
IEEE TRANSITIONS ON RELIABILITY 1

Statically Detecting Vulnerabilities by Processing
Programming Languages as Natural Languages
Ibéria Medeiros, Member, IEEE, Nuno Neves, Member, IEEE, and Miguel Correia, Senior Member, IEEE

Abstract—Web applications continue to be a favorite target for hackers due to a combination of wide adoption and rapid deployment
cycles, which often lead to the introduction of high impact vulnerabilities. Static analysis tools are important to search for vulnerabilities
automatically in the program source code, supporting developers on their removal. However, building these tools requires programming
the knowledge on how to discover the vulnerabilities. This paper presents an alternative approach in which tools learn to detect flaws
automatically by resorting to artificial intelligence concepts, more concretely to natural language processing. The approach employs a
sequence model to learn to characterize vulnerabilities based on an annotated corpus. Afterwards, the model is utilized to discover and
identify vulnerabilities in the source code. It was implemented in the DEKANT tool and evaluated experimentally with a large set of PHP
applications and WordPress plugins. Overall, we found several thousand vulnerabilities belonging to 15 classes of input validation
vulnerabilities, where 4143 of them were zero-day.

Index Terms—vulnerabilities, web application, software security, static analysis, sequence models, natural language processing.

F

1 INTRODUCTION

W EB applications are being used to implement inter-
faces of a myriad of services. They are often the

first target of attacks, and despite considerable efforts to
improve security, there are still many examples of high
impact compromises. In the 2017 OWASP Top 10 list, vul-
nerabilities like SQL injection (SQLi) and cross-site scripting
(XSS) continue to raise significant concerns, but other classes
are also listed as being commonly exploited [1], [2]. Millions
of websites have been compromised since Oct. 2014 due to
vulnerabilities in plugins of Drupal [3] and WordPress [4],
[5], and the data of more than a billion users has been
stolen using SQLI attacks against various kinds of services
(governmental, financial, education, mail, etc.) [6], [7]. In
addition, the next wave of XSS attacks has been predicted
since the past three years and the number of vulnerabilities
in third-parties has increased, with an expected growth of
the problem [8], [9], [2].

Many of these vulnerabilities are related to malformed
inputs that reach some relevant asset (e.g., the database
or the user’s browser) by traveling through a code slice
(a sequence of instructions from an input to a security-
sensitive instruction) of the web application. Therefore, a
good practice to enhance security is to pass inputs through
sanitization functions that invalidate dangerous metacharac-
ters or/and validation functions that check their content. In
addition, programmers commonly use static analysis tools to
search automatically for bugs in the source code, facilitating
their removal. The development of these tools, however,
requires coding explicitly the knowledge on how each vul-

• I. Medeiros and N. Neves are with the LASIGE, Faculdade de Ciências,
Universidade de Lisboa - Portugal (e-mail: imedeiros@di.fc.ul.pt and
nuno@di.fc.ul.pt).

• M. Correia is with the INESC-ID, Instituto Superior Técnico, Universi-
dade de Lisboa - Portugal (e-mail: miguel.p.correia@tecnico.ulisboa.pt).

nerability can be detected [10], [11], [12], [13], which is a
complex task. For instance, after representing the code in
an abstract syntax tree (AST), the tools are programmed to
navigate along the AST, deal with the semantic aspects of
the language and determine whether the information it con-
tains is associated with the vulnerability classes they seek.
Moreover, this knowledge might be incomplete or partially
wrong, making the tools inaccurate [14]. For example, if
the tools do not understand that a certain function sanitizes
inputs, they could raise an alert about a vulnerability that
does not exist.

This paper presents a new approach for static analysis
that is based on learning to recognize vulnerabilities. In other
words, the proposed approach, unlike classical static anal-
ysis, learns to detected vulnerabilities withouthaving pro-
grammers code the knowledge required to find them. The
approach leverages from artificial intelligence (AI) concepts
to perform the analysis. AI-based approaches have been
emerging in the field of static analysis [15]. They are able
to compose machine learning (ML) models and to obtain
results quickly, with the support of ML toolkits (e.g., NLTK,
Keras) that offer several algorithms that can be applied
in different contexts. In addition, the models are capable
of learning security features from slices of code provided
publicly (e.g., NIST SARD [16]) and to process new slices,
predicting whether they are vulnerable [17], [18], [19], [20],
[21].

The approach we propose leverages from classification
models for sequences of observations that are commonly
used in the field of natural language processing (NLP) for
analysis of written language, i.e., the natural languages. In
this sense, NLP is considered a sub-area of AI. It can be
viewed as a new form of intelligence in an artificial way
that can get insights on how humans understand natural
languages. NLP tasks, such as parts-of-speech (PoS) tagging
or named entity recognition (NER), are typically modelled
as sequence classification problems, in which a class (e.g., a

given morpho-syntactic category) is assigned to each word
in a given sentence, according to an estimate given by a
structured prediction model that takes word order into con-
sideration. The model’s parameters are normally inferred
using supervised machine learning techniques, taking ad-
vantage of annotated corpora.

We propose applying a similar approach to web pro-
gramming languages, i.e., to analyse source code in a sim-
ilar manner to what is being done with natural language
text. Even though these languages are artificial, they have
many characteristics in common with natural languages,
such as words, syntactic rules, sentences, and a grammar.
NLP usually employs machine learning to extract rules
(knowledge) automatically from a corpus. Then, with this
knowledge, other sequences of observations can be pro-
cessed and classified. NLP has to take into account the order
of the observations, as the meaning of sentences depends
on it. Therefore, NLP involves forms of classification more
sophisticated than approaches based on standard classifiers
(e.g., naive Bayes, decision trees, support vector machines),
which simply check the presence of certain observations
without considering any relation between them.

Our approach for static analysis resorts to machine lan-
guage techniques that take the order of source code elements
within instructions into account – sequence models – to allow
accurate detection and identification of the vulnerabilities
in the code. Previous applications of machine learning in
the context of static analysis neither produced tools that
learn to make detection nor employed sequence models. For
example, PhpMinerII [22], [23] resorts to machine learning
to train standard classifiers, which then verify if certain con-
structs (associated with flaws) exist in the code. However,
it does not provide the exact location of the vulnerabilities
[22], [23]. WAP and WAPe use a taint analyser to search for
vulnerabilities and three standard classifiers to confirm that
the found bugs1 can actually create security problems [13].
None of these tools considers the order of code elements or
the relation among them, leading to bugs being missed (false
negatives, FN) and alarms being raised on correct code (false
positives, FP). On the other hand, although deep learning
approaches can consider the relation among code elements
[18], [17], [19], their black-box nature prevents them from
explaining such relations, which can also raise FPs.

Our sequence model is a Hidden Markov Model (HMM)
[24]. A HMM is a Bayesian network composed of nodes
corresponding to the states and edges associated to the prob-
abilities of transitioning between states. States are hidden,
i.e., are not observed. Given a sequence of observations, the
hidden states (one per observation) are discovered following
the model and taking into account the order of the observa-
tions. Therefore, the HMM can be used to find the series of
states that best explains the sequence of observations.

The paper also presents the hidDEn marKov model di-
AgNosing vulnerabiliTies (DEKANT) tool that implements
our approach for applications written in PHP, the most
used language for developing web applications [25]. The
tool was evaluated experimentally with a diverse set of 21
open source web applications, where 13 of them with bugs

1. In software security context, we consider a vulnerability as a being
a bug or a flaw that could be exploitable.

disclosed in the past, and found 3938 zero-day vulnerabilities
in the remaining 8 web applications. These 21 applications
are substantial, with an aggregated size of around 7,000
files and 1.8 million lines of code (LoC). All flaws that
we are aware of being previously reported were found by
DEKANT. More than six thousand slices were analyzed,
4,646 were classified as having vulnerabilities and 1,404 as
not. The false positives were in the order of one hundred.
In addition, the tool checked 25 plugins of WordPress and
found 205 zero-day vulnerabilities. These flaws were reported
to the developers, and some of them confirmed their exis-
tence and fixed the plugins. DEKANT was also assessed
with several other vulnerability detection tools, and the
results give evidence that our approach leads to better
accuracy and precision.

This paper extends our previous work [26] with the fol-
lowing: (1) provides more details about ISL grammar tokens
and the PHP functions they represent; (2) gives a detailed
description of the corpus construction process, including
an example of this process, and the corpus assessment,
containing the three phases that allow the entire corpus
to be evaluated with better completeness; (3) explains the
implementation of DEKANT, including the extensions made
to the Viterbi algorithm, namely the algorithms of the inter-
actions beforeVit and afterVit that process sequences of ob-
servations for vulnerability detection, and their integration
in the Viterbi algorithm; (4) a new experimental evaluation
using more WordPress plugins and real web applications
and other tools; (5) a detailed related work section.

The main contributions of the paper are: (1) a novel
approach for improving the security of web applications by
letting static analysis tools learn to discover vulnerabilities
through an annotated corpus; (2) an intermediate language
representation capturing the relevant features of PHP, and
a sequence model that takes into consideration the place
where code elements appear in the slices and how they alter
the spreading of the input data; (3) a NLP-based static anal-
ysis tool that implements the approach; (4) an experimental
evaluation that demonstrates the ability of this tool to find
known and zero-day vulnerabilities with a residual number
of mistakes.

The remaining of the paper is organized as follows: the
next section presents in general the surface vulnerabilities
our model addresses. Section 3 gives an overview of the
proposed approach for detecting vulnerabilites. Sections 4,
5, and 6 detail the ISL language, the sequence model that
processes slices in ISL, classifying them as vulnerable or
not-vulnerable, and the construction and assessment of the
corpus used by the model. Section 7 presents the DEKANT
tool that implements the approach, and Section 8 shows
the evaluation of the tool. Section 9 and Section 10 present,
respectively, the threats to validity that the model can face
in the experiments and the applicability of the tool in the
real-world. Finally, the related work regarding vulnerability
detection is explained in Section 11, and conclusions are
presented in Section 12.

2 SURFACE VULNERABILITIES

Many classes of security flaws in web applications are
caused by improper handling of user inputs. Therefore,

2

PHP code slice-isl variable map tainted list slice-isl classification
1 $u = $_POST[‘username’]; input var 1 - u TL = {u} 〈input,Taint〉 〈var_vv_u,Taint〉
2 $q = "SELECT pass FROM users WHERE user=’".$u."’"; var var 1 u q TL = {u, q} 〈var_vv_u,Taint〉 〈var_vv_q,Taint〉
3 $r = mysqli_query($con, $q); ss var var 1 - q r TL = {u, q, r} 〈ss,N-Taint〉 〈var_vv_q,Taint〉 〈var_vv_r,Taint〉

(a) code with SQLI vulnerability (b) slice-isl and variable map (c) artefact list (d) outputting the final classification

Fig. 1: Code vulnerable to SQLI, translation into ISL, and detection of the vulnerability.

PHP code slice-isl variable map list
1 $u = (isset($_POST[‘name’]) ? $u = $_POST[‘name’] : ’’; input var 1 - u TL = {u}; CTL = {}
2 $a = $_POST[‘age’]; input var 1 - a TL = {u, a}; CTL = {}
3 if (isset($a) && preg_match(’/[a-zA-Z]+/’, $u) && cond fillchk var contentchk var 0 - - a - u - a - TL = {u, a}; CTL = {u, a}

is_int($a)){ typechk var cond
4 echo "The user age is " . $a; cond ss var 0 - - a TL = {u, a}; CTL = {u, a}
5 <input type="hidden" name="user" value=<?php echo $u; ?>> cond ss var 0 - - u TL = {u, a}; CTL = {u, a}
6 } else cond 0 - TL = {u, a}; CTL = {}
7 echo $u . "is an invalid user"; ss var 0 - u TL = {u, a}; CTL = {}

(a) code with XSS vulnerability and validation (b) slice-isl and variable map (c) artefacts lists

Fig. 2: Code with a slice vulnerable to XSS (lines {1, 2, 3, 6, 7}) and two slices not vulnerable (lines {1, 2, 3, 4} and {1, 2, 3, 5}),
with ISL translation.

they are denominated surface vulnerabilities or input valida-
tion vulnerabilities. In PHP programs the malicious input
arrives to the application (e.g, $ POST), then it may suffer
various modifications and might be copied to variables,
and eventually reaches a security-sensitive function (e.g.,
mysqli query or echo) inducing an erroneous action. Below,
we introduce the 15 classes of surface vulnerabilities that
will be considered in rest of the paper.

(1) SQLI is the class of vulnerabilities with highest risk
in the OWASP Top 10 list [1]. Normally, the malicious input
is used to change the behavior of a query to a database to
provoke the disclosure of private data or corrupt the tables.
Example 1. The PHP script of Fig. 1 (a) has a simple SQLI
vulnerability. $u receives the username provided by the user
(line 1), and then it is inserted in a query (lines 2-3). An
attacker can inject a malicious username like ’ OR 1 = 1
-- , modifying the structure of the query and getting the
passwords of all users.

(2) XSS vulnerabilities allow attackers to execute scripts
in the users’ browsers. Below we give an example:
Example 2. The code snippet of Fig. 2 (a) has a XSS vulnera-
bility. If the user provides a name, it gets saved in $u (line 1).
Then, if the conditional validation is false (line 3), the value
is returned to the user by echo (line 7). A script provided as
input would be executed in the browser, possibly carrying
out some malicious deed.

The other classes are presented briefly. (3), (4) Remote
and local file inclusion (RFI/LFI) flaws also allow attackers
to insert code in the vulnerable web application. While in
RFI the code can be located in another web site, in LFI
it has to be in the local file system (but there are also
several strategies to put it there). (5) OS command injection
(OSCI)) lets an attacker provide commands to be run in a
shell of the OS of the web server. (6) Attackers can supply
code that is executed by a eval function by exploring PHP
command injection (PHPCI) bugs. (7)–(10) Like SQLI, LDAP
injection (LDAPI), XPath injection (XPathI), NoSQL injection
(NoSQLI), and SQLite injection (SQLiteI) are associated with
the construction and execution of queries or filters in an
engine, e.g., a database. (11), (12) An attacker can read files
from the local file system by exploiting directory traver-
sal / path traversal (DT/PT) and source code disclosure
(SCD) vulnerabilities. (13) A comment spamming (CS) bug
is related to the ranking manipulation of spammers’ web
sites. (14) Header injection or HTTP response splitting (HI)
allows an attacker to manipulate the HTTP response. (15)

An attacker can force a web client to use a session ID he
defined by exploiting a session fixation (SF) flaw.

3 OVERVIEW OF THE APPROACH

Our approach for vulnerability detection examines program
slices to determine if they contain a bug. The slices are
collected from the source code of the target application, and
then their instructions are represented in an intermediate
language developed to express features that are relevant
to surface vulnerabilities. Bugs are found by classifying the
translated instructions with an HMM sequence model. Since
the model has an understanding of how the data flows
are affected by operations related to sanitization, validation
and modification, it becomes feasible to make an accurate
analysis. In order to setup the model, there is a learning
phase where an annotated corpus is employed to derive
the knowledge about the different classes of vulnerabilities.
Afterwards, the model is used in a detection phase to detect
vulnerabilities. Fig. 3 illustrates this procedure.

Gather Slices

Source Code
for Training

Target
Source Code

ISL
Translation

Instructions
in ISL

Slice Collection & Translation

Annotate with
Model States

Duplicate
Elimination

Corpus
Create the

Corpus

Computation of
Parameters

Trained Model

Knowledge
Extraction

Decode Model
States

Vulnerabilities
Detected

Search for
Vulnerabilities

Entry points
Sensitive sinks

Sanitization & Validation
String manipulation

(a) Learning phase (b) Detection phase

Fig. 3: Overview on the proposed approach.

