
stored in Amazon S3 in 8 locations worldwide and with clients
in Amazon EC2 in other 4. We concluded that SCUD, lever-
aging PRESS as its backing, can provide provable security
for storing data in clouds in a space-efficient way, with a
performance penalty of around double of using a single cloud
(instead of the expectable 4x cost of replicating a file in 4
clouds). Therefore, this combination seems to be effective for
practical scenarios of critical data outsourcing.

The paper is organized as follows. Section II presents
additional background on secret sharing and additional related
work. Section III presents the PRESS secret sharing scheme.
Section IV presents the SCUD cloud-of-clouds storage service.
Section VI covers the implementation of both the secret
sharing scheme and the cloud storage service. The results
of the experimental evaluation are presented in Section VII.
Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section provides additional background on secret shar-
ing and further discusses related work on cloud storage.

A. Secret Sharing

Secret sharing is a method for a dealer to break a secret
in shares and distribute them to a group of parties. Secret
sharing is an important tool in cryptography that is used in
many security protocols [41]. A secret-sharing scheme for
A is a method by which the dealer distributes shares to
the parties such that: (1) any subset in A can reconstruct
the secret from its shares, and (2) any subset not in A
cannot reveal any partial information about the secret. For
that reason, the term threshold secret sharing is also used to
mean this kind of scheme. Threshold schemes, including secret
sharing and threshold signatures and others, are well suited to
applications in which a group of mutually suspicious parties
with conflicting interests has to cooperate [22], [42], [43], [44].
This kind of scheme has been utilized in cloud and multi-
cloud computing and storage lately. Shamir’s threshold secret
sharing scheme, although having appeared concurrently with
Blakley’s [23], is regarded as the basis for many subsequent
schemes, including the scheme by Parakh and Kak’s in which
ours is inspired. Therefore, next, we present Shamir’s scheme,
then Parakh and Kak’s. In the end we briefly discuss Thien
and Lin’s secret image sharing scheme [45].

1) Shamir’s Scheme: The scheme is based on polyno-
mial interpolation. Given t points in a 2-dimensional plane
(x1, y1), ..., (xt, yt) with distinct xi’s, there is one and only
one polynomial q(x) of degree t − 1 such that q(xi) = yi
for all i. Without lack of generality, consider that the secret
D is an integer number (i.e., D ∈ Z). To partition D
into Di shares, choose a random t − 1 degree polynomial
q(x) = a0 + a1x + ... + at−1x

t−1 in which a0 = D, and
evaluate D1 = q(1), ..., Di = q(i), ..., Dn = q(n). Given any
subset of t of these Di values (indicated with their indices as
(Di, i)), it is possible to interpolate the coefficients of q(x)
and obtain the value D = q(0). Moreover, having any subset
of t− 1 of these values does not reveal (it is not sufficient to
calculate) any information about D (perfect privacy).

Consider a dealer who is in charge of sharing a secret D
between n participants for a (t, n) threshold scheme. Shamir’s
scheme has three steps:

1) Generating the parameters: Given an integer D, select
a prime number p bigger than both D and n. Each
participant gets an index i and p.

2) Sharing shares of the secret with the participants: The
coefficients a1, ..., at−1 of q(x) are randomly picked
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with a uniform probability distribution over the inte-
gers in [0, p), and q(x) = D + a1x + a2x

2 + ... +
at−1x

t−1(mod p) is constructed. Then, the value of q(i)
for i = 1, 2, ....n is calculated and transmitted to each
participant i using a secure channel.

3) Secret reconstruction: t participants provide their shares,
then interpolation is used to reconstruct the secret D.

2) Parakh and Kak’s Scheme: One of the significant ob-
stacles in secret sharing is the storage space. The optimal
share size for these schemes is |S|t . In 2011, Parakh and Kak
presented a threshold secret sharing technique with the aim to
reduce the storage size, making it close to the optimal bound
[32]. Their proposed algorithm has a share size of |S|t−1 .

Their scheme operates as follows. Consider a secret d, n
participants, and a threshold t. In the dealing phase, first the
dealer splits d into t − 1 pieces of data. Then, recursively,
polynomials of degree 1 to t− 1 are created and sampled for
the following recursion. Finally, the last polynomial of degree
t − 1 is sampled in n points, each one becoming a share of
the secret.

In the reconstruction phase, t shares are needed to interpo-
late the polynomial and reverse the dealing steps. Reversing
the process uses the interpolated polynomial coefficients in
each round as input points to repeat the new polynomial pro-
cess as the next round. The constant terms of the polynomials
in all rounds are accumulated to remake the desired secret.
This scheme relies on modular calculus using a base equal
to a prime number that must be greater than the secret. To
overcome the problems of dealing with big prime numbers,
the secret has to be split into smaller parts (e.g., in 2-digit
parts), which are handled as individual secrets by the secret
sharing dealing algorithm. The dealing algorithm works with
secret pieces. There are a fixed number of these pieces (equals
to t − 1 and then their size is not flexible either. The size of
these pieces defines the required storage size and the system’s
storage ratio. Any try to change their size would change the
secret size and implementation issues, which are not practical.
The PRESS also alters this scheme to a flexible approach on
the secrets and pieces size and number.

