
Vulnerability Discovery with Attack Injection
João Antunes, Student Member, IEEE, Nuno Neves, Member, IEEE,

Miguel Correia, Member, IEEE, Paulo Verissimo, Fellow, IEEE, and Rui Neves

Abstract—The increasing reliance put on networked computer systems demands higher levels of dependability. This is even more

relevant as new threats and forms of attack are constantly being revealed, compromising the security of systems. This paper

addresses this problem by presenting an attack injection methodology for the automatic discovery of vulnerabilities in software

components. The proposed methodology, implemented in AJECT, follows an approach similar to hackers and security analysts to

discover vulnerabilities in network-connected servers. AJECT uses a specification of the server’s communication protocol and

predefined test case generation algorithms to automatically create a large number of attacks. Then, while it injects these attacks

through the network, it monitors the execution of the server in the target system and the responses returned to the clients. The

observation of an unexpected behavior suggests the presence of a vulnerability that was triggered by some particular attack (or group

of attacks). This attack can then be used to reproduce the anomaly and to assist the removal of the error. To assess the usefulness of

this approach, several attack injection campaigns were performed with 16 publicly available POP and IMAP servers. The results show

that AJECT could effectively be used to locate vulnerabilities, even on well-known servers tested throughout the years.

Index Terms—Testing and debugging, software engineering, test design, testing tools, experimental evaluation, fault injection, attack

injection.

Ç

1 INTRODUCTION

OUR reliance on computer systems for everyday life
activities has increased over the years, as more and

more tasks are accomplished with their help. The advance-
ments in software development have provided us with an
increasing number of useful applications with an ever-
improving functionality. These enhancements, however, are
achieved in most cases with larger and more complex
projects, which require the coordination of several teams.
Third party software, such as COTS components, is
frequently utilized to speed up development, even though
in many cases it is poorly documented and supported. In
the background, the ever-present trade-off between thor-
ough testing and time to deployment affects the quality of
the software. These factors, allied to the current develop-
ment and testing methodologies, have proven to be
inadequate and insufficient to construct dependable soft-
ware. Everyday, new vulnerabilities are found in what was
previously believed to be secure applications, unlocking
new risks and security hazards that can be exploited by
malicious adversaries.

The paper describes an attack injection methodology that
can be used for vulnerability detection and removal. It
mimics the behavior of an adversary by injecting attacks
against a target system while inspecting its execution to
determine if any of the attacks has caused a failure. The

observation of some abnormal behavior indicates that an
attack was successful in triggering an existing flaw. After
the identification of the problem, traditional debugging
techniques can be employed, for instance, by examining the
application’s control flow while processing the offending
attacks, to locate the origin of the vulnerability and to
proceed with its elimination.

The methodology was implemented in a tool called
AJECT. The tool was designed to look for vulnerabilities in
network server applications, although it can also be utilized
with local daemons. We chose servers because, from a
security perspective, they are probably the most relevant
components that need protection because they constitute
the primary contact points of a network facility. AJECT does
not need the source code of the server to perform the
attacks, i.e., it treats the server as a black box. However, in
order to be able to generate intelligent attacks, AJECT has to
obtain a specification of the protocol utilized in the
communication with the server.

To demonstrate the usefulness of our approach, we have
conducted 58 attack injection experiments with 16 e-mail
servers running POP and IMAP services. The main
objective was to investigate if AJECT could automatically
discover previously unknown vulnerabilities in fully devel-
oped and up-to-date server applications. Although the
number and type of target applications was not exhaustive,
they are nevertheless a representative sample of the
universe of the network servers. Our evaluation confirmed
that AJECT could find different classes of vulnerabilities in
five of the servers, and assist the developers in their
removal by providing the test cases, that is, the attack/
vulnerability/intrusion syndromes. These experiments also
lead to other interesting conclusions. For instance, we
confirmed the expectation that complex protocols are much
more prone to vulnerabilities than simpler ones since all
detected vulnerabilities were related to the IMAP protocol.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010 1

. J. Antunes, N. Neves, M. Correia, and P. Verissimo are with the Faculty of
Sciences, University of Lisboa, Bloco C6, Piso 3, Campo Grande, 1749-016
Lisboa, Portugal. E-mail: {jantunes, nuno, mpc, pjv}@di.fc.ul.pt.