In more detail, the following steps are carried out. The
learning phase is composed mainly of steps (1)-(3) while the
detection phase encompasses (1) and (4):

(1) Slice collection and translation: get the slices from the
application source code (either for learning or detection).
Since we are focusing on surface vulnerabilities, the only
slices that have to be considered need to start at some point
in the program where an user input is received (i.e., at
an entry point) and then they have to end at a security-
sensitive instruction (i.e., a sensitive sink). The resulting slice
is a series of tracked instructions between the two points,

3

which can include, for instance, if-statements, sanitization
and validations functions. Then, each instruction of a slice
is represented into the Intermediate Slice Language (ISL). ISL
is a categorized language with grammar rules that aggregate
in classes the code elements by functionality. A slice in the
ISL format is going to be named as slice-isl;

(2) Create the corpus: build a corpus with a group of in-
structions represented in the intermediate language, which
are labeled either as vulnerable or non-vulnerable. The
instructions are provided individually or gathered from
slices of training programs. Overall, the corpus includes
both representative pieces of programs that have various
kinds of flaws and that handle inputs adequately;

(3) Knowledge extraction: acquire knowledge from the
corpus to configure the HMM sequence model, namely
compute the probability matrices;

(4) Search for Vulnerabilities: use the model to find the best
sequence of states that explains a slice in the intermediate
language. Each instruction in the slice-isl corresponds to a
sequence of observations. These observations are classified
by the model, tracking the variables from the previous
instructions to find out which states are outputted. The state
computed for the last observation of the last instruction
determines the overall classification, either as vulnerable or
not. If a flaw is found, an alert is reported including the
location in the source code.

The next two sections explain the ISL language and the
sequence model (Sections 4 and 5). The four above steps
are elaborated in Sections 4, 5, and 6, more specifically step
(1) in Section 4, step (2) in Section 6, and steps (3) and (4)
in Section 5. An overview of the tool that implements our
approach is given in Section 7.

4 INTERMEDIATE SLICE LANGUAGE

All slices commence with an entry point and finish with
a sensitive sink; between them there can be an arbitrary
number of statements, such as assignments that transmit
data to intermediate variables and various kinds of expres-
sions that validate or modify the data. In other words, a slice
contains all instructions (lines of code) that manipulate and
propagate an input arriving at an entry point and until a
sensitive sink is reached, but no other statements.

ISL expresses an instruction into a few tokens. The in-
structions are composed of code elements that are categorized
in classes of related items (e.g., class input takes PHP
entry points like $_GET and $_POST). Therefore, classes
are the tokens of the ISL language and these are organized
together accordingly to a grammar. Next we give a more
careful explanation of ISL assuming that the source code is
programmed in the PHP language. However, the approach
is generic and other languages could be considered.

4.1 Tokens
ISL abstracts away aspects of the PHP language that are
irrelevant to the discovery of surface vulnerabilities. There-
fore, as a starting point to specify ISL, it was necessary to
identify the essential tokens. To achieve this, we followed
an iterative approach where we began with an initial group
of tokens which were gradually refined. In every itera-
tion, we examined various slices (vulnerable and not) to

recognize the important code elements. We also looked at
the PHP functions that could manipulate entry points and
be associated with bugs or prevent them (e.g., functions
that replace characters in strings), since they can change
the maliciousness of inputs [13], [27]. In addition, for the
PHP functions that were picked, we studied cautiously their
parameters to determine which of them are crucial for our
analysis.

Example 3. Function mysqli query and its parameters cor-
respond to two tokens: ss for sensitive sink; and var for
variable or input if the parameter receives data originating
from an entry point. Although this function has three pa-
rameters (the last of them optional), notice that just one of
them (the second) is essential to represent.

Overall, we studied all PHP functions of different cate-
gories, namely the sensitive sinks and sanitization functions
regarding to the surface vulnerabilities we consider, and
those that modify strings and verify the content of strings
and numbers. Afterwards, we selected the ones relevant
for bug detection. In the end, we defined around twenty
tokens that are sufficient to describe the instructions of a
PHP program and are capable of representing 168 PHP code
elements, 160 of which are PHP functions and the remaining
8 are operations, function parameters, and the if statement
instruction.

Table 1 summarizes the currently defined ISL tokens.
The first column shows above the twenty tokens that stand
for PHP code elements, whereas the last two tokens are
necessary only for the description of the corpus and the
implementation of the model (see Sections 5 and 6). The
next three columns explain succinctly the purpose of the
token, and show the code elements it represents, as well as
the number of them it comprises. Column fifth defines the
taintedness status of each token which is used when build-
ing the corpus or performing the analysis of slice-isl. Some
tokens have their status well defined due to their nature,
i.e., they are always tainted (e.g., input) or untainted (e.g.,
sanit_f), whereas others have not, wherein it depends on
the state of the analysis in a given instant, i.e., the status of
code elements already processed.

A more cautious inspection of the tokens shows that
they enable many relevant behaviors to be expressed. For
example, since the manipulation of strings plays a funda-
mental role in the exploitation of surface vulnerabilities,
there are various tokens that enable a precise modeling
of these operations (e.g., erase_str or sub_str). Tokens
char5 and char6 represent parameters of such functions
and they act as the amount of characters that are manipu-
lated by functions that extract or replace the contents from
a user input, respectively up to 5 and 6 or more characters.
Moreover, char6 represent possible malicious code, since
the length of malicious code, generally, is greater than 5
(we observed this after inspecting several injected codes
of different vulnerability classes). The place in a string
where modifications are applied (begin, middle or end) is
described by start_where; Token cond can correspond
to an if statement that might have validation functions
over variables (e.g., user inputs) as part of its conditional
expression. This token allows the correlation among the
validated variables and the variables that appear inside

4

TABLE 1: Intermediate Slice Language tokens.
Token Description PHP code elements #Code elements Taintedness
input entry point $ GET, $ POST, $ COOKIE, $ REQUEST 10 Yes

$ HTTP GET VARS, $ HTTP POST VARS
$ HTTP COOKIE VARS, $ HTTP REQUEST VARS
$ FILES, $ SERVERS

sanit f sanitization function mysql escape string, mysql real escape string 18 No
mysqli escape string, mysqli real escape string
mysqli stmt bind param, mysqli::escape string
mysqli::real escape string, mysqli stmt::bind param
db2 escape string, pg escape string, pg escape bytec
sqlite escape string
htmlentities, htmlspecialchars, strip tags, urlencode
escapeshellcmd, escapeshellarg

ss sensitive sink mysql query, mysql unbuffered query, mysql db query 82 Yes
mysqli query, mysqli real query, mysqli master query
mysqli multi query, mysqli stmt execute, mysqli execute
mysqli::query, mysqli::multi query, mysqli::real query
mysqli stmt::execute
db2 exec, pg query, pg send query
sqlite query, sqlite exec, sqlite array query
sqlite single query, sqlite unbuffered query
ldap add, ldap delete, ldap list, ldap read, ldap search
xpath eval, xptr eval, xpath eval expression
fopen, file get contents, file, copy, unlink, move uploaded file
imagecreatefromgd2, imagecreatefromgd2part, imagecreatefromgd
imagecreatefromgif, imagecreatefromjpeg, imagecreatefrompng
imagecreatefromstring, imagecreatefromwbmp
imagecreatefromxbm, imagecreatefromxpm
require, require once, include, include once
readfile
passthru, system, shell exec, exec, pcntl exec, popen
echo, print, printf, sprintf, vprintf, die, error, exit
file put contents, file get contents, vfprintf, fprintf, fscanf
eval
setcookie, setdrawcookie, session id
find, findOne, findAndModify, insert, remove, save, execute
header, mail

typechk str type checking string function is string, ctype alpha, ctype alnum, str val 4 Yes
typechk num type checking numeric function is int, is double, is float, is integer, intval, boolval 12 No

is long, is numeric, is real, is scalar, ctype digit, floatval
contentchk content checking function preg match, preg match all, ereg, eregi 9 No

strnatcmp, strcmp, strncmp, strncasecmp, strcasecmp
fillchk fill checking function isset, empty, is null 3 Yes
join str join string function implode, join 2 No
erase str erase string function trim, ltrim, rtrim 3 Yes
replace str replace string function preg replace, preg filter, str ireplace, str replace 8 No

ereg replace, eregi replace, str shuffle, chunk split
split str split string function str split, preg split, explode, split, spliti 5 Yes
add str add string function str pad 2 Yes/No
sub str substring function substr 1 Yes/No
sub str replace replace substring function substr replace 1 Yes/No
char5 substring with less than 6 chars – 1 No
char6 substring with more than 5 chars – 1 Yes
start where where the substring starts – 1 Yes/No
cond if instruction if, else 2 No
conc concatenation operator – 2 Yes/No
var variable – 1 No
var vv variable tainted – Yes
miss miss value – Yes/No

the if branches. Token conc expresses the concatenation
operation, which also plays an important role in string
manipulation.

There are a few tokens that are context-sensitive, i.e.,
whose selection depends not only on the code elements
being translated but also on how they are utilized in the
program. Tokens char5 and char6 are two examples as
they depend on the substring length. If this length is only
defined at runtime, it is impossible to know precisely which
token should be assigned. This ambiguity may originate
errors in the analysis, either leading to false positives or
false negatives. However, since we prefer to be conservative
(i.e., report false positives instead of missing vulnerabilities),
in the situation where the length is undefined, ISL uses the
char6 token because it allows larger payloads to be ma-

nipulated. Something similar occurs with the contentchk
token that depends on the verification pattern.

ISL must be able to represent PHP instructions in all
steps of the two phases of the approach. When slices are
extracted for analysis, all variables in ISL are set to the
default token value var, as at that time there is still no
information about the taintedness status of the variables.
However, when instructions are placed in the corpus or
are processed by the detection procedure, it is necessary to
keep information about taintedness. In this case, tainted and
untainted variables are depicted respectively by the tokens
var_vv and var. The miss token is also used with the
corpus and it serves to normalize the length of sequences
(Section 7).

As a final note, ISL has no token to represent user func-

5

tion calls because the instructions that represent them are
not relevant to the analysis, but the instructions they contain
are. Hence, the latter are translated to ISL. For instance, a
PHP slice, when extracted, can contain user function calls
and instructions from them that handle inputs and input-
dependent variables. When the slice is translated to ISL,
only these instructions will be translated, discarding thus
the instruction referring to the user function call. Similarly
for loops and switch headers, ISL also has no tokens.

4.2 Grammar

The ISL grammar is specified by the rules in Listing 1. It
allows the representation of the code elements included in
the instructions into the tokens (Table 1, column 3 entries
are transformed into the column 1 tokens). A slice translated
into ISL consists of a set of statement+ (line 2), each one
defined by either: a rule that covers various operations like
string concatenation (lines 4-8); or an conditional (line 9);
or an assignment (line 19). The rules take into consideration
the syntax of the functions (in column 3 of the table) in order
to convey: a sensitive sink (line 11), the sanitization (line
12), the validation (line 13), the extraction and modification
(lines 14-17), and the concatenation (line 18).

As we will see in Section 5, tokens will correspond
to the observations of the HMM. However, while a PHP
assignment sets the value of the right-hand-side expression
to the left-hand side, the tokens will be processed from left
to right by the model; therefore, the assignment rule in ISL
follows the HMM scheme.

1 grammar isl {
2 slice-isl : statement+
3 statement :
4 sensitive_sink
5 | sanitization
6 | validation
7 | mod_all | mod_add | mod_sub | mod_rep
8 | concat
9 | cond statement+ cond?

10 | assignment
11 sensitive_sink : ss (param | concat)
12 sanitization : sanit_f param
13 validation : (typechk_str | typechk_num | fillchk |

contentchk) param
14 mod_all : (join_str | erase_str | replace_str |

split_str) param
15 mod_add : add_str param num_chars param
16 mod_sub : sub_str param num_chars start_where?
17 mod_rep : sub_str_replace param num_chars param

start_where?
18 concat : (statement | param) (conc concat)?
19 assignment : (statement | param) attrib_var
20 param : input | var
21 attrib_var : var
22 num_chars : char5 | char6
23 start_where : begin | middle | end
24 }

Listing 1: Grammar rules of ISL.

Example 4. PHP instruction $u = $_GET[’user’]; is
translated to input var. First, the statement rule (line
3) determines the type of the PHP instruction. As it is an
assigment, the assignment rules are chosen (lines 10 and
19). Applying the rules to the instruction, the right-hand-
side expression ($_GET[’user’]) is interpreted as being a
parameter, hence the param rule (line 20) is used, producing
the input token. For the left-hand-side expression ($u), it
is used the attrib_var (attribution) rule that produces the

var token (line 21). Fig. 4 depicts the parse tree resulting of
the grammar application.

statement

assignment

param attrib_var

input var

3

2120

10, 19

Fig. 4: Parse tree of the input var sequence (the numbers
correspond to the applied grammar rules).

4.3 Translation to ISL
As we stated previously, a PHP slice must be translated to
ISL into a slice-isl to be processed by the model. However,
ISL does not maintain much information about the variables
portrayed by the var token. This knowledge is neverthe-
less crucial for a more accurate vulnerability detection as
variables are related to the inputs in distinct manners and
their contents can suffer all sorts of modifications. Therefore,
to address this issue, we resort to a data structure called
variable map while the PHP slice is translated to ISL through
the grammar rules. The map associates each occurrence
of var in the slice-isl with the name of the variable that
appears in the source code. This lets us track how input
data propagates to different variables when the slice code
elements are processed.

There is an entry in the variable map per instruction.
Each entry starts with a flag, 1 or 0, indicating if the state-
ment is an assignment or not. The rest of the entry includes
one value per token of the instruction, which is either the
name of the variable (without the $) or the - character
(stands for a token that is not occupied by a variable).
Example 5. Fig. 1(a) displays a PHP code snippet that is vul-
nerable to SQLI and Fig. 1(b) shows the translation into ISL
and the variable map (ignore the right-hand side for now).
The first line is the assignment of an input to a variable, $u
= $_POST[’username’];. As explained above, it becomes
input var in ISL. The variable map entry 1 - u is initial-
ized to 1 to denote that the instruction is an assignment to
the var in the second position which portrays the variable
u. The next line is an assignment of a SQL query composed
by concatenating constant substrings with a variable. It is
represented in ISL by var var and in the variable map by
1 u q. The last line corresponds to a sensitive sink (ss) and
two variables.
Example 6. Fig. 2 has a slightly more complex code snippet.
The code contains three slices: lines {1, 2, 3, 4}, {1, 2, 3, 5}
and {1, 2, 3, 6, 7}. Note that, although the code snippet has
two execution paths (lines {1, 2, 3, 4, 5} and {1, 2, 3, 6, 7}),
as the first one contains two sensitive sinks (echo function
in lines 4 and 5), it in fact corresponds to two slices ({1, 2, 3,
4}, {1, 2, 3, 5}). The first two slices prevent an attack with a
form of input validation, but the third is vulnerable to XSS.
The corresponding ISL and variable map are shown in the

6

middle columns. The interesting cases are in lines 3–5, which
are the if statement and its true branch. They are prefixed
with the cond token and the former also ends with the same
token. This cond termination makes a distinction between
the two types of instructions (if statement and its true
branch instructions). In addition, the sequence model will
understand that variables from the former may influence
those that appear in latter instructions.

5 THE SEQUENCE MODEL TO DETECT VULNERA-
BILITIES

This section presents the sequence model that supports our
approach for vulnerability detection.

5.1 Hidden Markov Model
A Hidden Markov Model (HMM) is a statistical genera-
tive model that represents a process as a Markov chain
with unobserved (hidden) states. It is a dynamic Bayesian
network with nodes that stand for random variables and
edges that denote probabilistic dependencies between these
variables [28], [29], [30]. The variables are divided into
two groups: observed variables – observations – and hidden
variables – states. A state transitions to other states with
some probability and emits observations (see example in
Fig. 7).

A HMM is specified by the following: (1) a vocabulary, a
set of words, symbols or tokens that make up the sequence
of observations; (2) the states, a group of states that classify
the observations of a sequence; (3) parameters, a set of prob-
abilities where (i) the initial probabilities indicate the prob-
ability that a sequence of observations begins at each start-
state; (ii) the transition probabilities between states; and (iii)
the emission probabilities, which specify the probability of
a state emitting a given observation.