Despite the benefits of Parakh and Kak’s scheme, the
scheme itself and its presentation have several limitations.
First, the space efficiency is limited due to the dependence
of the internal parameter P on the number of shares n (see
Section III-A). Second, the paper does not present the secret
reconstruction scheme (specifically the interpolation). Finally,
the paper does not explain how it should be implemented in
practice or evaluates its performance. Our scheme (PRESS)
solves these limitations. Moreover, our paper is not a theoreti-
cal paper about a scheme, but a systems paper about a storage
service.

3) Thien and Lin’s Scheme: Thien and Lin introduced a
scheme to share an image as a set of parts that they call
shadow images [45]. On the contrary of Shamir’s scheme
and of our own work, their solution is not generic, i.e., does
not allow sharing generic data, only images. Their approach
is based on sharing the grey values of pixels of an image
divided into several sections of pixels. It splits the original
image into n shadow images that, regarding the threshold

value of t, will make the result shadows size by the side of
|Dt | for the image of size D. So, the overall file size will
be n × |Dt | for an image of size |D| that is pretty close to
the optimal, similarly to our approach. As mentioned, their
scheme is targeted at image sharing, as it relies on sharing the
grey values for pixels. Therefore, it needs permutations on the
original image before it does the sharing process. To achieve
better availability and integrity, the value of the t needs to be
defined carefully regarding the size of n. The overall storage
size will not be much bigger than the original image size. As
this approach is limited to image sharing, they recommended
hiding the resulted shadow images in different host images,
which explicitly has meaningfully negative effects on the
overall computation and storage costs.

B. Cloud Storage Services

Cloud storage services are popular, but security (confiden-
tiality, integrity, and availability) and dependability (avail-
ability, reliability, integrity, maintainability) remain important
concerns [2], [1], [46], [47]. The idea of using replication in
several clouds for improving security and dependability first
appeared in RACS [4], and DepSky [5]. Since then, many
others appeared, providing similar guarantees, in some cases
with a more practical programming interface [6], [7], [8], [10],
[12], [13], [14], [15], [17], [18]. Interestingly, Amazon as the
major cloud provider, also proposed replicating files in several
regions / data centers to improve the availability of their S3
service [11].

These solutions trivially achieve integrity and availability,
by merely having the files stored in different clouds, i.e., in the
systems of different cloud service providers or in various data
centers. In relation to confidentiality, three basic approaches
are being followed. First, some practical and research systems
simply encrypt the files storing them in the clouds [12], [13].
Second, systems like DepSky, SCFS, and Charon [5], [6],
[18] use a variation of Krawczyk’s scheme [33], i.e., a non-
information-theoretically secure secret sharing scheme. Third,
systems like Belisarius and fVSS [7], [9], use secret sharing
schemes that provide information-theoretic security but are not
space-inefficient. Table I summarizes the approaches on data
storage for a representative set of systems.

Space inefficiency is one of the main problems of using
secret sharing schemes for data confidentiality, as in Belis-
arius and fVSS (see Table I). Recursive methods based on
Shamir’s scheme use several polynomials to reduce the space
usage [48], [32]. Our algorithm uses secret sharing for data
distribution and is based on recursive algorithms to avoid space
inefficiency.

III. PRACTICAL EFFICIENT SECRET SHARING – PRESS

PRESS is based on Shamir’s scheme and on the idea
of recursively building upon polynomial interpolation and
sampling from Parakh and Kak [32]. PRESS aims to make
practical use of such recursion for storing files efficiently
in terms of the used storage space. The scheme has two
phases: dealing with data, i.e., breaking it into shares, and
reconstructing the data from a desired number of shares.
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TABLE I
COMPARISON BETWEEN CLOUD STORAGE SYSTEMS IN THE LITERATURE AND OURS

System Data handling approach Confidentiality approach Secret sharing role Secret sharing scheme Ref.
RACS data replication with erasure coding none none none [4]

DepSky data replication with erasure coding data encryption secret key storage Shamir / Krawczyk [5]
SCFS data encoding data encryption secret key storage Shamir / Krawczyk [6]

Hybris data replication by erasure coding data encryption none none [8]
Belisarius data secret sharing secret sharing confidentiality and availability Shamir [7]

fVSS db entry sharing with secret sharing secret sharing confidentiality and availability Shamir / fVSS [9]
SCUD secret sharing secret sharing confidentiality and availability PRESS this

The PRESS scheme is based on two main parameters:
• n – the number of shares to obtain;
• t – the number of shares needed to recover the secret S.
Moreover, the scheme depends on an internal parameter P .

P is a key parameter as it directly affects the space-efficiency
of a system that uses PRESS. Therefore, it has to be adjusted
carefully. Section VII-B1 discusses the tuning of the scheme’s
parameters, including P .

A. Dealing Phase

The dealing phase is implemented by function DealSecret()
that works as defined in Algorithm 1. To share a secret S, the
dealer first splits it into P data pieces s1, s2, s3, ..., sP (Step 1).
A prime number greater than any of the pieces is picked (Step
2). Then, the dealer randomly and uniformly chooses a number
a1 ∈ Z and generates a 1st degree polynomial f1(x) = a1x+
s1 (Step 3).