. R. Neves is with the Instituto de Telecomunicações, Instituto Superior
Tecnico, Technical University of Lisbon, Torre Norte 9-Andar, Av. Rovisco
Pais, 1, 1049-001 Lisboa, Portugal. E-mail: rui.neves@tagus.ist.utl.pt.

Manuscript received 14 Oct. 2008; revised 2 Nov. 2009; accepted 18 Nov.
2009; published online 11 Dec. 2009.
Recommended for acceptance by K. Goseva and K. Kanoun.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2008-10-0339.
Digital Object Identifier no. 10.1109/TSE.2009.91.

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Additionally, based on the 16 e-mail servers, we found that
closed source applications appear to have a higher predis-
position to contain vulnerabilities (none of the open source
servers was found vulnerable whereas 42 percent of the
closed source servers had problems).

2 USING ATTACKS TO FIND VULNERABILITIES

Vulnerabilities are usually caused by subtle anomalies that
only emerge in such unusual circumstances that were not
even contemplated in test design. They tend to elude the
traditional software testing methods, mainly because con-
ventional test cases do not cover all of the obscure and
unexpected usage scenarios. Hence, vulnerabilities are
typically found either by accident or by attackers or special
tiger teams (also called penetration testers) who perform
thorough security audits. The typical process of manually
searching for new vulnerabilities is often slow and tedious.
Specifically, the source code must be carefully scrutinized for
security flaws or the application has to be exhaustively
experimented with several kinds of input (e.g., unusual and
random data, or more elaborate input based on previously
known exploits) looking for problems during its execution.

Fig. 1 shows a model of a component with existing
vulnerabilities. Boxes in the figure represent the different
modules or software layers that compose the component,
with the holes symbolizing access being allowed (as
intended by the developers or inadvertently through some
vulnerability). Lines depict the interaction between the
various layers. The same rationale can be applied recursively
to any abstraction level of a component, from the smallest
subcomponent to more complex and larger systems, so we
will use the terms component and system interchangeably.

The external access to the component is provided
through a known Interface Access, which receives the input
arriving, for instance, in network packets or disk files, and
eventually returns some output. Whether the component is
a simple function that performs a specific task or a complex
system, its intended functionality is, or should be, protected
by Input Data Validation layers. These additional layers of
control logic are supposed to regulate the interaction with
the component, allowing it to execute the service specifica-
tion only when the appropriate circumstances are present
(e.g., if the client messages are in compliance with the
protocol specification or if the procedure parameters are
within some bounds). In order to achieve this goal, these
layers are responsible for the parsing and validation of the

arriving data. The purpose of a component is defined by its
Implemented Functionality. This last layer corresponds to the
implementation of the service specification of the compo-
nent, i.e., it is the sequence of instructions that controls its
behavior to accomplish some well-defined objective, such as
responding to client requests according to some standard
network protocol.

By accessing the interface, an adversary may persistently
look for vulnerabilities by stressing the component with
unusual forms of interaction, such as sending wrong
message types or opening malformed files. These attacks
are malicious interaction faults against the component’s
interface [1]. A dependable system should continue to
operate correctly, even in the presence of these faults, i.e., it
should keep executing in accordance with the service
specification. However, if one of these attacks causes an
abnormal behavior of the component, it suggests the
presence of a vulnerability somewhere on the execution
path of its processing logic.

Vulnerabilities are faults caused by design, configura-
tion, or implementation mistakes, susceptible to being
exploited by an attack to perform some unintended and
usually illegal activity. The component, failing to properly
process the offending attack, enables the attacker to access
the component in a way unpredicted by the designers or
developers, causing an intrusion. This further step toward
failure is normally succeeded by the production of an
erroneous state in the system (e.g., a root shell). Conse-
quently, if nothing is done to handle the error (e.g., prevent
the execution of commands in the root shell), the system
will fail.

3 THE ATTACK INJECTION METHODOLOGY

The attack injection methodology adapts and extends
classical fault injection techniques to look for security
vulnerabilities. The methodology can be a useful asset in
increasing the dependability of computer systems because it
addresses the discovery of this elusive class of faults. An
attack injection tool implementing the methodology mimics
the behavior of an external adversary that systematically
attacks a component, hereafter referred to as the target
system, while monitoring its behavior. An illustration of the
main actions that need to be performed by such a tool is
represented in Fig. 2.