In the context of NLP, sequence models are used to
classify a series of observations, which correspond to the
succession of words observed in a sentence. In particular, a
HMM is used in PoS tagging tasks, allowing the discovery
of a series of states that best explains a new sequence of
observations. This is known as the decoding problem, which
can be solved by the Viterbi algorithm [31]. This algorithm
resorts to dynamic programming to pick the best hidden
state sequence. Although the Viterbi algorithm employs
bigrams to generate the i-th state, it takes into account all
previously generated states, but this is not directly visible. In
a nutshell, the algorithm iteratively obtains the probability
distribution for the i-th state based on the probabilities
computed for the (i-1)-th state, taking into consideration the
parameters of the model.

The parameters of the HMM are learned by processing
a corpus that is created for training. Observations and
state transitions are counted, and afterwards the counts are
normalized in order to obtain probability distributions; a
smoothing procedure may also be applied to deal with rare
events in the training data (e.g., add-one smoothing).

5.2 Vocabulary and States
As our HMM operates over the program instructions trans-
lated into ISL, the vocabulary is composed of the previously

described ISL tokens. The states are selected to represent
the fundamental operations that can be performed on the
input data as it flows through a slice and express the
type of operation a token produces. Five states were de-
fined as displayed Table 2 (columns 1 and 2). The final
state of an instruction in ISL is either vulnerable (Taint)
or not-vulnerable (N-Taint). However, in order to attain
an accurate detection, it is necessary to take into account
the sanitization (San), validation (Val) and modification
(Chg_str) of the user inputs and the variables that may
depend on them. Therefore, these three factors are repre-
sented as intermediate states in the model. As strings are
on the base of web surface vulnerabilities, these three states
allow the model to determine the intermediate state when
an application manipulates them.

TABLE 2: HMM states and the observations they emit.
State Description Emitted observations
Taint Tainted conc, input, var, var vv
N-Taint Not tainted conc, cond, input, var, var vv, ss
San Sanitization input, sanit f, var, var vv
Val Validation contentchk, fillchk, input, typechk num,

typechk str, var, var vv
Chg str Change string add str, char5, char6, erase str, input,

join str, replace str, split str, start where,
sub str, sub str replace, var, var vv

5.3 Parameters

The parameters of the model, as we stated previously, are
a set of probabilities for the initial states, the state tran-
sitions, and the observation emissions. They correspond
to the knowledge extraction step of Fig. 3. The probabilities
are computed from the corpus by counting the number of
occurrences of observations and/or states. The result is 3
matrices of probabilities with dimensions of (1× s), (s× s)
and (t × s), where s and t are the number of states and
tokens of the model. The matrices are calculated as follows:
Initial-state probabilities: count how many sequences begin
in each state. Then, get the probability for each state by
dividing these counts by the number of sequences of the
corpus. This produces a matrix with the dimension (1× 5).
Example 7. To obtain the initial-state probability of the San
state, we count how many sequences begin with the San
state and divide by the size of the corpus.
Transition probabilities: count how many times in the corpus
a certain state i transits to a state k (including itself). The
transition probability is obtained by dividing this count by
the number of pairs of states that appear in the corpus that
begin with the i state. The resulting matrix has a dimension
of (5 × 5), keeping the various probabilities for all possible
transitions between the five states.
Example 8. The transition probability for the N-Taint state
to the Taint state is the number of occurrences of this
transition in the corpus divided by the number of pairs of
states that begin in the N-Taint state.
Emission probabilities: count how many times a certain ob-
servation is emitted by a particular state, i.e., count how
many times a certain pair 〈token,state〉 appears in the
corpus. Then, calculate the emission probability by dividing
this count by the total number of pairs 〈token,state〉
that occur for that specific state. The resulting matrix –
called global emission probabilities matrix – has a dimension

7

of (22 × 5) in order to have a probability for the 22 tokens
that could be emitted by each of the 5 states.

Example 9. To obtain the probability that the Taint state
emits the input token (〈input,Taint〉), first get the num-
ber of occurrences of this pair in the corpus, and next divides
it by the total number of pairs of the Taint state.

Zero-probabilities should be avoided because the Viterbi
algorithm uses multiplication to calculate the probability of
moving to the next state, and therefore one needs to ensure
that this multiplication is never zero. The add-one smoothing
technique [29] can address this issue and help to compute
the values of the parameters. This technique simply adds a
unit to all counts, making zero-counts equal to one and the
associated probability different from zero.

5.4 Detecting Vulnerabilities

The detection of vulnerabilities corresponds to the detection
phase of our approach, as depicted in Fig. 3, that comprises
steps slice collection and translation (see Section 4) and search
for vulnerabilities. This section explains in detail the second
step.

Given the source code of an application, the collector
gathers the slices that should be examined, and then every
slice is inspected separately. To commence, the instructions
of the slice are translated to ISL. This means that the slice
becomes a list of sequences of observations, each one cor-
responding to a PHP instruction. The discovery of flaws is
accomplished by processing the sequences in the order of
appearance, starting with the first and concluding with the
last.

The HMM model is applied to each sequence of obser-
vations to find out the associated states. We resort to an
extension of the Viterbi algorithm to perform this task. The
algorithm employs dynamic programming to compute the
most likely succession of states that explain a sequence of
observations. As the algorithm finishes with a sequence,
a final state comes out, either as Taint or N-Taint. This
information is then propagated to the next sequence. The
process is repeated for all sequences, and the final state
of the last sequence defines the outcome for the slice —
either as vulnerable (if it is tainted) or non-vulnerable (if it
is untainted).

For the classification to be carried out effectively, it is
necessary to spread faithfully the taintedness among the se-
quences under analysis, which means keeping information
about the variables that are tainted. For this purpose, we use
three artifacts that are updated as the execution evolves:
• Tainted List (TL): as sequences are processed, it keeps the

identifiers of the variables that are perceived as tainted;
• Conditional Tainted List (CTL): contains the inputs (to-

ken input) and tainted variables (belong to TL) that
have been validated (e.g., by tokens typechk_num and
contentchk);

• Sanitized List (SL): has essentially a similar aim as CTL,
except that it maintains the variables that are sani-
tized or modified (e.g., with functions that manipulate
strings).

In our approach, the Viterbi algorithm was extended
to explore the information kept in the variable map (see

Section 4.3) and in these artifacts (further details in Sec-
tion 7.3). Handling a sequence of observations becomes a
three step procedure: (1) a preprocessing step is carried out
– beforeVit; (2) then, the decoding step of the Viterbi
algorithm is applied – decodeVit; (3) and lastly, a post-
processing step is executed – afterVit. They work as
follows:

beforeVit: the variable map is visited to get the name
of the variable associated to each var observation.
The TL and SL are checked to determine if they hold
that name. In case the sequence starts with the token
cond, the list CTL is also accessed. If a variable only
belongs to TL, then the var observation is modified to
var_vv, thus capturing the effect of the variable being
tainted. Finally, an emission probability sub-matrix for
the observations of the sequence is also retrieved from
the global emission probabilities matrix;

decodeVit: for each observation, the Viterbi algorithm cal-
culates the probability of each state to emit it, consid-
ering the probabilities of emission, of transition, and
of the states already discovered. The multiplication of
these three probabilities results in a probability called
score of state. The state that is assigned to an observation
is the one that has the highest score. The process is
repeated for all observations and the state of the last
observation is the one that classifies the sequence as
Taint or N-Taint.
In more detail, the three probabilities are obtained as
follows: emission come from the sub-matrix of emission
probabilities, regarding the observations that will be
processed; transition are from the matrix of transition
probabilities; previous state is determined by picking
up the highest score computed for the previous obser-
vation. This last probability brings to the calculation the
order in which the observations appear in the sequence
and the knowledge already discovered about the previ-
ous observations. However, since this knowledge does
not exist for the first observation of the sequence, in this
case the initial-state probabilities are used;

afterVit: if the sequence is an assignment (i.e., the last ob-
servation of the sequence is a var token and the entry in
the variable map starts with 1), then the corresponding
variable name is obtained from variable map. Next, the
TL is updated: (i) inserting the variable name if the final
state is Taint (and var is updated to var_vv); or (ii)
removing it if the state is N-Taint and the variable is
in TL; in the presence of a sanitization sequence, the
variable name is also added to SL. In case the sequence
is an if condition (i.e., the first and last observations
are a cond token), then the variable map is searched
for each var and var_vv observation. Next, the TL
is searched to discover if it includes the name, and in
that situation if validation tokens are involved with that
variable (e.g., typechk_num token), the CTL is updated
by inserting that name.

The end result of these actions is that one gets the ability
to keep the relevant knowledge about the propagation of
inputs through the slice, and thus determine how they can
influence the sensitive sinks.

Example 10. Fig. 1(a), (b) and (c) shows an example of the

8

detection of a bug. It comprises from left to right: the PHP
code, the representation in ISL and the variable map, and
the TL after observations are classified. In line 1, the Viterbi
algorithm is applied and as a result the var observation
is tainted because by default an input observation is so;
the model classifies it correctly and variable u is inserted
in TL and var updated to var_vv. In line 2, the first var
observation is updated to var_vv because it corresponds to
variable u that belongs to TL, and then the Viterbi algorithm
is applied; the var_vv var sequence is classified by the
model and the final state is Taint; therefore, variable q is
inserted in TL. The process is repeated for the next line,
allowing the discovery of the flaw. Fig. 1(d) presents the
decoding of the slice while the processing progresses. Here,
it is possible to see the places where var is replaced by
var_vv, with the relevant variable name as suffix. In addi-
tion, the states of each observation are also added. By fol-
lowing the generated states, one can understand the effects
of the code execution (without actually running it), which
variables are tainted, and why the code is vulnerable. The
state of the last observation indicates the final classification
— a vulnerability.
Example 11. Fig. 2 has the PHP code for the three slices
composed of lines {1, 2, 3, 4}, {1, 2, 3, 5} and {1, 2, 3, 6,
7} respectively. After processing the first two slices, TL =
{u, a} and CTL = {u, a} as variable u is the parameter of
the contentchk token and variable a is the parameter of
the typechk_int token. The final state for both slices is
N-Taint because variables u and a are included in CTL and
lines 4 and 5 belong to the true branch of the if statement;
so affected by CTL. In the third slice, TL = {u, a} and CTL =
{ } since there is no validation and the final state is Taint.

6 LEARNING AND CORPUS ASSESSMENT

This section explains the main activities related to the cor-
pus, more specifically, the learning phase and the validation
of the model. Learning encompasses a number of activities
(see Figure 3) that culminate with the computation of the
parameters of the HMM model performed by the process
explained in Section 5.3. A corpus was also created to
train the model and an assessment was made to verify
its consistency. This corpus can be extended in the future
with additional annotated sequences, allowing the model to
evolve its knowledge and detection capabilities. In addition,
the section presents the knowledge graph of the model,
which is derived from the corpus and depicts the knowledge
it comprises, and the validation of the model based on the
current corpus.

6.1 Methodology to Build the Corpus
The corpus plays an important role as it incorporates the
knowledge that will be learned by the model, namely which
instructions may lead to a flaw. In our case, the corpus is a
group of instructions (belonging to slices) converted to ISL,
where tokens are tagged with information related to taint
propagation. The model sees the tokens of an instruction
in ISL as a sequence of observations. The tags correspond
to the states of the model. Therefore, an alternative way to
look at the corpus is as a group of sequences of observations
annotated with states.

The process of creating the corpus involves four steps: (1)
collection of a group of instructions that are vulnerable and
not-vulnerable, which are placed in a bag; (2) representation
of each instruction in the bag in ISL; (3) annotation of the
tokens of every instruction (e.g., as tainted or sanitized), i.e.,
associate a state to each observation of the sequence; and
(4) removal of duplicated entries in the bag. In the end, an
instruction becomes a list of pairs of 〈token,state〉.

In the first step, it is necessary to get representative
instructions of all classes of bugs that one wants to catch,
various forms of validations (for numbers and strings),
diverse forms of manipulating (changing) strings, and dif-
ferent combinations of code elements. To achieve this in
practice, we can gather individual instructions or/and we
can select a large number of slices captured from open
source training applications. Therefore, both the collection
and representation can be performed in an automatic man-
ner (with the slice collector and ISL translator modules),
but the annotation of the tokens is done manually (as in all
supervised machine learning approaches).

As mentioned in Section 4, the token var_vv is not
produced when slices are translated into ISL, but used in
the corpus to represent variables with state Taint (tainted
variables). In fact, during translation into ISL, variables are
not known to be tainted or not, so they are represented by
the var token. In the corpus, if the state of the variable is
annotated as Taint, the variable is portrayed by var_vv,
forming the pair 〈var_vv,Taint〉.

The state of the last observation of a sequence corre-
sponds to a final state, and therefore it can only be Taint
(vulnerable) or N-Taint (not-vulnerable). If this state is
tainted then it means that a malicious input is able to prop-
agate and potentially compromise the execution. Therefore,
in this case, the instruction is perceived as vulnerable. Oth-
erwise, the instruction is deemed correct (non-vulnerable).
Example 12. Instruction $v = $_POST[’paramater’]
becomes input var in ISL, and is annotated as
〈input,Taint〉 〈var_vv,Taint〉. Both states are Taint
(compromised) because the input can be the source of
malicious data, and therefore is always Taint, and then the
taint propagates to the variable which will be portrayed by
var_vv.
Example 13. The $v = htlmentities($_GET[’user’])
instruction is translated to sanit_f input var and
is placed in the corpus as the succession of pairs
〈sanit_f,San〉 〈input,San〉 〈var,N-Taint〉. The first
two tokens are annotated with the San state because func-
tion htlmentities sanitizes its parameter; the last token is
labeled with the N-Taint state, meaning that the ultimate
state of the sequence is not tainted.

6.2 Corpus Construction and Assessment
The model needs to classify correctly the sequences of
observations or, in our case, needs to detect vulnerabilities
without mistakes. Since the model is configured with the
corpus, its quality depends strongly on incorporating valid
and enough information in the corpus. Therefore, to build
the corpus, we resorted to a method inspired in Jurafsky
and Martin [29]. The method operates iteratively in three
phases to gradually assess and improve the resulting model.

9

The evaluation phase verifies if the model outputs correctly a
sequence of observations O for a given sequence of states S.
The decoding phase determines if the model outputs a S that
explains correctly a given O. This phase corresponds to the
objective of our approach. The last phase, re-learning, verifies
if the model needs adjustments to its parameters in order
to maximize the results of the previous phases. It consists
of enhancing the model by adding more sequences to the
corpus and running another cycle of the method.

After applying our methodology (described in the pre-
vious section) and the method, the resulting corpus had 510
slices, where 414 are vulnerable and 96 are non-vulnerable.
These slices were extracted from various open source PHP
applications2 and had flaws from the fiftheen classes pre-
sented in Section 2.

1 $var = $_POST[‘parameter’]
2 $var = $_GET[‘parameter’]
3 $var = htmlentities($_POST[‘parameter’])
4 $var = mysqli_real_escape_string($con, $_GET[‘parameter’])
5 $var = htmlentities($var)
6 $var = "SELECT field FROM table WHERE field = $var"
7 $var = mysqli_query($con, $var)
8 $var = mysql_query($var)
9 echo $var

10 include($var)
11 $var = (isset($var)) ? $var : ’’
12 if (isset($var) && $var > number)
13 if (is_string($var) && preg_match(’pattern’, $var))
14 if (isset($var) && preg_match(’pattern’, $var) &&

is_int($var))

Listing 2: Creating the corpus: collection step.

Listing 2 displays an excerpt of the result of the first
step. It contains fourteen PHP instructions collected from
vulnerable and non-vulnerable slices. The representation
of the instructions into ISL is illustrated in Listing 3 (sec-
ond step). It is possible to observe that some instructions
may have more than one representation, depending on the
extracted slice being vulnerable or not. For example, the
instruction at the fifth position in Listing 3 appears as two
series (the two lines immediately below of it) corresponding
to the sanitization of an untainted and a tainted variable,
respectively. In the listing, the difference between the var
and var_vv tokens is visible. Listing 4 has the final corpus
that is produced after applying the last two steps. Each
sequence of observations is annotated with the state as
explained in the previous section. The duplicated sequences
are eliminated as several PHP instructions can result in the
same sequence. For example, PHP instructions in lines 1 and
2 (Listing 2) become the same sequence (line 1 of Listing 4).