The polynomial f1(x) is sampled in two points D11 and
D12 as the shares of s1 (Step 4). These resulting numbers (D11

and D12) are used as coefficients to generate the second round
polynomial f2(x) for the second secret piece s2: f2(x) =
D12x

2 + D11x + s2 (Step 5.a). Then, f2(x) is sampled in
three points to be used as coefficients in the next round for
the next secret piece’s corresponding polynomial.

This process is repeated recursively for all the secret pieces
(Step 5.b.i) except the two lasts: sP−1 and sP . The last
polynomial fP−1(x) is generated in the same way as the
previous, but sampled in t − 1 points instead of P (t is the
threshold number) (Step 5.b.ii). These sampling points define
the degree of the next round’s polynomial as its coefficients.
Also, to have a polynomial that works with t points at the
next round (that corresponds to the threshold number of
given points in the reconstruction phase), we need to have
a polynomial of degree t−1, which requires t−1 coefficients
sampled from fP−1.

These steps handle one of the main defects of Parakh and
Kak’s algorithm. In their algorithm, P has a fixed relation
with t: P = t − 1. Then for a system with the appointed
number of participants and thresholds, all the other parameters
are fixed, and there is no flexibility for change. In contrast
to their algorithm, we split the secret freely and with more
flexibility in number and size and not fixed to the threshold
number, i.e., in our case P ≤ t− 1.

Finally, to share sP the dealer needs to generate fP (x),
which is a polynomial of degree t − 1. Then it samples that
polynomial in n points as (i,Di); i = 1, 2, ..., n (Step 5.b.iii).

Algorithm 1 Algorithm for sharing a secret S
function DealSecret(S){

1) Split secret S to desired number of pieces (P ), as:
s1, s2, .., sP

2) Choose prime number p so that,
(∀si, i ∈ [0, ..., P ] : p > si) and (p > n)

3) Choose random number a1 ∈ Zp and generate the
polynomial f1(x) = a1x + s1 (mod p)

4) Sample f1(x) in two points D11 = f1(1) and D12 =
f1(2) as two shares for s1

5) Do for the i ∈ [2, ..., P ]:
a) Generate polynomial fi(x) as:

fi(x) =
∑i

j=1 (D(i−1)jx
j) + si (mod p)

b) Sample fi(x) and make shares of si as follows:
i) If i ≤ P − 2, sample it in i + 1 points.

ii) If i = P − 1, sample it in t− 1 points.
iii) If i = P , sample it in n points as final shares.

6) return({f(i), i = 1, ...n})
}

These points are the shares of the secret S, which will typically
be sent to the n participants to be stored (Step 6).

B. Reconstruction Phase

Secret reconstruction is an altered version of Shamir’s
scheme plus recursive interpolations. This recursion is de-
signed to revert the dealing phase and produce the secret pieces
s1, s2, s3, ..., sP . The secret is reconstructed by concatenating
these generated pieces. This process is implemented by func-
tion ReconstructData() shown in Algorithm 2.

The algorithm needs t shares to be able to interpolate and
find out the polynomial and its coefficients. The free term
of the polynomial is the last piece of the secret, and the
coefficients regarding their order are the input points for the
next round of interpolation (Step 1).

The polynomial resulting from Step 1 has degree t−1, with
t−1 coefficients and the last secret piece (the P th) as the free
term. In the next step, these coefficients are used to interpolate
the next polynomial. The second polynomial has degree P −1
and the (P − 1)th piece of the secret as the free term. This
recursive process is repeated to reveal the secret piece by piece
(Steps 2-3).

Secret sharing schemes derived from Shamir’s are based
on linear interpolation of a set of points, i.e., of k shares, to
recover the secret (the free term of the polynomial). However,
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Algorithm 2 Reconstruction Algorithm
function ReconstructData(data shares {Dsi}){

1) Interpolate the first polynomial (fP (x)) of degree t− 1
by at least t shares {(i,Dsi), i = 1...t} as:
fP (x) =

∑t−1
j=1 (D(P−1)(j)x

j) + sP (mod p)
sP = fP (0), as the free term.

2) For all i ∈ [P − 1, ..., 1]:
use the coefficient of the previous step’s polynomial as
points of the form (j,Dij), 1 ≤ j ≤ i to interpolate
fi(x) of degree i:
fi(x) =

∑i
j=1 (Dijx

j) + si (mod p)
which si = fi(0).

3) The desired secret S is the combination of the
s1, s2, ..., sP

4) Reversing the process, it is possible to get to the original
data which S was made from.

5) return(S)
}

typical Lagrange interpolation approaches cannot interpolate
polynomials with the corresponding coefficients (i.e., steps
1-2 of the algorithm). In contrast to the usual schemes, our
recursive scheme specifically exploits the coefficients of the
interpolated polynomial in addition to the free term. Parakh
and Kak do neither present a scheme to obtain these coeffi-
cients nor discuss or consider this complication.

There are different ways to get these coefficients, but
dealing with the much data (with files) demands an efficient
solution. Moreover, the method must always yield exact values
without any approximations. The solution we propose is a
direct interpolation. This method transforms the interpolation
problem into the problem of solving a system of n + 1 linear
equations. The Gaussian elimination method can solve this
problem efficiently, as it is the algorithm of choice for solving
dense linear systems of equations [49]. It can be implemented
using matrix calculus.