First, several attacks are generated in order to fully
evaluate the target system’s intended functionality (step 1).
In order to get a higher level of confidence about the

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 1. Exploiting a faulty (or vulnerable) component.
Fig. 2. The attack injection methodology.

absence of vulnerabilities, the attacks have to be exhaustive
and should look for as many classes of flaws as possible. It
is expected that the majority of the attacks are deflected by
the input data validation mechanisms, but others will be
allowed to proceed further along the execution path, testing
deeper into the component. Each attack is a single test case
that exercises some part of the target system, and the
quality of these tests determines the coverage of the
detectable vulnerabilities.

Ideally, one would like to build test cases that would not
only exercise all reachable computer instructions but also try
them with every possible instance of input. This goal,
however, is unfeasible for most systems due to the amount
of effort necessary to generate the various combinations of
input data and then to execute them. The effort can be
decreased by resorting to the analysis of the source code, and
by manually creating good test cases. This approach requires
a great deal of experience and acuteness from the test
designers, and even then, some vulnerabilities can be missed
altogether. In addition, source code might be unavailable
because it is common practice to reuse general purpose
components developed by third parties. To overcome these
limitations and to automate the process of discovering
vulnerabilities, we propose generating a large number of test
cases from a specification of the component’s interface.

The tool should then carry out the attacks (step 2) while
monitoring how the state of the component is evolving,
looking for any unexpected behavior (step 3). Depending on
its monitoring capabilities, the tool could examine the target
system’s outputs, its allocated system resources, or even the
last system calls it executed. Whenever an error or failure is
observed, it indicates that a new vulnerability has poten-
tially been discovered. For instance, a vulnerability is likely
to exist in the target system if it crashes during (or after) the
injection of an attack—this attack at least compromises the
availability of the system. Likewise, if what is observed is
the abnormal creation of a large file, this can eventually lead
to disk exhaustion and subsequent denial-of-service, so it
should be further investigated.

The collected evidence provides useful information
about the location of the vulnerability and supports its
subsequent removal. System calls and the component
responses, along with the offending attack, can identify
the protocol state and the execution path to find the flaw
more accurately. If locating and removing the vulnerability
is unfeasible or a more immediate action is required, for
instance, if the target system is a COTS component or a
fundamental business-related application, the attack de-
scription could be used to take preventive actions, such as
adding new firewall rules or IDS filters. By blocking similar
attacks, the vulnerability can no longer be exploited, thus
improving the system’s dependability.

4 THE ATTACK INJECTION TOOL

The attack injection methodology can be applied to any type
of component that we wish to search for vulnerabilities.
Several implementations of this methodology could be
created to evaluate different types of targets, from simple
COTS components to entire systems. In this study, we
decided to focus on network servers because, from a

security point of view, this is probably the most interesting
class of target systems. First, these large and often complex
applications are designed to sustain long periods of
uninterrupted operation and are usually accessible through
the Internet. Second, an intrusion in a network server
usually has a significant impact since a corruption on the
server may compromise the security of all clients (e.g., if the
adversary gets a root shell). Consequently, network servers
are a highly coveted target by malicious hackers.

The Attack inJECtion Tool (AJECT) is a vulnerability
detection tool that implements the proposed methodology.
Its architecture and main components can be seen in Fig. 3.
The architecture was developed to achieve automatic
injection of attacks independently of the target server’s
implementation. Furthermore, it was built to be flexible
regarding the classes of vulnerabilities that can be dis-
covered and the method used to monitor the target system.
Therefore, AJECT’s implementation provides a framework
to create and evaluate the impact of different test case
generation algorithms (i.e., by supplying various Test
Definitions) and other monitoring approaches (i.e., by
implementing custom Monitors).

The Target System is the entire software and hardware
components that comprise the target application and its
execution environment, including the operating system, the
software libraries, and the system resources. The Network
Server is typically a service that can be queried remotely
from client programs (e.g., a mail or FTP server). The target
application uses a well-known protocol to communicate
with the clients, and these clients can carry out attacks by
transmitting erroneous packets. If the packets are not
correctly processed, the target can suffer various kinds of

ANTUNES ET AL.: VULNERABILITY DISCOVERY WITH ATTACK INJECTION 3

Fig. 3. The architecture of the AJECT tool.

errors with distinct consequences, ranging, for instance,
from a slowdown to a crash.

The Network Server Protocol Specification is a graphical
user interface component that supports the specification of
the communication protocol used by the server. This
specification is utilized by the Attack Generator to produce
a large number of test cases. The Attack Injector is
responsible for the actual execution of the attacks by
transmitting malicious packets to the server. It also receives
the responses returned by the target and the remote
execution profile collected by the Monitor. Some analysis
on the information acquired during the attack is also
performed (e.g., such as known fatal signals or connection
error) to determine if a vulnerability was exposed.