The probability matrices (model’s parameters) that were
computed based on this corpus are shown in Fig. 5.

To perform a preliminary assessment the resulting
model, we applied a 10-fold cross validation [32]. This form
of validation involves dividing the training data (the corpus
of 510 slices) in ten folds. Then, the model is trained with
a sub-corpus of nine of the folds and tested with the tenth
fold. This process is repeated ten times to evaluate every
fold with a model trained with the rest. The metrics that

2. bayar, bayaran, ButterFly, CurrentCost, DVWA 1.0.7, emoncms, glfusion-
1.3.0, hotelmis, Measureit 1.14, Mfm-0.13, mongodb-master, Multilidae 2.3.5,
openkb.0.0.2, Participants-database-1.5.4.8, phpbttrkplus-2.2, SAMATE, super-
links, vicnum15, ZiPEC 0.32, Wordpress 3.9.1.

1 $var = $_POST[‘parameter’]
input var_vv

2 $var = $_GET[‘parameter’]
input var_vv

3 $var = htmlentities($_POST[‘parameter’])
sanit_f input var

4 $var = mysqli_real_escape_string($con, $_GET[‘parameter’])
sanit_f input var

5 $var = htmlentities($var)
sanit_f var var
sanit_f var_vv var

6 $var = "SELECT field FROM table WHERE field = $var"
var var
var_vv var_vv

7 $var = mysqli_query($con, $var)
ss var var
ss var_vv var_vv

8 $var = mysql_query($var)
ss var var
ss var_vv var_vv

9 echo $var
ss var_vv
ss var

10 include($var)
ss var_vv
ss var

11 $var = (isset($var)) ? $var : ’’
var var
var_vv var_vv

12 if (isset($var) && $var > number)
cond fillchk var_vv cond
cond fillchk var cond

13 if (is_string($var) && preg_match(’pattern’, $var))
cond typechk_str var_vv contentchk var_vv cond
cond typechk_str var_vv contentchk var cond
cond typechk_str var contentchk var_vv cond
cond typechk_str var contentchk var cond

14 if (isset($var) && preg_match(’pattern’, $var) &&
is_int($var))

cond typechk_str var_vv contentchk var_vv typechk_int
var_vv cond

cond typechk_str var_vv contentchk var_vv typechk_int var
cond

cond typechk_str var_vv contentchk var typechk_int var_vv
cond

cond typechk_str var_vv contentchk var typechk_int var
cond

cond typechk_str var contentchk var_vv typechk_int var_vv
cond

cond typechk_str var contentchk var_vv typechk_int var
cond

cond typechk_str var contentchk var typechk_int var_vv
cond

cond typechk_str var contentchk var typechk_int var cond

Listing 3: Creating the corpus: representation step.

are used in the evaluation are: Accuracy (acc) measures
the ratio of well-classified slices (as vulnerable and non-
vulnerable) over the total number of slices (N), whereas
precision (pr) assesses the fraction of classified bugs that
are really vulnerabilities. The objective is high accuracy
and precision or, similarly, to minimize the false positive
rate (fpr) which is the rate of generating false alarms for
slices that are correct, and to minimize the false negative
rate (fnr) which is the rate of missing certain vulnerable
slices. Given that TP and TN are the well-classified instances
as vulnerable and non-vulnerable, while FP is the false
alarms and FN is the missing flaws, the metrics are com-
puted with: acc = (TP + TN)/N ; pr = TP/(TP + FP);
fpr = FP/(FP + TN); and fnr = FN/(FN + TP).

Table 3 presents a confusion matrix for the alerts pro-
duced in the first two phases of the method. For example,
the first row says that it issued 419 alerts in the evaluation

10

1 <input,Taint> <var_vv,Taint>
2 <sanit_f,San> <input,San> <var,N-Taint>
3 <sanit_f,San> <var,San> <var,N-Taint>
4 <sanit_f,San> <var_vv,San> <var,N-Taint>
5 <var,N-Taint> <var,N-Taint>
6 <var_vv,Taint> <var_vv,Taint>
7 <ss,N-Taint> <var,N-Taint> <var,N-Taint>
8 <ss,N-Taint> <var_vv,Taint> <var_vv,Taint>
9 <ss,N-Taint> <var_vv,Taint>

10 <ss,N-Taint> <var,N-Taint>
11 <cond,N-Taint> <fillchk,Val> <var_vv,Val> <cond,N-Taint>
12 <cond,N-Taint> <fillchk,Val> <var,Val> <cond,N-Taint>
13 <cond,N-Taint> <typechk_str,Val> <var_vv,Val>

<contentchk,Val> <var_vv,Val> <cond,N-Taint>
14 <cond,N-Taint> <typechk_str,Val> <var_vv,Val>

<contentchk,Val> <var,Val> <cond,N-Taint>
15 <cond,N-Taint> <typechk_str,Val> <var,Val>

<contentchk,Val> <var_vv,Val> <cond,N-Taint>
16 <cond,N-Taint> <typechk_str,Val> <var,Val>

<contentchk,Val> <var,Val> <cond,N-Taint>
17 <cond,N-Taint> <typechk_str,Val> <var_vv,Val>

<contentchk,Val> <var_vv,Val> <typechk_int,Val>
<var_vv,Val> <cond,N-Taint>

18 <cond,N-Taint> <typechk_str,Val> <var_vv,Val>
<contentchk,Val> <var_vv,Val> <typechk_int,Val>
<var,Val> <cond,N-Taint>

19 <cond,N-Taint> <typechk_str,Val> <var_vv,Val>
<contentchk,Val> <var,Val> <typechk_int,Val>
<var_vv,Val> <cond,N-Taint>

20 <cond,N-Taint> <typechk_str,Val> <var_vv,Val>
<contentchk,Val> <var,Val> <typechk_int,Val>
<var,Val> <cond,N-Taint>

21 <cond,N-Taint> <typechk_str,Val> <var,Val>
<contentchk,Val> <var_vv,Val> <typechk_int,Val>
<var_vv,Val> <cond,N-Taint>

22 <cond,N-Taint> <typechk_str,Val> <var,Val>
<contentchk,Val> <var_vv,Val> <typechk_int,Val>
<var,Val> <cond,N-Taint>

23 <cond,N-Taint> <typechk_str,Val> <var,Val>
<contentchk,Val> <var,Val> <typechk_int,Val>
<var_vv,Val> <cond,N-Taint>

24 <cond,N-Taint> <typechk_str,Val> <var,Val>
<contentchk,Val> <var,Val> <typechk_int,Val>
<var,Val> <cond,N-Taint>

Listing 4: Creating the corpus: annotation and removal steps.

phase but that 14 of them were mistakes (columns 2 and
3). In the evaluation phase, the precision and accuracy were
very high, around 0.97 and 0.95, and the rates were small
(fpr is 0.15 and fnr is 0.02). In the decoding phase, the results
were even more positive, with a precision and accuracy
approximately of 0.96 and rates of 0.17 and 0.005 (almost
null fnr rate). Since there is a trade-off between the two

[
0.062 0.323 0.062 0.015 0.538

]
(a) initial-state probabilities.

0.619 0.099 0.174 0.059 0.333
0.115 0.641 0.304 0.353 0.373
0.027 0.028 0.435 0.059 0.020
0.009 0.033 0.043 0.471 0.020
0.009 0.006 0.043 0.059 0.255

(b) transition probabilities.

0.085 0.015 0.103 0.030 0.075
0.326 0.010 0.154 0.030 0.075
0.008 0.005 0.256 0.030 0.015
0.008 0.051 0.026 0.030 0.015
0.380 0.406 0.026 0.030 0.015
0.008 0.005 0.026 0.091 0.015
0.008 0.005 0.026 0.091 0.015
0.008 0.005 0.026 0.061 0.015
0.008 0.076 0.026 0.030 0.015
0.008 0.005 0.026 0.030 0.060
0.008 0.005 0.026 0.030 0.060
0.008 0.005 0.026 0.030 0.060
0.008 0.005 0.026 0.030 0.060
0.008 0.005 0.026 0.030 0.134
0.008 0.005 0.026 0.030 0.104
0.008 0.005 0.026 0.030 0.134
0.008 0.061 0.026 0.030 0.015
0.008 0.005 0.026 0.061 0.015
0.070 0.020 0.026 0.030 0.015
0.016 0.294 0.051 0.212 0.075
0.008 0.005 0.026 0.030 0.015
0.270 0.208 0.056 0.061 0.015

(c) global emission probabilities.
Fig. 5: Parameters of our HMM model extracted from the
corpus. Columns correspond to the 5 states (in the same order
of column 1 of Table 2). The lines of matrix (c) are the tokens
(in the same order of column 1 of Table 1).

TABLE 3: Confusion matrix. Observed is the reality, where there
are 414 slices with flaws and 96 correct. Predicted is the output
of DEKANT with our corpus (419 vuln., 91 not vuln. in the
evaluation phase; 428 vuln., 82 not vuln. in the decoding phase).

Observed
Evaluation phase Decoding phase
Vul N-Vul Vul N-Vul

Predicted Vul 405 14 412 16
N-Vul 9 82 2 80

rates, it is interesting to notice that there is a very low fnr
that leads to a few FPs (wrong alerts). This is advantageous
because the alternative would mean missing vulnerabilities.
So, these results provide promising evidence of the excellent
performance of the resulting model, something that we will
be check more thoroughly in the experimental evaluation
section (see Section 8).

6.3 Knowledge Graph of the Model

The knowledge graph can be derived from the knowledge
that the corpus contains, thus illustrating a graphical repre-
sentation of the knowledge it contains. In other words, the
graph expresses what the model learns and, therefore, how
it can detect vulnerabilities. Fig. 6 displays the graph, where
the nodes constitute the states and the edges the transitions
between them. The dashed squares next to the nodes hold
the observations that can be emitted in each state (as the
second column of Table 2 shows).

San

Chg_str

Taint

ValN-Taint

conc, cond, input,
ss, var, var_vv

contentchk, fillchk, input,
typechk_num, typechk_str,
var, var_vv

conc, input,
var, var_vv

input, sanit_f
var, var_vv

add_str, char5, char6,
erase_str, input, join_str,
replace_str, split_str,
sub_str, sub_str_replace,
var, var_vv

Fig. 6: Knowledge graph for the proposed HMM.

In the corpus, an ISL instruction corresponds to a se-
quence of observations with its tokens tagged with states.
The sequence can start in any state except Val, as there is no
sequence that begins with a validation function (e.g., there
is no PHP instruction that initiates with the is_string
function – the typechk_str token). However, it can reach
the Val state for example due to conditionals that check the
input data. When the processing of the sequence completes,

11

the model is always either in the Taint or N-Taint states.
Therefore, the final state determines the overall classification
of the statement, i.e., if the instruction is vulnerable or not.
We recall that every sequence in the corpus ends in one
of these two states (see Listing 4). Moreover, the model
uses this information to propagate these states between
sequential sequences in order to improve the precision in
the detection of vulnerabilities (see Section 5.4).

The knowledge graph of the model can be seen as a
deterministic finite automata (DFA), also known as a deter-
ministic finite-state machine (DFSM) [33]. A DFA consists of
a five-tuple 〈S, V, t, F, s0〉 like our HMM. S and V are the
states and vocabulary already presented in Section 5.2. t is
the transition function (computed by our modified Viterbi
algorithm) that determines which is the next state that the
DFA will jump to by taking as input an observation and the
current state. F is the set of accepting states, either Taint or
N-Taint, forcing every acceptable sequence to end in one of
these states. s0 is the initial (start) state that each sequence
must begin.

Our HMM has similar behavior to a DFA, i.e, it re-
ceives observations as input and processes them by using
a transition function to determine the next state. For each
observation, the DFA jumps deterministically from one state
to another state by following the transition edge. This
means that in the corpus each sequence of observations
and its sequence of states is unique (the removal step of the
corpus creation ensures the elimination of duplicates (see
Section 6.1)). In addition, as our model learns the knowledge
contained in the graph, it will output deterministically the
single sequence of states for a sequence of observations.

SanStart End

sanit_f

San N-Taint

input var

PHP instruction: $p = mysqli_real_escape_string($con,
$_GET[’user’])

ISL instruction: sanit_f input var
Sequence: 〈sanit_f,San〉 〈input,San〉 〈var,N-Taint〉

Fig. 7: Graph instantiation for an example sequence of the
corpus.

Example 14. Fig. 7 shows an instantiation of a sequence of
the corpus where the knowledge graph has been applied.
The sequence starts in the San state and emits the sanit_f
observation; next it remains in the same state and emits
the input observation; finally, it transits to N-Taint state,
emitting the var observation (untainted variable).

7 IMPLEMENTATION

Our approach is implemented in the DEKANT tool. This
section explains the modules that compose the tool and the
algorithms we consider more important, in particular the
slice translator module and the extensions we made to the
Viterbi algorithm.

7.1 Modules of DEKANT

DEKANT is programmed in Java and its architecture is
divided in four major modules, which are explained below
in more detail:

(1) Knowledge extractor: operates separately from the
other modules and is executed when the corpus is built or
later modified. It runs in three steps: (i) the sequences com-
posed of series of annotated tokens are loaded from a plain
text file. Each sequence is separated in pairs 〈token,state〉
and the elements of each pair are inserted in the matrices
called observations and states. Since sequences normally have
different numbers of pairs, it becomes necessary to normalize
the length of all sequences in the corpus. This is accomplished
by first determining the length of the largest sequence, and
then by padding shorter sequences with the miss token
together with the state of the last observation (i.e., with
pairs 〈miss,Taint〉 or 〈miss,N-Taint〉) to ensure that all
sequences have the same length; (ii) then, the various prob-
abilities of the model are computed as explained in Section
5.3; (iii) lastly, all relevant information about the model is
saved in a plain text file to be loaded by the vulnerability
detector module.

(2) Slice collector: uses a lexer and a parser to process PHP
code (based on ANTLR3). It searches the application files
for places where inputs arrive from the user and then tracks
the data flows until either a security-critical instruction is
reached or the program exits. Slices that have both an entry
point and a sensitive sink are passed to the translator (and
the others are discarded). The information about which
entry points and sensitive sinks should be considered is
provided in a configuration file.

(3) Slice translator: The module reads configuration files
describing the classes of tokens, e.g., containing the PHP
functions that are represented by tokens. Some of them are
transversal to any class of vulnerability, whereas others are
specific to a particular bug. For example, the input file
contains $_GET and $_POST global arrays and the ss_xss
file has the security-sensitive functions associated with XSS
(e.g., echo). The module first parses the slice and next
verifies which tokens should be assigned to each PHP in-
struction, following the ISL grammar rules. Simultaneously,
it also generates the variable map.

(4) Vulnerability detector: works in three steps to find
the bugs. (i) the probabilities are loaded from a file and
the model is setup internally; (ii) the slice translated into
the intermediate language is processed using the modified
Viterbi algorithm. Sometimes, it occurs that a sequence has
more observations than the largest sequence that was seen
in the corpus. When this happens, it is necessary to divide
the sequence in sub-sequences with at most the maximum
corpus sequence length. Then, each one is classified sepa-
rately, but the algorithm is careful to ensure that the initial
probability of the following sub-sequence is equal to the
probability resulting from the previous sub-sequence; (iii)
lastly, the various probabilities are estimated for a sequence
of observations to be explained by particular sequences of
states, and the most probable is chosen. An alert message is
issued if a vulnerability is found.