This method operates based on the matrix operations (e.g.,
multiplication and inversion), which are considered complex.
Therefore, to avoid this complexity, it is necessary to transform
the matrices into diagonal matrices. This transform needs some
operations on entries and vectors of the matrix (e.g., pivoting)
that can be done efficiently using primitive matrix operations,
which are based on simple addition and multiplication. We use
these techniques to solve the system of equations and get the
coefficients.

C. Performance

Shamir’s dealing and reconstruction algorithms work in a
single round: obtain a single polynomial and do a single in-
terpolation to reconstruct the secret, respectively. Like Parakh
and Kaks, our algorithms do P of such operations, i.e., have
time complexity Θ(P ).

IV. SECURE CLOUD STORAGE – SCUD

SCUD is designed to work as a cloud-of-clouds data storage
service. In terms of interface and use cases, it is similar

to commercial services like Amazon S3 and Google Cloud
Storage and to research cloud-of-clouds storage services like
DepSky or Belisarius. In terms of guarantees, it aims to pro-
vide stronger data security guarantees (information-theoretic
security), plus integrity and availability, with space efficiency.
For that purpose, it leverages the PRESS scheme.

SCUD mainly writes and reads files to/from a set of clouds,
using PRESS to protect the confidentiality of the files. SCUD
uses the PRESS dealing algorithm for breaking the file into
shares to be written in the different clouds. It uses the
reconstruction algorithm to recover the file from the shares
that reads from a set of clouds. The details of these algorithms
and components are described in the following sections. The
system parameters are summarized in Table II for reference
purposes.

TABLE II
SYSTEM PARAMETERS

Parameter Meaning
CSPi ith-cloud service provider
n number of participants/clouds
t secret sharing threshold
f fault bound, the maximum number of faulty clouds
S secret
si secret data pieces S = {s1, s2, ..., sP }
P number of secret pieces
Ps size of the data pieces Ps = |si| (in bytes)
fn file name
Fi ith-file share of file F
Duz file data units F = {Duz}
I size of the data units I = |Duz | (in bytes)
fij ith-data share of the secret Sj

A size of data shares A = |fij | (in bytes)
RS storage ratio, total share size divided by original data size
p prime number used in PRESS
Pu, Pr public / private key pair for digital signatures
Mi meta-data for file share number i

A. Architecture and System Model

Figure 1 shows the architecture of a system running SCUD.
This system involves two main players: the users that use the
cloud to store files, and the cloud service providers (CSPs) that
run clouds. The set of clouds forms a cloud-of-clouds or multi-
cloud. The system uses a single type of service provided by
the CSPs: storage.4 These services are passive in the sense that
they do not run any code on behalf of the users and only store
data. They provide a well-defined interface, typically REST
over HTTPS.

The SCUD software is the client agent represented in the
figure. That agent includes the PRESS code. Both SCUD and
PRESS are software libraries that can be used to implement
applications. The client agents have access to the data stored
in the clouds based on their user’s access credentials. The
format of these credentials may depend on the CSP. The
interface of each cloud may also be specific to its CSP, so
the client software has adapters to access different clouds.
The clients have to manage the operations over files (e.g.,

4Commercial clouds offer many more services. At the time of this writing,
the Amazon AWS console lists 106 services divided in to 19 categories. In
the experiments, we also used a second service to run the users/clients: EC2.
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Fig. 1. Architecture of SCUD

read, write), their meta-data (e.g., name), and access control
(e.g., set permissions). For simplicity of presentation, in the
algorithms, we consider that files have a single version, but
this limitation can be trivially removed by concatenating the
version in the name or making it part of the meta-data.

We assume that the system is asynchronous, i.e., that there
are no time bounds on processing or communication. We
also assume that the clients and the clouds communicate over
secure channels (e.g., HTTPS).

SCUD is based on a few main parameters:
• n – the number of clouds, that is also the number of

shares in which every file is broken;
• f – the maximum number of faulty clouds;
• t – the number of shares needed to recover the files.
Files/data are stored in a set of n clouds, one share of the file

per cloud. We assume at most f of these clouds can be faulty,
i.e., may individually or in collusion attempt to disclose the
contents of files stored in the system, not reply to requests,
send corrupt answers, and other arbitrary behaviors. These
faults are usually designated Byzantine or arbitrary faults [46],
[50]. We denominate f the fault bound.

To avoid f faulty clouds from being able to disclose the
content of files, the parameter t must be set to t > f .
Moreover, to avoid that the faulty clouds block the recovery
of files, we must set n to n ≥ t + f . Examples of two
instantiations of these parameters are:
• f = 1, t = 2, n = 3
• f = 2, t = 3, n = 5

The authentication and access control provided by the
different clouds play an important role in protecting the confi-
dentiality of the data. In fact, if an adversary can download the
shares from the clouds, he can reconstruct the file simply by
applying the PRESS reconstruction scheme, which we assume
is publicly known. However, authentication and access control
mechanisms are employed for decades in computing systems
[51] and are also well established in the cloud computing
domain [52]. Therefore, we assume that only authorized users
can get t or more shares to form any file.