The overall attack injection process is carried in two
separate phases: the attack generation phase, performed
once per communication protocol, and the injection cam-
paign, executed once per target system.

4.1 Attack Generation Phase

The purpose of attack generation is to create a series of attacks
that can be injected in the target system. The design of the
tool does not require the source code of the server to be
available to devise the attacks. This allows AJECT to support
a larger number of target systems, such as commercial
servers. Instead, the tool employs a specification of the
communication protocol of the server, which, in practice,
characterizes the server’s external interface to the clients.
Therefore, by exploring the input space defined by the
protocol, it is possible to exercise much of the intended
functionality of the target, i.e., the parts of the code that are
executed when processing the clients’ requests. In contrast to
the source code, which is often inaccessible, communication
protocols tend to be reasonably well documented, at least for
standard servers (e.g., the Internet protocols produced by
IETF). Consequently, even if the information about a server is
scarce, it is still possible to create good test cases as long as
there is some knowledge about the communication protocol.

AJECT offers a graphical user interface tool, called
Network Server Protocol Specification, to carry out the
specification of the communication protocol (see Fig. 4).
The tool operator can describe the protocol states and
messages, and identify the data types and acceptable ranges

of values of each field of a message. Messages are divided
into two kinds: messages that request the execution of some
specific operation (not changing the state of the protocol)
and transition messages that make the protocol jump from
one state to another (e.g., a login message). AJECT uses this
information to explore the entire protocol state space by
creating test cases with innocuous transition messages
preceding the attack message. This procedure is exhaustive
because all states are eventually tested with every operation
that is defined for each state.

Attack generation is dictated by the particular test case
generation algorithm, which receives as input the specifica-
tion of the protocol. The algorithm should aim to maximize
the protocol space coverage in order to exercise most of the
server’s functionality, leading to better code coverage.
However, one should keep in mind that full protocol (or
code) coverage does not guarantee complete and compre-
hensive defect discovery. Some vulnerabilities may remain
dormant because the defective portion of code was not
executed with the required conditions (e.g., a message field
data was not large enough to overflow a local buffer) or the
erroneous code was just never reached (e.g., the protocol
documentation did not contemplate some nonstandard or
legacy feature). This problem is, in general, unsolvable for
nontrivial servers, and therefore, our objective should be to
locate as many flaws as a remote attacker, within the time
constraints available for testing.

In the following sections, we provide some details about
the set of currently implemented algorithms, which was
developed to accommodate several classes of common
errors, such as delimiter, syntax, and field-value errors [2],
plus a variation of the latter to look for vulnerabilities
related to privileged access violations.

4.1.1 Delimiter Test Definition

This specific type of test creates messages with illegal or
missing delimiters of a field. For example, on text-based
protocols, each field is delimited by a space character and,
usually at the end of the messages, there are carriage return
and line feed characters. The attack generation algorithm
cycles through all message specifications of the protocol
and generates copies of each message with small variations
of their delimiters, such as messages without one of the
delimiters or messages with some delimiters replaced by a
predefined set of illegal delimiter characters. Note that, with
the exception of the delimiters, all generated messages will
contain only legal data taken from the specification.
Moreover, one can use any custom data to experiment with
as illegal delimiters.

For the sake of simplicity, imagine a simple plain text
protocol with a single message: a login command with the
respective username and password parameters. One could
test double quotes as illegal delimiters (though we should
probably specify a larger set of illegal delimiters in a real-
life example). This test definition would generate various
login messages with a valid username and password but
either without delimiters (e.g., test cases with no return
character after the command and spaces between the
parameters) or with illegal delimiters (e.g., test cases with
quotes instead of the space character).

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 4. Screenshot of the AJECT protocol specification.

4.1.2 Syntax Test Definition

This kind of test generates attacks that infringe on the
syntax of the protocol. The currently implemented syntax
violations consist on the addition, elimination, or reordering
of each field of a correct message. Note that, as with the
previous algorithm, the field specifications are kept un-
changed, i.e., they only hold valid values. Like all other test
definitions, after generating new message specifications
(i.e., variations from the original ones), each specification
will result in several test cases, each one trying a different
combination of possible field data.