3. https://www.antlr.org/

12

7.2 Slice translator
Listing 5 shows the algorithm of the slice translator module.

1 /* >>> Data structures and variables <<<
2 ** ISL - ISL tokens list
3 ** CF - configuration files with PHP code elements
4 ** VM - variable map
5 ** AST - abstract syntax tree of the PHP slice
6 ** code_elem - a PHP code element
7 ** first - variable to indicate the 1st code element of

an instruction
8 ** VM_inst - variable to represent the VM of an inst.
9 ** isl_inst - variable that represents the isl instruction

10 ** assign - variable for controlling assignment instructs.
11 ** if_st - variable for controlling ifs instructions
12 */
13
14 load configuration files to CF
15 AST = get ast from PHP-slice
16
17 for each branch in AST do
18 first = 1
19 assign = ""
20 isl_inst = ""
21 VM_inst = ""
22 if_st = 0
23 for each code_elem in branch do
24 if first = 1 then
25 first = 0
26 if code_elem starts with $ then
27 get var_name of code_elem
28 assign = var_name
29 VM_inst = 1
30 else
31 if code_elem starts with if then
32 if_st = 1
33 isl_inst = cond
34 VM_inst .= 0 -
35 else
36 VM_inst = 0
37 end_if
38 end_if
39 else
40 if code_elem starts with $ then
41 get var_name of code_elem
42 isl_inst .= var
43 VM_inst .= var_name
44 else
45 if code_elem starts with $_ then
46 isl_inst .= input
47 VM_inst .= -
48 else
49 isl_token = ""
50 get isl_token using (code_elem, ISL, CF)
51 if isl_token != "" then
52 VM_inst .= -
53 isl_inst .= isl_token
54 end_if
55 end_if
56 end_if
57 end_if
58 for_end
59
60 if assign != "" then
61 VM_inst .= assign
62 isl_inst .= var
63 end_if
64 if if_st = 1 then
65 VM_inst .= -
66 isl_inst .= cond
67 end_if
68
69 insert VM_inst in VM
70 apply grammar to isl_inst
71 for_end

Listing 5: Slice translator algorithm.

After the configuration files (CF) are loaded and the PHP
slice is parsed, the the abstract syntax tree (AST) is generated
(lines 14 and 15). Next, each AST branch that represents
a slice instruction is analyzed. For the first code element
of the branch, it is checked if it is a variable, meaning
that we are in the presence of an assignment instruction,

or a if statement (lines 26 to 39). Two other checks are
performed for every PHP code element to determine if they
are a variable or an input (lines 40 to 48). Besides these
checks, the code elements are analyzed against the CF in
order to obtain the ISL tokens (lines 49 to 53). In all cases,
the variable map (VM_inst) is filled and the isl-inst
composed accordingly. After the AST branch is processed,
the VM_int and the isl-inst keep the assignment and if
statement cases information and the VM is updated (lines 60
to 69). Finally, the isl-inst is analyzed to find out that it
follows the grammar rules and is also translated (line 70).

7.3 Extensions to the Viterbi algorithm

We extended the Viterbi algorithm with the two proce-
dures of Section 5.4 (beforeVit and afterVit) to track
the propagation of inputs while processing a slice and to
explore the data structures that keep relevant knowledge
about variables (e.g., the three artifacts TL, CTL, SL and the
variable map).

Listing 6 presents the beforeVit preprocessing proce-
dure that is run before the Viterbi algorithm. beforeVit
does a few tests to manipulate some flags and change the
data structures. For each observation (obs) in the sequence
(inst_slice_isl) there are checks to find out: (i) the
presence of sanitization (sanit_f) or a cond tokens. For
the latter case, the obs position is verified in the sequence to
discover if the instruction is an if statement, an instruction
inside of a conditional statement, or an else statement
(lines 19 to 28); (ii) an if statement is searched for validation
functions and if their parameters are a variable or an input
(i.e., var or input). In such case, var or input are inserted
in CTL (lines 30 to 46); (iii) an instruction inside an if
statement is checked if the var and input tokens belong
to CTL and/or SL. VM (variable map) is accessed to get
the name of variable associated to var token. If the token
input belongs to the SL or CTL lists, it is replaced by
the var token because it has to loose its taintedness (we
recall that by default this token is tainted and the var
token is untainted, so this replacement is required) (lines
48 to 59); (iv) in presence of another instruction and if the
observation is a var token, i.e., the inst_slice_isl is
out of the validation scope, the name of variable is taken
from VM and checked if it belongs to TL but not in SL. In
such a case, the variable is tainted, and the observation is
replaced by the var_vv token (lines 61 to 69). For all four
verifications, the emission probability of the observation in
analysis is retrieved from the global emission probabilities
matrix (GEP), then it is inserted in the emission probabilities
matrix (EP) of the inst_slice_isl (line 70).

Afterwards, the traditional Viterbi algorithm is executed
(decodeVit step as explained in Section 5.4) and then the
post-processing afterVit procedure runs.

Listing 7 shows afterVit. It takes as inputs the final
state of the inst_slice_isl (state) and the assignment
value (value) of the instruction stored in VM (lines 11-12),
and then makes the following checks: (i) if the instruction is
an assignment, then the last observation of the sequence
is a variable (var or var_vv token), so the name of the
variable (var_name) is taken from VM (lines 14-15); (ii) if
the instruction is classified as Taint, then the assignment

13

variable is tainted, so the var_name is put in TL. If this
var_name already belongs to SL, it is removed from this list
(lines 16-20); (iii) if the instruction is classified as N-Taint,
then the assignment variable is untainted, and therefore it
can be removed from TL. Additionally, it is verified if the
instruction is a result of a sanitization operation, and in such
case the name is inserted in SL (lines 22-26).

1 /* >>> Data structures and variables <<<
2 ** VM - variable map
3 ** TL - tainted list
4 ** CTL - conditional tainted list
5 ** SL - sanitized list
6 ** obs_index - index of obs in the instruction_slice_isl
7 ** var_name - variable name of the obs from inst_slice_isl
8 ** condition - variable for controlling if stattements
9 ** val - variable for controlling validation functions

10 ** san - variable for controlling sanitization functions
11 ** EP - emission probability matrix of

instruction_slice_isl
12 ** GEP - global emission probabilities matrix
13 ** obs_ep - emission probability of the obs in analysis
14 */
15
16 val = 0
17 san = 0
18 for each obs in inst_slice_isl do
19 if obs = sanit_f then san = 1 end_if
20
21 if obs = cond then
22 if obs_index = 1 then
23 if size(inst_slice_isl) = 1 then condition = 0

else condition = 1 end_if
24 else
25 condition = 2
26 end_if
27 get obs_ep from GEP
28 end_if
29
30 if condition = 1 and obs_index <> 1 then
31 if obs in [typechk_num, contentchk] then
32 val = 1
33 end_if
34
35 if obs = var and val = 1 then
36 get var_name of obs from VM
37 insert var_name in CTL
38 val = 0
39 end_if
40
41 if obs = input and val = 1 then
42 insert input in CTL
43 val = 0
44 end_if
45 get obs_ep from GEP
46 end_if
47
48 if condition = 2 then
49 if obs = var then
50 get var_name of obs from VM
51 if var_name in [CTL, SL] then
52 get obs_ep from GEP
53 end_if
54 end_if
55 if obs = input and input in [CTL, SL] then
56 obs = var
57 get obs_ep from GEP
58 end_if
59 end_if
60
61 if condition = 0 then
62 if obs = var then
63 get var_name of obs from VM
64 if var_name in TL and not in SL then
65 obs = var_vv
66 end_if
67 end_if
68 get obs_ep from GEP
69 end_if
70 insert obs_ep in EP
71 end_do

Listing 6: beforeVit extension to the Viterbi algorithm.

1 /* >>> Data structures and variables <<<
2 ** VM - variable map
3 ** TL - tainted list
4 ** SL - sanitized list
5 ** state - state of the last obs from inst_slice_isl
6 ** value - assignament value of inst_slice_isl on VM
7 ** var_name - variable name of the obs from inst_slice_isl
8 ** san - variable for controlling sanitization functions
9 */

10
11 get state of inst_slice_isl
12 get value from VM
13
14 if value = 1 then
15 get var_name of the last_obs from VM
16 if state = taint then
17 insert var_name in TL
18 if var_name in SL then
19 remove var_name from SL
20 end_if
21 else
22 if san = 1 then
23 insert var_name in SL
24 san = 0
25 if var_name in TL then
26 remove var_name from TL
27 end_if
28 end_if
29 end_if
30 end_if

Listing 7: afterVit extension to the Viterbi algorithm.

8 EXPERIMENTAL EVALUATION

Our experimental evaluation addresses the following ques-
tions about DEKANT: (1) Is the tool able to discover novel
vulnerabilities? (Section 8.1); (2) Can it classify correctly var-
ious classes of vulnerabilities? (Section 8.1); (3) Is DEKANT
more accurate and precise than tools that search for vul-
nerabilities in plugins (Section 8.2); (4) Is DEKANT more
accurate and precise than tools that do data mining using
standard classifiers (Section 8.3); (5) Is it more effective than
tools that resort to code property graphs (Section 8.4)?

8.1 Open Source Software Evaluation
This section assesses the ability of DEKANT to classify
different vulnerabilities by analyzing 25 WordPress plug-
ins [34] and 21 packages of real web applications. All of
these are written in the PHP language. The plugins and
8 web applications are used to determine if the tool is
useful for the discovery of new (zero-day) vulnerabilities.
The remaining 13 web applications serve as a ground truth
for the evaluation, since they have known vulnerabilities
found by [27]. In every test, DEKANT resorted to the corpus
explained in the previous section (however, none of the
programs utilized in the evaluation was employed to build
the corpus). All outputs of the tool were confirmed by us
manually to pinpoint valid detections and mistakes.

8.1.1 Zero-day Vulnerabilities in Plugins
WordPress is the most adopted Content Management Sys-
tem (CMS) worldwide, and therefore its plugins are in-
teresting targets for our study. WordPress offers a set of
functions to sanitize and validate the data types (e.g., sani-
tize text field, esc html), to read entry points (e.g., get post),
and to handle SQL commands ($wpdb class), which are
invoked by some of the plugins. Therefore, we configured
DEKANT with information about these functions, mapping

14

them to the ISL tokens. Recall that ISL abstracts the PHP
instructions, enabling certain behaviors to be captured like
sanitization.

We selected a diverse set of plugins based on two criteria,
the development team and the number of downloads. For
the former, we chose 15 plugins built by companies and
the other 10 by individual developers. For the second, we
picked 9 with less than 20,000 downloads, 5 with less
100,000 downloads, and the other 11 with more than 100,000
downloads (391,500 in average), some of which having
more than 1M of downloads. Note that plugins with less
downloads were not always those created by individual
developers. The plugins were chosen to have also diverse
characteristics with regard to the number of files and lines
of code (LoC). Although plugins are often believed to be
small, in a few cases they had more than 200 files and
100,000 LoC (see Table 7). We chose two versions for 6 of
them, one with vulnerabilities discovered and registered
in the past (marked with X in the third column of Table
4), for which a new and fixed version was generated, and
the latest one (which is not the fixed one). In addition, 2
plugins with 2 versions (one old and the latest one) also
were selected (Gantry Framework and WP Shop), but without
any information about vulnerabilities already discovered.
For these two, the third column of Table 4 is empty.

DEKANT extracted 455 slices from the plugins that begin
at an entry point and end at a sensitive sink. Next, it
translated them into ISL and executed the detection pro-
cedure. In total 295 slices are reported as potentially being
vulnerable, but 5 of them are actually invalid alarms (i.e.,
false positives (FP)). There are 205 new vulnerabilities that
no one had previously found, and 85 bugs that had already
been published by us [26] and other researchers (marked
with X in Table 4, third column). The remaining slices, a
group of 160, are correctly perceived as not vulnerable. The
flaws belong to six classes of vulnerability, ranging from

TABLE 4: Vulnerable slices in plugins found by DEKANT.

WordPress Plugin Ver R Slices Real Vulnerabilities FPSQLI XSS Files oth
Appointment Booking Calendar 1.1.7 x 15 3 4
Appointment Booking Calendar 1.3.39 9 3
Authorizer 2.3.6 2 2
Contact formgenerator 2.0.1 x 14 11
Contact formgenerator 2.1.82 18 10
Easy2map 1.2.9 x 13 1 2
Ecwid Shopping Cart 3.4.6 x 1 1
Ecwid Shopping Cart 6.9.6 1 1
Gantry Framework 4.1.6 3 3
Gantry Framework 4.1.21 3 3
Google Maps Travel Route 1.3.1 10 1 2 1
Payment Form for Paypal pro 1.0.1 x 19 2
Payment Form for PayPal Pro 1.1.64 11 2
ResAds 1.0.1 x 17 17
ResAds 2.0.3 13 13
Simple support ticket system 1.2 x 37 18
Simple support ticket system 1.3.6 42 13 4
The Cart Press eCommerce Shopp. 1.4.7 25 8 17
WP Easy Cart - eCommerce Shopp. 3.2.3 78 13 6 29 12
WP Marketplace 2.4.1 x 45 2 24 3
WC Marketplace 3.4.11 29 19 1
WP Shop 3.5.3 22 7 10
WP Shop 3.9.6 22 4 17
WP Simple e-Commerce Shopp. Cart 2.2.5 3 2 1
WP Web Scraper 3.5 3 3

Total 8 455 95 152 31 12 5
Files: DT & RFI, LFI vulnerabilities others: SCD, HI, CS vulnerabilities
R: registered vulnerable plugin

SQLI to CS (columns 5-8).
The zero-day vulnerabilities appear in 17 plugins: 10

developed by companies and 7 by individual programmers;
and 9 having more than 100,000 downloads. The most
vulnerable plugin is the one that has more files, while the
plugins appearing in the next places are smaller, and the
largest plugin in terms of LoC has less than 4 identified
bugs. These results reveal that, independently of the devel-
opment teams, number of downloads, files, and LoC, several
of the WordPress plugins used in the wild are insecure. In
the group of 8 plugins with two versions, all 6 plugins with
vulnerabilities already registered, still have flaws in their
new versions, sometimes keeping the same bugs identified
in the past. For the other 2 plugins, both versions contain
flaws, occasionally they have remained between versions
(e.g., Gantry Framework) or have increased (e.g., WP Shop for
XSS).

The new flaws were reported to the developers, and in
some cases they have already been acknowledged and fixed,
resulting in the release of updated versions of the plug-
ins4. Overall, these experiments are encouraging because
the approach demonstrated the potential for the discovery
of many classes of vulnerabilities in several open-source
plugins, some of them with considerable user bases.

8.1.2 Real Web Applications

To determine if DEKANT is effective at classifying the
vulnerabilities belonging to the fifteen classes under study
and discovering zero-day vulnerabilities, we run the tool
with two sets of open source software packages, respec-
tively, one containing well known vulnerable packages to
validate the capabilities of the tool and another to find zero-
day vulnerabilities regarding SQLi and XSS (the two most
exploited classes of vulnerabilities).

The first set is composed of 13 applications with more
than 4,000 files and almost 1 million LoC (Table 5). A few
of the packages are large, such as Play sms and Clip Bucket,
with approximately 250 and 150 thousand LoC. There are
727 slices evaluated in this experiment, which were classi-
fied manually to enable the validation of the outcomes of
DEKANT. Table 5, in columns 6-9, displays the results of
this effort, where Vul stands for vulnerable slices, San for
sanitized, and VC for validated and/or changed.

DEKANT takes a short time to perform the analysis, in
the order of tens of seconds (column 5). Columns 10-13 show
that the tool correctly classifies 503 slices as being vulnerable
(Vul), 14 slices are wrongly labeled as having bugs (FPs)
and 4 have errors that remain undetected (i.e., false nega-
tives (FN)). Columns 14-21 present how the 503 slices are
sorted out into the fifteen classes of vulnerabilities (column
Files aggregates three classes). Misclassification (FPs and
FNs) is mainly explained by the presence of validation and
string modification functions with context-sensitive states.
In particular, most FPs belong to the class PHPCI, a type
of vulnerability related to the execution of preg match and
preg replace functions (the remaining were in classes HI and
XSS). The FNs are also associated with PHPCI bugs.