We assume the existence of a secure digital signature
scheme, e.g., the Elliptic Curve Digital Signature Algorithm
(ECDSA). Notice that such schemes do not have to rely

Algorithm 3 File Writing protocol
function WriteFile(file F){

1) Decompose F in data units {Duz} of size I
2) Transform data units {Duz} into secrets {Sj}
3) ∀Sj : fij = DealSecret(Sj)
4) ∀i ∈ [1, ..., n] :

a) Fi = ComposeFileShare({fij ,∀j})
b) sFi = SignData(Fi, P r)
c) Mi = MetaData(Fi, sFi, Pu)

5) ∀i ∈ [1, ..., n] :
ConcurrentUploadFile(Fi,Mi, CSPi)

6) return({Mi})
}

on pseudorandom permutations as block ciphers do [19].
Moreover, the secrecy of the data stored in the cloud would
not compromised if this scheme was attacked, as it is used
only to assess the integrity of the data returned. This scheme
provides two functions, SignData() and Verify(), respectively
to sign a block of data and to verify a signature.

B. Write Operation

The first protocol we present is the write operation. The
protocol has two sequential phases. The first phase prepares
and shares the file using PRESS; the second stores the file in
the CSP storage services.

As explained before, the system is mostly client-side, so
the agents are responsible for the whole procedure. The write
protocol is presented in the Algorithm 3 (function WriteFile()).

The first phase is implemented by Steps 1 to 3 of the
algorithm. First, the file is broken down into data units Duz of
a configurable size I , e.g., 2 or 4 bytes (Step 1). The data unit
size (I = |Dui|) is an important factor for the performance of
SCUD. The next step consists of defining that each of these
data units is a secret Sj to be processed by PRESS, possibly
involving some kind of format transformation if that is needed
(Step 2). Each secret Sj is shared using the PRESS algorithm
for sharing a secret (Algorithm 1), which returns n data shares
{fij : i ∈ [1, ..., n]} per secret (Step 3).

The second phase starts with Step 4. The data shares are
aggregated to compose file shares {Fi : i ∈ [1, ..., n]} (Step
4.a) to be uploaded to the CSPs (function ComposeFileShare().
As a result, each file F is broken down in n file shares Fi. Each
file share is signed using the digital signature algorithm and
the private user’s private key Pr (Step 4.b). A set of meta-data
about the file (e.g., its name), including the signature and the
public key Pu (corresponding to Pr), is prepared to be sent
to the clouds (Step 4.c). It is noticeable that meta-data is not
created and stored for each part of the data. However, it is gen-
erated and stored for each part of a file (which our experiments
demonstrate that it is less than 500 bytes per file part and is
perfectly irrelevant when compared with the corresponding file
size). Finally, all file shares Fi and the corresponding meta-
data Mi are uploaded to the CSPs, one share per CSP (Step
5). Notice that the ConcurrentUploadFile() function tries to
upload shares to all the CSPs.
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C. Read Operation

The second protocol implements the read operation. The
client agent is also responsible for reading data shares from
CSPs and utilizing the secret reconstruction algorithm (Algo-
rithm 2, function ReadFile()) to reveal the secrets and retrieve
the requested corresponding file.

Algorithm 4 File Reading protocol
function ReadFile(fn){

1) GetMetaData(fn,CSPi)
2) set Pu to the Pu that comes in f + 1 items Mi

3) ∀i ∈ [1, ..., n] :

a) (Fi, Pu) = ConcurrentDownloadFile(fn, CSPi)
b) Cancel upon |{Verify(Fi, Pu)=True}| ≥ t

4) ∀i : Decompose Fi to {fij ,∀j}
5) ∀j : Sj = ReconstructData({fij , i ∈ [1, ..., t]})
6) Transform {Sj} to data units {Duz}
7) F = ComposeFile({Duz : ∀z})
8) return(F )
}

The algorithm (Algorithm 4) takes the filename fn as input.
Reading a file starts with accessing the corresponding meta-
data {Mi} (Step 1). Function GetMetaData() retrieves the
meta-data from at least n − f CSPs, but does not block
trying to retrieve it from all, similarly to what we explained
for function ConcurrentUploadFile(). Faulty clouds may also
return corrupted meta-data, so the public key Pu is set to the
single one that can come from at least f + 1 different clouds,
as we assume no more than f are faulty (Step 2).

Then the agent starts to download file shares {Fi} con-
currently in order to optimize the download time (Step 3.a,
function ConcurrentDownloadFile()). Again it is not possible
(nor needed) to download shares from all the clouds, so the
download process finishes when t correctly signed shares were
downloaded (Step 3.b).

Being enough file shares available, they are decomposed
into secret shares (Step 4), the secrets that compose the file
are reconstructed using PRESS (Step 5). Then, the secrets
are transformed into data units (Step 6), and the file is
reconstructed ComposeFile() (Step 7). Steps 4 to 5 essentially
do the opposite of the first phase of Algorithm 3. Figure 2
explains how SCUD and PRESS handle the write and read
protocols regarding a single file as the input.

Fig. 2. Write and Read protocols with SCUD and PRESS

D. Other Operations

Full implementation of SCUD requires other operations
such as sharing a file with another user, revoking access to a
file from a user, or deleting a file. These operations are simple
to implement by accessing the APIs provided by the different

CSP storage services. The main challenge is supporting a
diversity of APIs, which is a topic for the next section.

V. SECURITY ANALYSIS

This section shows that our approach satisfies the security
property that common to all secret sharing algorithms [22]:
Secretness: Knowledge of any t− 1 or less file shares leaves
the file completely undetermined.

Proof: File F is reconstructed from the file shares {Duz :
∀z} by function ComposeFile in Algorithm 4, Step 7. These
shares {Duz} are obtained from {Sj} that are produced by
the ReconstructData() function (Algorithm 4, Steps 5-6).

Function ReconstructData() is the function that deals with
the interpolations. The function starts with the interpolation of
the polynomial of degree of t− 1 from the t shares, i.e., from
the function input {fij , i ∈ [1, ..., t]} (Algorithm 2, Step 1).
The Interpolation Theorem states that given t points in a 2-
dimensional space (shares in our case), there is one and only
one polynomial of degree t − 1 that passes on those points
[22]. A corollary is that any number of shares ({fij}) lower
than t cannot return the correct interpolation and the desired
polynomial (of degree t − 1); in fact, there would be infinite
polynomials of degree t− 1 that pass on those points.

Therefore, given less than t points it is not possible to pro-
ceed with the recursive interpolation algorithm and retrieve the
section {Sj} of the file F , so it is also not possible to obtain
the file F itself. As long as these {fij} are decomposed of
{Fi|∀j} (Algorithm 4, Step 4), there is an one-to-one relation
between the number of |{Fi}| and the number of |{fij ,∀j}|,
and thus any t− 1 or less number of file shares Fi could not
provide us the required number of {fij , i ∈ [1, ..., t]} and thus
cannot give enough information to retrieve the original file F .

VI. IMPLEMENTATION

PRESS and SCUD are implemented in Java, essentially as
two packages that provide two libraries. A third package was
developed to provide data integrity control using elliptic curves
digital signatures.

We implemented a few simple applications in Java to
demonstrate and evaluate the performance of SCUD. These
applications use the SCUD library, which itself uses the
PRESS library. The main application executes the system with
predefined scenarios and measures the system outcome and
performance depending on the evaluation parameters.

To develop SCUD, we leveraged Apache jclouds [53].
jclouds is an open source multi-cloud Java toolkit that supports
the creation of portable cloud applications with full cloud-
specific feature control. The main advantage is that it provides
a single interface to clouds with heterogeneous interfaces,
greatly simplifying the effort of implementing software like
SCUD.

This toolkit is used in both the write and read operations.
SCUD is configured with a list of the cloud storage endpoints
of the services that are supposed to store the file shares. These
servers are selected automatically regarding the system’s con-
figurations. To increase the speed, uploading and downloading
the file shares are implemented as concurrent threads.
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Algorithm 3 produces a set of file shares that it signs (Step
4.b). Each file share is signed using ECDSA with SHA256.
These algorithms are chosen due to their level of security that
is adequate for future use, good performance, lower power
consumption, and memory and bandwidth savings [20], [54].
Also, the ECDSA algorithm is used for generating the key
pairs (public and private keys) with 256-bit keys, which is
a value recommended by ENISA for future use [20]. Our
prototype uses Java SE JDK 8 standard security platform
(Cryptography Architecture, JCA) to implement the related
components [55]. The data unit size is set to I = 4 bytes (will
be discussed next).

VII. EXPERIMENTAL EVALUATION

This section presents an evaluation of the system in two
steps. PRESS and SCUD are designed to be general and
configurable, so their performance depends on the initial and
running configurations. Therefore the first question we aim to
answer is: what should be the systems’ parameters for good
performance? (Section VII-A)

The second step consists of answering the question: how
is the whole system’s performance? We do an analysis of the
write (share, sign, upload) and read (download, verification,
and retrieval) operations (Section VII-B) to assess the system
performance.

A. Configuration and Cost

Let us define storage ratio as the ratio between the used
storage space and the input data size. The storage ratio is given
by RS = n×A

I , where n is the number of participants/clouds, I
is the input data unit size I = |Duz| (4 bytes in our prototype),
and A is the required storage size for each share in bytes, i.e.,
A = |fij |. These three parameters I , A, and n are positive
integers, but the storage ratio is a positive float.

The storage ratio is not a fixed parameter of the system
(SCUD). As it will become clear soon, changing one parameter
does not have a uniform and monotonous effect on the ratio;
it may increase or decrease the ratio depending on the other
parameters, and the ratio vacillates regarding the parameters.
To get better values for RS , we need to reduce the numerator
(n×A) and/or increase the denominator of the fraction (I).

The algorithm works with data pieces of the given input
data unit size (I), and increasing the input data unit size
corresponds to increasing the number (P ) or size of the data
pieces (Ps = |sk|), which will affect the size of the required
storage space A. So, maintaining a trade-off between these
highly connected parameters and decreasing the storage ratio
is the challenge. Figure 3 shows how these parameters vary
and how their values can be regulated to get the best storage
ratio. The figure was obtained by measuring the storage ratio
by fixing I for three values (I = 4, I = 5 and I = 6) and
different values for secret pieces’ sizes. The best values per
each setting are presented in this figure.