4. For example, plugins appointment-booking-calendar 1.1.7, easy2map
1.2.9, payment-form-for-paypal-pro 1.0.1, resads 1.0.1 and simple-support-
ticket-system 1.2 were fixed thanks to this work.

15

TABLE 5: Slices in open source applications processed by DEKANT.

Web application Version Files LoC Analysis Slices Classification Vulnerability class
time (s) Vul San VC Total Vul N-Vul FP FN SQLI XSS Files* SCD HI CS LDAP SF

Admin Control Panel Lite 2 0.10.2 14 1984 1 81 1 82 81 1 9 72
Clip Bucket 2.7.0.4 597 148129 11 22 4 5 31 22 6 3 10 11 1
Clip Bucket 2.8 606 149830 12 26 4 5 35 26 6 3 4 10 11 1
Ldap address book 0.22 18 4615 2 40 50 90 40 50 39 1
Minutes 0.42 19 2670 1 10 10 10 9 1
Mle Moodle 0.8.8.5 235 59723 18 7 3 10 6 3 1 5 1
Php Open Chat 3.0.2 249 83899 7 11 11 11 10 1
Pivotx 2.3.10 254 108893 10 4 3 6 13 4 9 1 2 1
Play sms 1.3.1 1420 248875 19 6 2 8 5 2 1 5
RCR AEsir 0.11a 8 396 1 13 1 14 13 1 9 3 1
SAE 1.1 150 47207 7 148 38 15 201 148 48 5 61 65 20 1 1
Tomahawk Mail 2.0 155 16742 3 3 3 6 3 3 2 1
vfront 0.99.3 438 93042 15 136 50 30 216 134 78 2 2 32 68 24 10

Total 4163 966005 107 507 149 71 727 503 206 14 4 117 295 72 1 14 1 2 1
*DT & RFI, LFI vulnerabilities

Summing-up, the results are reassuring as DEKANT
correctly classifies every vulnerability that was described in
[27], but actually with less FP. These results are very similar
to the ones of the plugins (see Section 8.1.1), demonstrating
that the tool is capable of detecting vulnerabilities and of
classifying them correctly independently of their classes.

For the second set, we run DEKANT with 8 applications
in order to discover zero-day vulnerabilities (Table 6). In
total more than 3,000 files and almost 900,000 LoC were
analyzed. The largest packages are CandidATS and AMSS++,
with approximately 303 and 233 thousand LoC.

DEKANT classifies 4,129 slices as having bugs but, after
we checked them manually, 92 alarms are invalid (columns
5-6). The vulnerabilities pertain to SQLI and XSS (columns
7-8) and the FPs occur mostly in the XSS class (85 out of
92) due essentially to the use of user functions to replace
metacharacters in entry points and codification of entry
points in base64. 3811 out of 4037 flaws correctly classified
are in AMSS++, a support system to area management, and
127 out of the remaining 226 are in GUnet OpenEclass E-
learning, a platform for e-learning education. Such results
denote the lack of code security existent in systems and
platforms highly used for management of online services.
Curiously, these two applications are those we found zero-
day vulnerabilities, meaning that we discovered 3938 new
vulnerabilities, while the other 99 flaws are already regis-
tered in CVE [35]. We have already started the process of
vulnerability disclosure and contacting the developers.

Overall, DEKANT had both high accuracy and precision.
These results are very similar to the ones of the first set,
demonstrating that the tool is capable of detecting vulner-
abilities and of classifying them correctly independently of

TABLE 6: Slices in open source software with vulnerabilities
discovered by DEKANT.

Web application Version Files LoC Classif. Vul. classes
Vul FP SQLI XSS

60CycleCMS 2.5.2 62 40,398 11 2 9
AMSS++ 4.31 688 232,869 3811 58 1480 2331
CandidATS 2.1.0 1,293 303,400 50 10 15 35
eLection 2.0 4 1,070 0 0
GUnet OpenEclass E-learning 1.7.3 592 164,025 127 15 5 122
Persian VIP 1.0 16 2,223 17 13 4
rConfig 3.9 235 91,167 13 8 2 11
YzmCMS 5.5 161 26,199 8 1 8

Total 3,051 861,351 4,037 92 1,525 2,512

their classes. Given the results we obtained with plugins
and web applications, questions 1 and 2 have an affirmative
response.

8.2 Comparison with Plugin Analysis Tools
The section tests plugin analysis tools, namely WAPe [27]
and phpSAFE [36], and compares them to DEKANT. The
two tools implement taint analysis in a diverse manner,
but still with the aim of tracking data that flows from the
entry points to the sensitive sinks. WAPe is an extension
of WAP, and since it is highly configurable, we could set
it up with the same knowledge about WordPress functions
as DEKANT. phpSAFE only looks for SQLI and XSS vul-
nerabilities in WordPress plugins. Therefore, to make the
comparison among tools fair, we decided to consider only
these two classes in the evaluation, and accounted the slices
with other bugs as not vulnerable. The experiments are
based on the 25 plugins previously presented, which have
a total of 471 slices (the 455 slices of Section 8.1.1 plus 16
extra slices that were extracted by the other two tools). The
results are summarized in Table 7.

DEKANT evaluates 455 slices (columns 5-8) and outputs
252 of them as potentially vulnerable to SQLi and XSS. Out
of this group, 247 of them have real bugs and 5 are FPs. The
remaining 203 slices are correctly classified as not vulnera-
ble. While processing the results, we observed that: (i) there
are five vulnerabilities that only DEKANT is able to find; (ii)
a few slices with bugs are not collected by DEKANT, which
inevitably leads to FNs. This last observation confirms the
fundamental role of the slice extractor in these tools, as it
gets the paths in the code that end up being inspected.

WAPe discovers 164 bugs but misses 99 (columns 9 to
13). The tool includes a false positive predictor, whose aim
is to look at the results of taint analysis and exclude bug
reports that are potentially invalid — these are called false
positives predicted (FPP). After analysis, six cases are deemed
FPP, leaving only one FPs. In the case of DEKANT, five
of these seven slices are placed in the non-vulnerable set.
WAPe and DEKANT extract 171 slices in common, but there
is one slice that is only obtained by the former tool. This slice
is correctly classified as vulnerable by WAPe (and causes a
FN in the other tools).

phpSAFE could only process 20 plugins (out of 25) and
four of them partially (columns 14 to 18). For this reason,
only 361 slices out of 471 are examined. Within the group

16

TABLE 7: Vulnerability discovery results with WordPress plugins for DEKANT, WAPe, and phpSAFE.

Plugin Version Files LoC DEKANT WAPe phpSAFE
SQLI XSS FP FN SQLI XSS FPP FP FN SQLI XSS FP PFP FN

Appointment Booking Calendar 1.1.7 6 2,955 3 4 1 3 1 3 3 4 2 14
Appointment Booking Calendar 1.3.39 16 4,735 3 4 1 1 6 3 4 6
Authorizer 2.3.6 164 159,023 2 2 1 1
Contact formgenerator 2.0.1 42 9,187 11 11 3 11
Contact formgenerator 2.1.82 47 9,753 10 3 10 3 3 25 79 10
Easy2map 1.2.9 16 3,193 1 1 1 8 10
Ecwid Shopping Cart 3.4.6 61 16,807 1 1 – – – – 1
Ecwid Shopping Cart 6.9.6 196 32,876 1 1 1 1 2 1
Gantry Framework 4.1.6 274 50,717 3 1 2 1 2
Gantry Framework 4.1.21 287 55,266 3 1 2 3 3 3
Google Maps Travel Route 1.3.1 10 1,692 1 2 1 1 2 1 7 10 2
Payment form for Paypal pro 1.0.1 10 3,920 2 2 2 19 2
Payment Form for PayPal Pro 1.1.64 13 4,379 2 1 2 1 1 2 19 2
ResAds 1.0.1 30 3,168 17 2 15 17
ResAds 2.0.3 31 3,496 13 3 10 13 6
Simple support ticket system 1.2 20 1,533 18 18 3 2 7 15
Simple support ticket system 1.3.6 24 2,040 13 4 13 3 1 11 17
The Cart Press eCommerce Shopping 1.4.7 220 47,114 8 17 8 17 – – – – 25
WP Easy Cart - eCommerce Shopping 3.2.3 623 126,448 13 6 13 6 – – – – 19
WP Marketplace 2.4.1 88 15,485 2 24 3 3 9 1 20 2 27 18 30
WC Marketplace 3.4.11 500 78,472 19 1 4 14 1 9 23 6 25
WP Shop 3.5.3 49 9,171 7 10 5 1 12 7 10 5 29
WP Shop 3.9.6 102 22,480 4 17 2 5 2 14 4 17 8 18
WP Simple e-Commerce Shopping Cart 2.2.5 92 21,003 2 1 2 1 – – – – 3
WP Web Scraper 3.5 89 8,116 3 3 – – – – 3

Total 3010 693029 95 152 5 16 80 84 6 1 99 23 128 125 253 112

of analyzed slices, there are 151 vulnerabilities that are
found and 112 that are missed. However, phpSAFE finds
three errors that no other tool is able to discover. The 125
FPs are caused by the inclusion of sanitization and input
change functions in the slices, such as substr and preg replace
from PHP and esc attr, esc html and prepare from WordPress
(the last one protects a SQL statement from SQLI attacks,
providing similar functionality as prepared statements).

phpSAFE scans 253 extra slices (aside from the 471
group), which are labeled as possible false positives (PFP) in
our evaluation. These cases are associated with parts of the
code where the results of SQL queries are used in some sink
(e.g., to embed database content in a web page returned
to a browser). The tool considers any of these results as
malicious input, independently of the type of query (e.g., an
INSERT or UPDATE SQL command) and the sanitization
of query’ parameters. In addition, the tool does not seem
to correlate these queries with the ones that insert data in
the database, and therefore it is difficult to conclude that
these slices have any real problem. Therefore, due to this
ambiguity, we keep these slices separate from the rest.

TABLE 8: Evaluation metrics of DEKANT, WAPe, phpSAFE,
PhpMinerII, and NAVEX-f for the detection of SQLI and XSS.

Metric Plugins WebApps – Data mining WebApps – CPG
DEKANT WAPe phpSAFE DEKANT WAPe PhpMiner II DEKANT NAVEX-f

acc 0.96 0.79 0.50 0.98 0.97 0.78 0.97 0.04
pr 0.98 0.99 0.58 0.98 0.96 0.57 0.98 0.65
fpr 0.03 0.01 0.58 0.006 0.01 0.07 0.65 0.35
fnr 0.06 0.38 0.45 0.08 0.10 0.72 0.005 0.98
acc: accuracy; pr: precision; fpr: false positive rate; fnr: false negative rate
CPG: Code Property Graphs

Table 8 has the metrics results for the three tools
(columns 2-4). DEKANT is superior with the highest com-
bined accuracy and precision and low FP and FN rates.
WAPe is second, being the tool with the lowest FP rate and
the second highest FN rate. phpSAFE has the worst per-
formance, with significantly lower accuracy and precision.
Notice that the 253 PFPs of phpSAFE are disregarded from

the calculations. Based on results we got, we can answer
question 3 positively.

8.3 Comparison with Standard Classifier Tools

There are no recent tools in the literature that apply ma-
chine learning, such as deep learning or NLP techniques,
to discover vulnerabilities in PHP code. The tools men-
tioned in Section 11 resorting deep learning are dedicated
to C programs (e.g., VulDeePecker [20], Devign [37], and
Chucky [38]), in which their bugs are different than those in
web applications. A few other tools have implemented data
mining mechanisms for tasks related with bug discovery in
PHP, namely WAPe and PhpMinerII [22], [23]. WAPe and
PhpMinerII classify slices by resorting to data mining with
standard classifiers, which do not consider order. WAPe
obtains the slices with taint analysis and then predicts if they
are FPs or TPs with the classifiers, with the aim of reducing
the alerts that are generated by mistake. PhpMinerII uses
data mining to find out if slices hold attributes that make
them look vulnerable, without specific concerns about false
positives. This tool handles only SQLI and reflected XSS
vulnerabilities.

Since PhpMinerII is not configurable with information
about WordPress, and consequently it would perform much
worse with plugins, we opted to experiment with the first
set of 13 application packages.

We observed that the various tools (from this section)
survey different groups of slices because of their specific
implementation of the slice extractor. Therefore, we decided
to create a superset with all slices that could be captured
based on the outputs of the tools, which contains 1852 slices.
This set was then manually examined to determine which
slices are vulnerable, and it serves as a ground truth. Overall
there are 541 slices with vulnerabilities (117 SQLI, 333 XSS,
and 91 others) and 1311 slices without problems. This sec-
ond group was divided in a few subsets, namely, slices with
sanitized input, slices with validated or modified input, and

17

TABLE 9: Comparison of results between DEKANT, WAPe, and PhpMinerII with open source projects.

Web application DEKANT WAPe PHPMiner II
SQLI XSS others FP FN SQLI XSS others FPP FP FN SQLI XSS FP FN

Admin Control Panel Lite 2 9 72 1 9 72 8 1 9 23 1 49
Clip Bucket 10 12 3 9 10 12 2 4 9 9 20
Clip Bucket 4 10 12 3 9 4 10 12 2 4 9 3 9 17 1
Ldap address book 39 1 36 1 2 3 39
Minutes 9 1 5 6 1 8 5 7 9
Mle Moodle 5 1 5 5 1 3 5 5 27
Php Open Chat 10 1 9 1 1 9 7
Pivotx 1 3 3 1 3 9 3 3 1
Play sms 5 7 5 2 7 7 12
RCR AEsir 9 4 9 4 1 3 6
SAE 61 65 22 5 61 65 20 10 2 8 2 118
Tomahawk Mail 2 1 2 1 3 1 1 2
vfront 32 68 34 2 32 68 34 24 2 1 96

Total 117 295 91 14 38 114 291 89 54 23 47 12 83 95 320

slices without external sources (i.e., without entry points)
but with a sensitive sink. This last group was provided by
PhpMinerII and we designate it as the no-source subset.

8.3.1 All Vulnerability Classes

A summary of the experimental results is included in Ta-
ble 9. The vulnerabilities are distributed by classes SQLI,
XSS and others, to facilitate the assessment of alternative
tools that only address specific bugs (like PhpMinerII).
Columns 2 to 6 are about DEKANT, displaying a total of
503 identified bugs. Notice that there are 34 more FNs than
in Table 5 because now we are covering a larger number of
slices, some of which are not extracted by DEKANT. The
next six columns display WAPe’s results. WAPe reports less
vulnerabilities and a few more FPs and FNs.

With regard to false positives, DEKANT judges correctly
as not vulnerable the 71 validated and/or changed slices
(i.e., column VC in Table 5) but WAPe just predicts 48 of
them as FPP. Even though WAPe handles a considerable
number of symptoms to reduce mistakes, there is a lack of
attribute relation verification that induces erroneous deci-
sions — the tool only checks if attributes exist in a slice but
does not have a way to relate them.

The difference in false negatives between the tools is
also explained by the same reason, plus the importance
of considering the order of the code elements in the slice.
In particular, a misclassification can occur when there is
a concatenation of tainted with untainted variables (i.e.,
which were validated or modified); this causes the data min-
ing classifier to find symptoms related with validation and
outputs the slices as FPs. DEKANT implements a sequence
model that takes into account how the code elements appear
in the slice, prevailing in these situations.

Table 10 sums up de evaluation, combining the confu-
sion matrix and metrics. The results are encouraging with
DEKANT performing a bit better than WAPe, namely be-
cause it shows superior FP and FN rates.

TABLE 10: Confusion matrix of DEKANT and WAPe for the
detection of all vulnerability classes.

Observed Metric DEKANT WAPe
DEKANT WAPe acc 0.97 0.96

Predicted Vul N-Vul Vul N-Vul pr 0.97 0.96
Vul 503 14 494 23 fpr 0.010 0.017

N-Vul 38 1297 47 1288 fnr 0.07 0.09
acc: accuracy; pr: precision; fpr: false positive rate; fnr: false negative rate

8.3.2 Just SQLI and XSS
This subsection only considers SQLI and reflected XSS for
a fair comparison with PhpMinerII. PhpMinerII does not
come trained when downloaded, and so we had to build
a dataset for that purpose. The training dataset was con-
structed by recreating the procedure explained in [22], [23],
where the WEKA package implemented the data mining
tasks [39]. The same classifiers were evaluated to select the
best. Overall, the C4.5/J48 classifier was chosen, with an
accuracy and precision close to 0.92.

Table 9 has the results for PhpMinerII. The tool obtains
1052 slices, where 219 are reported as vulnerable and 833
as not-vulnerable. Manually, we inspected these slices and
found out that only 604 were correctly labeled, 124 as
vulnerable and 480 as not-vulnerable. Consequently, the tool
generates 95 FP and 320 FN. This notable misclassification
is explained by various factors, such as missing validations
and string modifications of inputs, and not taking into
account the order of code elements. In addition, some of
the slides belong to the no-source subset and they lead
necessarily to invalid alarms (as there is no entry point to
be maliciously exploited).

DEKANT outputs 412 vulnerabilities and 8 incorrect
reports (out of the 14 shown in table). It also misses 38 slices
with bugs (out of the 38 shown in table). WAPe classifies 405
vulnerabilities, but with 16 FPs (of the 23 presented in table)
and 47 FNs (out of the 47). Only 82 of the 124 identified
bugs by PhpMinerII are also flagged as being vulnerable
by DEKANT and WAPe. This means that the 42 remaining
vulnerable slices justify the increase of FN in the two tools.

Table 8 displays the calculated metrics when only SQLI
and XSS are contemplated. DEKANT and WAPe surpass
PhpMinerII, exhibiting higher quality values for all metrics.
Both DEKANT and WAPe have an excellent accuracy and
precision, but the former is superior with 0.98 on both
metrics. In addition, DEKANT has better rates for false
positives and false negatives. Therefore, we can answer
question 4 positively, based on the results we obtained from
both experiments above.

8.4 Comparison with Code Property Graph Tools
There are two recent tools that explore code property graphs
and taint analysis to locate vulnerabilities in PHP, namely
Joern-php5 and NAVEX6. They perform traversal graphs

5. https://github.com/octopus-platform/joern/
6. https://github.com/aalhuz/navex

18

to extract path-findings (i.e., data flows). Traversal graphs
apply a taint analysis bottom-up approach, i.e., they identify
sensitive sinks and then perform a backtrack taint analysis
to extract data flows and determine if they start with an
entry point. Such traversals are written in Gremlin [40], a
graph traversal language able to perform queries over a
graph database, such as Neo4j [41]. Both tools contain the
joernsteps API to create the queries more easily, being built
for Joern-php and later enhanced in NAVEX.

For Joern-php, we tried to contact the authors in order
to reproduce the tool and use the queries employed in [42].
However, we did not get any answer. On the other hand,
NAVEX is reproducible and contains the queries [43], but
the mentioned API is not totally available, missing the two
fundamental and critical functions that do the taint analysis
and execute the queries. However, a fixed version of the tool
can be found at [44], thanks to an anonymous author, which
we will call NAVEX-f.

Therefore, our evaluation compares DEKANT with
NAVEX-f for the detection of SQLi and XSS vulnerabilities
while processing the second set of 8 application packages of
Section 8.1.2. To the effect, we built the traversal graphs for
both classes of flaws, which were configured with the sensi-
tive sinks, sanitization functions and entry points presented
in [43].

Similarly to what happened in Section 8.3, we observed
that NAVEX-f extracted different slices than those extracted
by DEKANT due the approach and code structure it uses.
Therefore, as we did in that section, we created a dataset
with all slices that were gathered by both tools, which
contains 4,198 slices, with 20 of them being common to
both tools. We analyzed manually these slices to find out
which are vulnerable, and the results serve as a ground
truth. Overall there are 4,057 vulnerable slices (1,527 SQLI,
2,530 XSS) and 142 that are correct.

TABLE 11: Slices in open source software with zero-day
vulnerabilities and bugs disclosed in the past, analyzed by
DEKANT and NAVEX-f.

Web application Ver DEKANT NAVEX-f
SQLI XSS FPl FN SQLI XSS FPl FN

60CycleCMS 2.5.2 2 9 3 1 5 3 8
AMSS++ 4.31 1480 2331 58 – – – 3811
CandidATS 2.1.0 15 35 10 15 35 10
eLection 2 20
GUnet OpenEclass E-learning 1.7.3 5 122 15 1 127
Persian VIP Download Script 1 13 4 8 15 8 3 2
rConfig 3.9 2 11 8 9 11 7 11
YzmCMS 5.5 8 1 5 8

Total 1,525 2,512 92 20 31 59 49 3,967

The results of the evaluation are displayed in Table 11.
Columns 3 to 6 are dedicated to DEKANT, where the first
three of them are a copy of Table 6. Therefore, DEKANT
classified as vulnerable 4,037 slices correctly and 92 slices
incorrectly (FP), and missed 20 slices (FN), which these
were only extracted by NAVEX-f. NAVEX-f results are dis-
played in the last four columns of the table. The tool was
unable to process AMSS++, the application that had more
slices and was the most vulnerable. It gathered 139 slices,
meaning that it generated this amount of alerts. Out of
this group, 90 correspond to slices with real bugs and the
remaining 49 to false alerts. These FPs occur essentially
in slices with functions that encode data (e.g., json encode)

and with connections to the database where the name of
the database is an entry point, even when the queries are
static (queries without variables). This demonstrates the
importance of the identification of false positive symptoms
and of evaluating the slices taking into consideration the
order of code elements (like DEKANT does). NAVEX-f does
not catch 3,967 vulnerabilities (FN) from the ground truth,
but 3,811 are associated with the package that the tool was
not able to process.

Table 8 presents the metrics for these tools (last two
columns). The results corroborate the promising detection
capabilities of DEKANT, as the tool that has the best accu-
racy and precision and the lowest FN rate. Regarding FP,
the tool presents the highest rate due the 58 FPs found in
that most vulnerable application. NAVEX-f had the worst
rates due to missing that application. However, if we omit
such package from the comparison, DEKANT still has better
results than NAVEX-f, and its FP rate decreases significantly.
Given these observations, question 5 has a positive answer.

9 THREATS TO VALIDITY

This section presents the threats to validity following the
four main categories presented by Cook and Campbell [45].
• Internal Validity. The process design conducted in our

experiments was aimed at validating and evaluating
our model. For this and to reach the highest level
of confidence of the experimental results, and thus
to minimize the primary threat to internal validity –
application selection –, we chose two types of software
(plugins and web applications), purposefully vulner-
able (i.e., with publicly registered vulnerabilities) and
not-vulnerable (i.e., with no vulnerability repositories
records). These applications were also carefully selected
from various contexts (e.g., contacts, market), and with
different code sizes and complexity (e.g., ranges from
less than 1000 LoC to well over 100,000 LoC). Validation
was done on the vulnerable software to determine that
the model was able to detect the known vulnerabilities,
and the assessment was made with the not-vulnerable
software to check the model’s ability to discover previ-
ously unknown (zero-day) vulnerabilities. With the lat-
ter software, the model was also compared with other
tools, from different categories, to check if it outper-
formed them. Furthermore, for the construction of the
ground-truth datasets, throughout the experiments, we
did not consider only the slices extracted by DEKANT,
but all the slices returned by the different tools used
in the experiments. With these choices, we attempted
to enhance completeness of data and relevant factors,
considering the confidence in the outcomes obtained in
the experiments with the proposed model.

• Construction Validity. To minimize these types of threats,
namely the appropriateness of data, experiments bias
and measurement method, we manually constructed
the corpus, which the model learns and uses to detect
vulnerabilities. In addition, the ground-truth datasets
were manually checked and labeled as vulnerable or
not-vulnerable. Also, we assessed the corpus in Section
6 before the experimental evaluation of Section 8, as the
reliability of the latter depends on the completeness of

19

the former. The summary of this assessment, shown in
Table 3, indicated that the corpus contains appropriate
and enough data to avoid experiment bias of the model,
which in fact was shown in Section 8 and hence all
research questions had a positive response. However,
there is always the possibility that the performance of
the model may decrease if the PHP slices to be classified
contain functions that are not recognized by any token.
We envisage two threat cases: (1) slices with classes of
vulnerabilities not addressed by the model (and corpus)
which may contain sensitive sinks that are not recog-
nized by the token ss; (2) any other PHP function not
associated with a token, which is not a sensitive sink or
a sanitization/validation, but that may be relevant for
the correct vulnerability discovery. In both situations,
the ISL translator will ignore such functions since it
has no knowledge about them, and, consequently, the
model will likely behave inappropriately and classify
incorrectly. These cases can be resolved by updating
the tokens with the new functions (sinks and other
functions) and by extending the corpus with slices from
such classes of vulnerabilities. However, until discover-
ing the symptoms of the threats that affect the model
and making the necessary updates to the corpus and
tokens, the results of the model will remain inaccurate.

• Conclusion Validity. Our dataset of 6,521 slices was ob-
tained from the 46 plugins and web applications. More
specifically, 471 slices were extracted from plugins,
1,852 slices were provided from 13 known vulnerable
web applications, and 4,198 slices were collected from
8 web applications that we did not know their security
state. This number of slices is quite high, minimizing
the threats to the reliability of the derived conclusions.

• External Validity. The results of the experiments con-
ducted in Section 8 showed that DEKANT was able to
process 46 different types of applications (plugins and
web applications) with different characteristics. The
metrics of precision and accuracy, obtained from the
results, presented values close to 1. Hence, based on the
characteristics and metrics, the risk of low generaliza-
tion is reduced in terms of software that the DEKANT
can externally process. Another aspect that our evalua-
tion allowed was the possibility of DEKANT processing
slices extracted by other tools. Again, this reduces the
risk of low generalization as traditional static analysis
tools can act as slice collectors of DEKANT.

10 REAL-WORLD APPLICABILITY OF DEKANT

DEKANT is a static analysis tool as it looks for vulnera-
bilities in the source code without executing it. The tool
has two main parts: one programmed and one learned. The
first corresponds to the slice collector that does what other
static analysis tools do, i.e., it parses code and extracts slices
that start at entry points and end at a sensitive sink. The
second uses an HMM, the sequence model we propose,
configured with the knowledge of vulnerabilities contained
in the corpus, to determine whether the slices are vulnerable
or not. The model considers not only the presence of the
code elements belonging to the slices but also the order in

them and the relations between them, minimizing hence the
FP and FN rates.

DEKANT can be extended for other languages and some
of its modules can be exchanged and/or extended. To show
that this is the case, we discuss how it can be adapted and
applicable to different real-world scenarios, for PHP and
other server-side languages.

10.1 PHP Language

The current implementation of DEKANT is for PHP and it
can be used to inspect real web applications and plugins.
There are three areas where improvements can occur:
• Extend the PHP code elements. Add extra code elements

to the third column of Table 1 that are associated with
the tokens. To do so, the user needs to insert the ele-
ments into the correct configuration files. For example,
suppose a new entry point is defined for PHP, the user
can add it to the configuration file of the input token.

• Extend the corpus. Add more annotated sequences of
observations to the corpus. In this case, the task may
be more time-consuming, as the user needs to analyze
which sequences are currently included in the corpus
and then attach the new ones. But a good way to
accomplish this task is to incrementally append the
slices that the tool will misclassify. This involves the
effort of manually checking whether the tool is wrong,
adding the slices to the corpus, after translating them
to ISL and annotating them, and then removing the
duplicated sequences (see Section 6.1).

• Extend with new tokens. Define new tokens that are
not present in the first column of Table 1. This task,
depending on the type of token the user wants to
create, can be harder to implement, as it may require
internal tool modifications, namely, the grammar, the
slice translator and the vulnerability detector (i.e., to
the extensions we made to the Viterbi algorithm), and
requires the inclusion in the corpus of annotated se-
quences of observations related to the token.

Despite these types of improvements that can be made,
we believe that the third is the most improbable to be
necessary, as the tool showed high precision and accuracy
when assessed with different types of applications. In con-
trast, the other two improvements are more likely to be
done, although the current corpus is quite reliable based
on the results we obtained in Section 6.2 and the analysis
we made to PHP functions to identify the most relevant
code elements. However, as PHP continues to evolve, new
releases may contain new functions that may be related to
vulnerabilities, requiring improvements at these two levels.

10.2 Other Server-Side Languages

DEKANT can be adapted to process other server-side lan-
guages, such as Java, Python and ASP. The easiest approach
to do this is by keeping the current tokens, changing the
code elements presented in the third column of Table 1,
and making the necessary adjustments in the slice translator
module to handle the new language. For example, if we
intend to adapt the tool to Java, the following steps would
have to be performed: (1) analyze the Java code elements to

20

map them to the existing tokens; (2) create the correspond-
ing configuration files for Java; (3) make the adjustments in
the slice translator module. For example, for the slice trans-
lator to verify whether a Java instruction is an assignment,
instead of checking if it starts with the $ character (as in
the case of PHP), it will check if the = operator succeeds
the first code element of the instruction. Note that with this
process, no new corpus will be needed to support the new
programming language, since the sequences of the corpus
are made up of tokens (not code elements).

11 RELATED WORK

This section summarizes the main related work in the areas
of static analysis, code property graphs and machine learn-
ing for the detection of vulnerabilities.

11.1 Detecting vulnerabilities with static analysis
Static analysis tools search for vulnerabilities in the applica-
tions usually by processing the source code (e.g., [11], [12],
[46], [47], [10], [13], [42]). Many of these tools perform taint
analysis, tracking user inputs to determine if they reach
a sensitive sink (i.e., a function that could be exploited).
CQUAL [46] and Splint [48] were the first to implement this
technique (both for the C language), using two qualifiers –
tainted and untainted – to manually annotate certain parts
of the program (e.g., function parameters or return values)
where untrusted / trusted data may flow. User inputs were
followed through the code to find out if tainted data would
arrive to a parameter labeled as untainted. If this happened,
an alarm would be raised.

Pixy [12] was one of the first tools to automate this
kind of analysis on PHP applications. Later on, RIPS [10]
extended this technique with the ability to process more
advanced PHP constructs (e.g., objects). phpSAFE [11], [36]
is a recent solution that does taint analysis to look for
flaws in CMS plugins (e.g., WordPress plugins). Besides
taking into account the sanitization functions from PHP, it
is configured to recognize CMS functions handling entry
points, sanitization/validation and sensitive sinks.

Static analysis tools tend to generate many false posi-
tives and false negatives due to the complexity of coding
knowledge about vulnerabilities. WAP [13], [27] also does
taint analysis, but aims at reducing the number of false
positives by resorting to data mining, besides also correcting
automatically the located bugs. WAPe [27] is an extension
of WAP, which allows the user to configure the detection of
new vulnerability classes.

11.2 Detecting vulnerabilities with code property
graphs
Yamaguchi et al. [49] presented a method for a more precise
static analysis that explores a data structure called code
property graph. They combine different source code repre-
sentation graphs, such as abstract syntax trees (AST), control
flow graphs (CFG) and program dependence graphs (PDG),
in a single graph, and then query the graph to extract data
flows and analyze them in order to discover vulnerabilities.

Joern [49], [50] was the first tool that implemented this
approach for C programs. Later, it was extended for PHP

programs, becoming the Joern-php tool [42]. NAVEX [43] is
a tool that improved the latter and added other features, but
not related to code property graphs. However, the vulnera-
bility detection for these three tools is made manually over
the outputted data flows.

In this paper, we propose a novel approach which, unlike
these works of static analysis and code property graphs,
does not involve programming information about bugs, but
instead extracts this knowledge from annotated code sam-
ples and thus learns to find the vulnerabilities automatically.
The slices extracted from the source code, i.e., excerpts of
code that begin in entry points and end in a sensitive sink,
are processed by the DEKANT tool to discover if they are
vulnerable or not, i.e., contain or not a vulnerability.