Parameter n is inherently related to P and consequently Ps.
On the other hand, both P and Ps are directly connected to
the I . As the parameter P is bounded by n, any increase in
the I would increase Ps. PRESS relies on matrix calculations

Fig. 3. Storage ratio and the system’s parameters

(Section III-B) with entries of size Ps as the input. Thus
any increase on Ps would reduce the performance of the
system. Therefore, in the different settings for the system
parameters with the same results for RS , the configuration
with the smaller size for I is preferred.

Figure 3 shows this relation between the best measured
values for RS (with different settings) and the corresponding
parameters of I and Ps. This figure shows the optimum value
for RS is 2 for I = 4, but only RS = 1.83 for I = 6.
Therefore, regarding the slight improvements in RS for I = 6,
the first setting (with smaller I) is preferred.

Figure 4 shows the relation between the best measured
storage ratio (RS) and the participants number (n).

With respect to these figures (3 and 4), for a system with 8
clouds (n = 8), the optimum storage ratio would be RS = 2
with I = 4 and Ps = 2. This is the configuration which is
used in the evaluation in the next section.

Fig. 4. Storage ratio and the system’s parameters
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B. SCUD Performance

SCUD is essentially a client side library that uses PRESS
as the kernel element to break down files in shares. To assess
the system’s performance in a real deployment, we initiated
it on several clients dispersed in different physical locations.
We used a single CSP, Amazon, and the main storage service,
Amazon S3, with different regions in 8 locations around the
world.

1) System Parameters: Defining the parameters is the initial
step in system execution and evaluation. In our case, the rele-
vant parameters are the number of cloud storage servers n, the
fault bound f (the maximum number of faulty cloud storage
providers), and the secret sharing threshold t. Regulating these
parameters may change the storage ratio RS .

There are different settings used as the system initial by the
other systems. DepSky, SCFS, and the other systems based on
Byzantine quorum systems focus on the case of n = 4 and
f = 1 as the common deployment setup [5], [6], [16], [50].
To get this setting, there are two options for our system. The
first option is to setup the parameters exactly as this (n =
4, f = 1). This setting leads to a storage ratio of RS = 3 for
PRESS (if remaining parameters are well selected), which is
sub-optimal, as seen in the previous section. The second option
is to increase the number of shares that each cloud stores and
let the virtual number of clouds increase to drop the storage
ratio and get better results (regarding the fact that increasing
the participants’ number may decrease the storage ratio). In
this scenario, it is possible to have 4 real clouds, each one
storing 3 or more shares. However, such a scenario requires
carefully considering the validity of the fault bound (e.g., if a
single cloud fault does not violate the fault bound).

In the experiments, we used the Amazon S3 storage service
with 8 different regions, i.e., n = 8. The fault bound was set
to f = 1, the threshold number to t = 7, and the storage ratio
was RS = 2 (Figure 4, with I = 4).

2) Methodology: We developed a logger application to
measure the latencies. This application tries to repeat several
complete writes and read cycles for three different sizes of data
units, 100KB, 1MB, and 10 MB, at the client side. To have
a baseline for comparison, this application also logs latency
of simple upload/download process for these data units at the
same clients with 6 different regions of data cloud storage
service (see III). Each test of latency in any client consists of
35 rounds of complete read and write operations, but the first
5 rounds are discarded due to the well-known Java warming
up issues [56]. To start the evaluation, the clients and CSPs
should be appointed.

TABLE III
AMAZON S3 INSTANCES USED FOR SIMPLE FILE OPERATION

EXPERIMENTS [57]

Location Region Name
US West-1 (N. California)
EU Central-1 (Frankfurt)
AC Amazon Center
SA East-1 (São Paulo)
AP South East-2 (Sydney)

North East-2 (Seoul)

As client terminals, we used four virtual servers on the
Amazon EC2 service [58] with the same configurations in
4 different AWS regions: Central Europe (Frankfurt), East
US (Virginia), East Asia (Seoul), and South America (São
Paulo). The system (PRESS and SCUD) and the logger are
installed on all of the clients. Before starting the evaluation,
we monitored the client operations and observed that it does
not need a considerable amount of resources for executing
the system (CPU time, memory space). Therefore, our virtual
clients have moderate processing and memory resources, as
shown in Table IV.

TABLE IV
VIRTUAL SERVERS’ HARDWARE CONFIGURATION AS THE CLIENTS THAT

RUN THE SYSTEM.

Model #vCPU RAM Network Bandwitch
Amazon EC2-m5.xlarge 4 16GB Up to 10Gb

We made two types of measurements. The first is about
logging our SCUDs latencies. The system as a cloud-of-
clouds selects cloud storage servers and scatters data shares
in them (Table V). In this case, the logger just measures the
latency between giving the data units to the system and the
system’s response about the successful upload, and the latency
between giving read/download requests to the system and the
system’s response on successful download. The results of these
measurements will be discussed in the next sections.