11.3 Vulnerabilities and machine learning

Machine learning has been used in a few works to measure
the quality of software by collecting a series of attributes
that reveal the presence of software defects [51], [52]. Other
approaches resort to machine learning to predict if there
are vulnerabilities in a program [53], [54], [55], which is
different from identifying precisely the bugs, something that
we do in this paper. To support the predictions they employ
various features, such as past vulnerabilities and function
calls [53], or a combination of code-metric analysis with
metadata gathered from application repositories [55].

In particular, PhpMinerI and PhpMinerII predict the
presence of vulnerabilities in PHP programs [22], [23], [56].
The tools are first trained with a set of annotated slices
that end at a sensitive sink (but do not necessarily start
at an entry point), and then they are ready to identify
slices with errors. WAP and WAPe are different because
they use machine learning and data mining to predict if a
vulnerability detected by taint analysis is actually a real bug
or a false alarm [13], [27]. In any case, PhpMiner and WAP
tools employ standard classifiers (e.g., Logistic Regression
or a Multi-Layer Perceptron) instead of structured predic-
tion models (i.e., a sequence classifier) as we propose here.

There are a few static analysis tools that implement ma-
chine learning techniques. Chucky [38] discovers vulnerabil-
ities by identifying missing checks in C language software.
The tool does taint analysis to locate the checks between
entry points and sensitive sinks, applies text mining to dis-
cover the neighbors of these checks, and then builds a model
to see if there are checks that might be absent. Soska et
al. aim to predict whether a website will become malicious
in the future, before it is actually compromised [57]. Scan-
dariato et al. [58] performs text mining to predict vulnerable
software components in Android applications. SuSi [59]
employs machine learning to classify sources and sinks in
the code of Android API.

Recently, deep learning has started to be applied in
the vulnerability detection field [60], [61], [20], [37], [17],
[18], essentially in finding C/C++ bugs [20], [37]. VulDeeP-
ecker [20] resorts to code gadgets to represent parts of C
programs and then transforms them into vectors. A neural
network system then determines if the target program is
vulnerable due to buffer or resource management errors.
Russell et al. [61] developed a vulnerability detection tool
for C/C++ based on features learning from a dataset and

21

artificial neural network. There are very few models for
finding faults in web applications [17], [18], [19], which
follow a something similar approach for finding C/C++
bugs.

Deep learning requires big datasets for training the
models and is not able to identify and explain the presence
of vulnerabilities it classifies as such, due to its black-box
nature which hides its internal logic and makes it difficult
to understand the classification operation [62]. To attain that,
Devign [37] combines traditional graph code representa-
tions (e.g., AST and CFG) and Natural Code Sequence in
a same graph. However, the approach creates an overly
complicated representation of the code though. Moreover,
its code and dataset are unavailable to the public and the
results are questionable, considering the outdated tools they
compare the model with.

Our approach works differently from all these ap-
proaches. It extracts PHP slices, but contrary to the others
it translates them into a tokenized language to be processed
by a HMM. While tools in the literature collect attributes
from a slice and classify them without considering ordering
relations among statements, DEKANT also does classifica-
tion but takes into account the place in which code elements
appear in the slice and shows the classification it makes for
every code element it processes. Such form of classification
assists on a more accurate and precise detection of bugs.

12 CONCLUSION

The paper explores a new approach to detect web ap-
plication vulnerabilities inspired by NLP in which static
analysis tools learn to detect vulnerabilities automatically
using machine learning. Whereas in classical static analysis
tools it is necessary to code knowledge about how each
vulnerability is detected, our approach obtains knowledge
about vulnerabilities automatically.

The approach uses a sequence model (HMM) that, first,
learns to characterize vulnerabilities from a corpus com-
posed of sequences of observations annotated as vulnerable
or not, then processes new sequences of observations based
on this knowledge, taking into consideration the order in
which the observations appear.

The model was implemented in the DEKANT tool.
The tool was evaluated with WordPress plugins and real
software packages, and compared with five tools from di-
verse vulnerability detection techniques. Overall, the results
showed that the tool presents promising capabilities of
detection and identification of vulnerabilities.

Acknowledgments
This work was partially supported by the national
funds through FCT with reference to SEAL project
(PTDC/CCI-INF/29058/2017, LISBOA-01-0145-FEDER-
029058, POCI-01-0145-FEDER-029058), LASIGE Research
Unit (UIDB/00408/2020 and UIDP/00408/2020), and
INESC-ID Research Unit (UIDB/50021/2020).

REFERENCES

[1] J. Williams and D. Wichers, “OWASP Top 10 2017 – The Ten Most
Critical Web Application Security Risks,” 2017.

[2] Imperva, “The state of web application vulnerabilities in 2019,”
Jan. 2020.

[3] BBC Technology, “Millions of websites hit by Drupal hack attack,”
Oct. 2014, http://www.bbc.com/news/technology-29846539.

[4] The Hacker News, “Wordpress plugin used by 300,000+
sites found vulnerable to sql injection attack,” Jun. 2017,
https://thehackernews.com/2017/06/wordpress-hacking-sql-
injection.html.

[5] threatpost, “Million-plus wordpress sites exposed by vulnerable
plugin,” 2017, https://threatpost.com/million-plus-wordpress-
sites-exposed-by-vulnerable-plugin/123983/.

[6] The Hacker News, “It’s 3 billion! yes, every single ya-
hoo account was hacked in 2013 data breach,” Oct. 2017,
https://thehackernews.com/2017/10/yahoo-email-hacked.html.

[7] Help Net Security, “Hacker breached 60+ unis,
govt agencies via SQL injection,” Feb. 2017,
https://www.helpnetsecurity.com/2017/02/16/hacker-govt-
agencies-via-sql-injection/.

[8] Sink, “XSS attacks: The next wave,” Jun. 2017,
https://snyk.io/blog/xss-attacks-the-next-wave/.

[9] Imperva, “The state of web application vulnerabilities in 2017,”
Dec. 2017.

[10] J. Dahse and T. Holz, “Simulation of built-in PHP features for
precise static code analysis,” in Proceedings of the 21st Network and
Distributed System Security Symposium, Feb 2014.

[11] J. Fonseca and M. Vieira, “A practical experience on the impact of
plugins in web security,” in Proceedings of the 33rd IEEE Symposium
on Reliable Distributed Systems, Oct. 2014, pp. 21–30.

[12] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for
static detection of web application vulnerabilities,” in Proceedings
of the 2006 Workshop on Programming Languages and Analysis for
Security, Jun. 2006, pp. 27–36.

[13] I. Medeiros, N. F. Neves, and M. Correia, “Detecting and remov-
ing web application vulnerabilities with static analysis and data
mining,” IEEE Transactions on Reliability, vol. 65, no. 1, pp. 54–69,
March 2016.

[14] J. Dahse and T. Holz, “Experience report: An empirical study
of PHP security mechanism usage,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, Jul 2015,
pp. 60–70.

[15] H. Hanif, M. H. N. Md Nasir, M. F. Ab Razak, A. Firdaus, and N. B.
Anuar, “The rise of software vulnerability: Taxonomy of software
vulnerabilities detection and machine learning approaches,” Jour-
nal of Network and Computer Applications, vol. 179, p. 103009, 2021.

[16] NIST, “SAMATE - Software Assurance Metrics and Tool Evalua-
tion,” https://samate.nist.gov/.

[17] Y. Fang, S. Han, C. Huang, and R. Wu, “TAP: A static analysis
model for php vulnerabilities based on token and deep learning
technology,” PLoS One, vol. 14, no. 11, Nov 2019.

[18] A. Fidalgo, I. Medeiros, P. Antunes, and N. Neves, “Towards a
deep learning model for vulnerability detection on web appli-
cation variants,” in 13th IEEE International Conference on Software
Testing, Verification and Validation Workshops, Oct. 2020, pp. 465–
476.

[19] R. Rabheru, H. Hanif, and S. Maffeis, “A hybrid graph neural
network approach for detecting PHP vulnerabilities,” CoRR, vol.
abs/2012.08835, Dec. 2020.

[20] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability
detection,” in Annual Network and Distributed System Security Sym-
posium, Feb. 2018.

[21] C. Li, Y. Wang, C. Miao, and C. Huang, “Cross-site scripting
guardian: A static xss detector based on data stream input-output
association mining,” Applied Sciences, vol. 10, no. 14, Jul. 2020.

[22] L. K. Shar and H. B. K. Tan, “Mining input sanitization patterns
for predicting SQL injection and cross site scripting vulnerabili-
ties,” in Proceedings of the 34th International Conference on Software
Engineering, 2012, pp. 1293–1296.

[23] ——, “Predicting common web application vulnerabilities from
input validation and sanitization code patterns,” in Proceedings of
the 27th IEEE/ACM International Conference on Automated Software
Engineering, 2012, pp. 310–313.

[24] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[25] W. W. T. Surveys, https://w3techs.com/technologies/overview/
programming language/.

22

[26] I. Medeiros, N. F. Neves, and M. Correia, “DEKANT: a static
analysis tool that learns to detect web application vulnerabilities,”
in Proceedings of the 25th International Symposium on Software Testing
and Analysis, Jul. 2016.

[27] ——, “Equipping WAP with weapons to detect vulnerabilities,” in
Proceedings of the 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2016.

[28] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state markov chains,” The Annals of Mathematical
Statistics, vol. 37, no. 6, pp. 1554–1563, 1966.

[29] D. Jurafsky and J. H. Martin, Speech and Language Processing.
Prentice Hall, 2008.

[30] N. A. Smith, Linguistic Structure Prediction. Graeme Hirst, 2011.
[31] A. Viterbi, “Error bounds for convolutional codes and an asymp-

totically optimum decoding algorithm,” IEEE Transactions on Infor-
mation Theory, vol. 13, no. 2, pp. 260–269, Apr. 1967.

[32] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine Learning Research, vol. 7, pp. 1–30, Dec
2006.

[33] M. O. Rabin and D. Scott, “Finite automata and their decision
problems,” IBM Journal of Research and Development, vol. 3, no. 2,
pp. 114–125, 1959.

[34] WordPress, https://wordpress.org/.
[35] CVE, http://cve.mitre.org.
[36] P. Nunes, J. Fonseca, and M. Vieira, “phpSAFE: A security analysis

tool for OOP web application plugins,” in Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Jun. 2015.

[37] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program
semantics via graph neural networks,” in Proceedings of the 33rd
Conference on Advances in Neural Information Processing Systems,
Dec. 2019, pp. 10 197–10 207.

[38] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing missing checks in source code for vulnerability discov-
ery,” in Proceedings of the 20th ACM SIGSAC Conference on Computer
Communications Security, Nov. 2013, pp. 499–510.

[39] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed. Morgan Kaufmann,
2011.

[40] Apache, “Apache tinkerpop. The gremlin graph traversal machine
and language.” https://tinkerpop.apache.org/gremlin.html.

[41] Neo4j., https://neo4j.com.
[42] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi, “Ef-

ficient and flexible discovery of PHP application vulnerabilities,”
in Proceedings of the 2017 IEEE European Symposium on Security and
Privacy (EuroS&P), Apr. 2017, pp. 334–349.

[43] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan,
“NAVEX: Precise and scalable exploit generation for dynamic
web applications,” in Proceedings of the 27th USENIX Security
Symposium, Aug. 2018, pp. 377–392.

[44] NAVEX-fixed., https://github.com/UUUUnotfound/Navex fixed.
[45] T. D. Cook and D. T. Campbell, Quasi-Experimentation: Design and

Analysis Issues for Field Settings. Houghton Mifflin, 1979.
[46] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting

format-string vulnerabilities with type qualifiers,” in Proceedings
of the 10th USENIX Security Symposium, Aug. 2001.

[47] S. Son and V. Shmatikov, “SAFERPHP: Finding semantic vulnera-
bilities in PHP applications,” in Proceedings of the ACM SIGPLAN
6th Workshop on Programming Languages and Analysis for Security,
2011.

[48] D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE Software, pp. 42–51, Jan/Feb
2002.

[49] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and dis-
covering vulnerabilities with code property graphs,” in Proceedings
of the 2014 IEEE Symposium on Security and Privacy, May 2014, pp.
590–604.

[50] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic
inference of search patterns for taint-style vulnerabilities,” in
Proceedings of the 2015 IEEE Symposium on Security and Privacy, May
2015, pp. 797–812.

[51] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and evalu-
ate fault prediction models,” Journal of Systems and Software, vol. 83,
no. 1, pp. 2–17, 2010.

[52] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485–496, 2008.

[53] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, 2007, pp. 529–
540.

[54] J. Walden, M. Doyle, G. A. Welch, and M. Whelan, “Security of
open source web applications,” in Proceedings of the 3rd Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment, 2009, pp. 545–553.

[55] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar, “VCCFinder: Finding potential vulnerabilities
in open-source projects to assist code audits,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15, Oct 2015, pp. 426–437.

[56] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining SQL injection
and cross site scripting vulnerabilities using hybrid program anal-
ysis,” in Proceedings of the 35th International Conference on Software
Engineering, 2013, pp. 642–651.

[57] K. Soska and N. Christin, “Automatically detecting vulnerable
websites before they turn malicious,” in Proceedings of the 23rd
USENIX Security Symposium, Aug. 2014, pp. 625–640.

[58] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Pre-
dicting vulnerable software components via text mining,” IEEE
Transactions on Software Engineering, vol. 40, no. 10, pp. 993–1006,
2014.

[59] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning ap-
proach for classifying and categorizing android sources and
sinks,” in Proceedings of the 2014 Network and Distributed System
Security Symposium (NDSS), Feb. 2014.

[60] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and
L. Mounier, “Toward large-scale vulnerability discovery using
machine learning,” in Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, Mar. 2016, p. 85?96.

[61] R. L. Russell, L. Y. Kim, L. H. Hamilton, T. Lazovich, J. A. Harer,
O. Ozdemir, P. M. Ellingwood, and M. W. McConley, “Automated
vulnerability detection in source code using deep representation
learning,” in Proceedings of the International Conference on Machine
Learning and Application (ICMLA), Dec. 2018.

[62] R. Shwartz-Ziv and N. Tishby, “Opening the black box of
deep neural networks via information,” 2017, arXiv preprint
arXiv:1703.00810.

Ibéria Medeiros is an Assistant Professor in
the Department of Informatics, at the Faculty of
Sciences of University of Lisbon (FCUL). She
is a member of the LASIGE research unit, and
the Navigators research group. Her research in-
terests are in software security, cybersecurity,
vulnerability and attack detection, and machine
learning. She is author of tools for software se-
curity and cybersecurity, which WAP (Web Ap-
plication Protection) is the most known and an
OWASP project. Currently, she is the principal

investigator of the SEAL national project and the XIVT European project,
and has been involved in international and national projects, including
the ADMORPH, DiSIEM, SEGRID, and MASSIF European projects,
and the REDBOOK national project. More information about her at
http://www.di.fc.ul.pt/∼imedeiros/.

23

Nuno Neves is Professor at the Department of
Computer Science, Faculty of Sciences of the
University of Lisboa. He is Head of the Depart-
ment, leads the Navigators research group and
he is on the scientific board of the LASIGE re-
search unit. His main research interests are in
security and dependability aspects of distributed
systems. Currently, he is investigator in several
projects, such as SEAL and uPVN. His work
has been recognized in several occasions, for
example with the IBM Scientific Prize and the

William C. Carter award. He is vice-chair of the IEEE Computer Society
TC on Dependable Computing and Fault Tolerance. More information
about him can be found at http://www.di.fc.ul.pt/∼nuno/.

Miguel Correia is Professor at Instituto Superior
Técnico (IST) of Universidade de Lisboa (ULis-
boa), and a Senior Researcher at INESC-ID in
the Distributed Systems Group (GSD). He has
been involved in several international and na-
tional research projects related to cybersecurity,
including the DE4A, BIG, SPARTA, QualiChain,
SafeCloud, PCAS, TCLOUDS, ReSIST, CRU-
TIAL, and MAFTIA European projects. He has
more than 200 publications and is Senior Mem-
ber of the IEEE. More information about him at

http://www.gsd.inesc-id.pt/∼mpc/.

24