TABLE V
AMAZON S3 INSTANCES USED IN THE SCUD EXPERIMENTS [57]

Location Region Name
US East-1 (N. Virginia)

East-2 (Ohio)
West-1 (N. California)
West-2 (Oregon)

EU Central-1 (Frankfurt)
West-1 (Ireland)
West-2 (London)

CA Central Canada
SA East-1 (São Paulo)
AP South East-2 (Sydney)

North East-1 (Tokyo)
North East-2 (Seoul)
South-1 (Mumbai)

The second type of measurement is about logging the laten-
cies of individual cloud uploads/downloads. For this purpose,
the logger chooses 5 different data storage servers of Amazon
S3 in different regions [57] to store the data units, in addition
to one upload/download request without assigning a special
server of Amazon, which lets Amazon choose an appropriate
server itself (table III). The results of these measurements are
shown in Figure 5 covering both the simple upload/download
average latencies on the assigned configurations.

3) Writes: As described in the previous section, the logger
did the two types of measurements for three sizes of data
units. The writing process in our system is based on the
algorithms described before (including PRESS and keys and
digital signature generations), and all the data shares are
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Fig. 5. Latencies of Simple Cloud Storage (write/read)

uploaded concurrently to minimize the upload latency. The
confirmation is generated after the successful upload of all
the shares and corresponding signatures and meta-data (the
algorithm requires writing only to n − f clouds, but we
configured the prototype to enforce writing in all clouds).
Figure (6) summarizes the measurements, with average and
standard deviation for each par client / cloud. To evaluate
the efficiency of the system with respect to the different file
sizes, its behaviour (in terms of the system latency) toward
the change in input file size would be sensible (see Figure 7).

For 100KB data units, the system latency is almost twice
the simple data uploads (considering the standard deviations).
Increasing the data unit sizes by 10 times to 1 MB data
units just makes around 3 times worse the latency of the
system. In the case of 10MB files, it is less than 6 times
of latency increase for 10 times rise in input data units. It
worth �to mentioning that our system uses a set of techniques
to provide confidentiality and guarantee data integrity, whereas
the baseline does not provide any security guarantees besides
those provided by S3. Also, the data is uploaded to just one
CSP for the single cloud cases, whereas SCUD uploads it to
8 different CSPs, which typically have different access and
handling times.

The systems storage ratio for this setting is calculated as 2
(as it is supposed to be), which is better than other systems
based on secret sharing that would have 8 (e.g., Belisarius) and
equal to DepSky that does not provide information-theoretic
security.

4) Reads: The latency measurements for reading operations
were done similarly to those of the writes, also using the
logger application. Figure (8) summarizes the results of 735
successful data read requests. Similar to what we experienced
for write latencies, for 100KB data units, the systems latency
is around twice the simple downloads, and increasing the data
unit size to 10 times larger just made less than four times
rise in the systems latency. For data units of 10MB size, the
systems latency was 75 seconds, which is an increase between
7.5 and 10 times in data unit size (See Figure 9).

VIII. CONCLUSION

Outsourcing data to cloud services is frequently associated
with security concerns. Despite all the advantages of multi-

clouds, many solutions are based on block ciphers that suf-
fer from uncertainty about their future and their unprovable
security. Therefore, information-theoretic security approaches
are important. Among different information-theoretic methods,
secret sharing schemes can provide security with a high level
of confidentiality. They allow sharing files breaking them
into different shares by mathematically proved theories. Even
though their combination with multi-cloud can provide a high
level of security, these schemes –at least those that have been
used in previous multi-cloud research– are space inefficient
as they multiply the data size n times. In theory, recursive
methods could be considered as solutions to resolve this
concern. However, these schemes are far beyond practicality.

In this paper, we introduced PRESS, the first practical,
efficient secret sharing scheme. This algorithm leverages a
recursive approach but makes it practical. With PRESS, the
storage ratio for secret sharing is reduced to 2 (from n).
Furthermore, SCUD is introduced as a new cloud-of-clouds
storage service that leverages PRESS to provide data confi-
dentiality, integrity, and availability.

The practicality of the proposed architecture and algorithms
(PRESS and SCUD) is evaluated extensively, with a world-
wide deployment. The key conclusion is that SCUD leveraging
PRESS as its kernel provides information theoretic security
(confidentiality) for multi-clouds for the first time. This ad-
vantage is achieved by leveraging secret sharing schemes
(which are considered space-inefficient inherently) at a cost
almost double of using a single cloud for a practical scenario.
This achievement seems to be a good compromise for critical
applications.

To provide the corresponding coefficients, the proposed re-
construction algorithms utilize matrix calculus for polynomial
interpolations. Direct interpolation employing matrix calculus
and the Gaussian elimination method is efficient and precise
and yields exact answers (and not the approximate). On the
contrary, it puts an overhead on the system performance.
Therefore, it could be a sensible choice to identify different
interpolation approaches as future work. Also, implementation
could be improved by alternative and novel techniques, not
only in the data representation and manipulations but also
regarding the recursive methodologies efficiency.
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Fig. 6. Write latency for 100KB, 1MB and 10MB data units.

Fig. 7. Average write latency with different file sizes.
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