As an example, consider a message containing two
different fields (e.g., a command with one parameter)
represented as [A] [B]. Below are depicted some of the
variations of the original message specification from which
test cases are going to be created:

. [A] (removed field [B]),

. [B] [B] (duplicated field [B]), and

. [B] [A] (swapped fields).

4.1.3 Value Test Definition

This test determines if the server can cope with messages with
bad data. For this purpose, a mechanism is used to derive
illegal data from the message specification, in particular, from
each field’s specified legal data. Ideally, one would like to
experiment with all possible illegal values; however, this
proves to be unfeasible when dealing with a large number of
messages and fields with arbitrary textual content. To
overcome such an impossibility, a heuristic method was
conceived to reduce the number values that have to be tried
(see Pseudocode 1). The algorithm has the following
structure: All states and message types of the protocol are
traversed, maximizing the protocol space; then each test case
is generated based on one message type. This algorithm
differs from the others because it systematically populates
each field with wrong values, instead of only resorting to the
legal values.

Pseudocode 1. Algorithm for the Value Test generation.

In the case of a field that holds a number, deriving illegal
values is rather simple because they correspond to
complementary values, i.e., the numbers that do not belong
to the legal data set. Additionally, to decrease the number of
values that are tried, and therefore, to optimize the injection
process, this attack generation algorithm only employs
boundary values plus a subset of the complementary
values. The current implementation of the illegal data
generation uses two parameters to select the complemen-
tary values, an illegal coverage ratio and a random coverage
ratio. The illegal coverage ratio chooses equally distant
values based on the total range of illegal values. On the
other hand, the random coverage ratio selects the illegal
values arbitrarily, from the available set of illegal numbers.
For instance, if there are only 100 illegal numbers, from 0 to
99, a 10 percent illegal coverage ratio would add numbers 5,
15, 25, etc., whereas the same ratio of random coverage
would select 10 random numbers from 0 to 99. This simple
procedure allows most illegal data to be evenly distributed
while still keeping a reduced set of test cases.

Creating illegal words, however, is a much more complex
problem because there are an infinite number of character
combinations, making such an exhaustive approach impos-
sible. Our objective was to design a method to derive
potentially desirable illegal words, i.e., words that are
usually seen in exploits, such as large strings or strange
characters (see Pseudocode 2, which is called in the under-
lined line of Pseudocode 1). Basically, this method produces
illegal words by combining several tokens taken from two
special input files. One file holds malicious tokens or known
expressions, collected from the exploit community, pre-
viously defined by the operator of the tool (see Fig. 7). AJECT
expands the special keyword $(PAYLOAD) with each line
taken from another file with payload data. This payload file
could be populated with already generated random data,
long strings, strange characters, known usernames, and so
on. The resulting data combinations from both files are used
to define the illegal word fields.

Pseudocode 2. Algorithm for the generation of malicious
strings.

ANTUNES ET AL.: VULNERABILITY DISCOVERY WITH ATTACK INJECTION 5

As an example, here are some attacks that were
generated by this method, and that were used to detect
known IMAP vulnerabilities (“<A� 10>” means that
character “A” is repeated 10 times) [3]:

. A01 AUTHENTICATE <A� 1296>;

. <%s� 10>; and

. A01 LIST INBOX <%s� 10>.

4.1.4 Privileged Access Violation Test Definition

This algorithm produces tests to determine if the remote
server allows unauthorized accesses to its resources. The
existing implementation is a specialization of the Value Test
Definition, employing only very specific tokens related to
resource usage, such as known usernames or path names to
existing files. The resulting attacks consist of messages
related to privileged operations, which evaluate the protec-
tion mechanisms executed by the network server. If the
server is authorizing any of these operations, such as
disclosing private information, granting access to a known
file, or writing to a specific disk location that should not have
been allowed, it reveals that the server holds some access
violation vulnerability. Further investigation on the collected
data, including the server replies and its configuration,
throws light into the cause of the problem, whether it is due
to misconfiguration, bad design, or some software bug.

To keep the number of attacks manageable, a special
focus must be taken on the selection of the tokens. Examples
of good malicious tokens are directory path names (relative
and absolute), well-known filenames, existing usernames,
and so on, which can also be combined with payload tokens
such as “/”, “../”, or “”. The created test cases stress the
server with illegal requests, such as reading the contents of
the “../../../etc/passwd” file, accessing other user’s data or
just writing to an arbitrary disk location. Here are a few
examples of generated IMAP attacks that were able to
trigger some vulnerabilities in previous experiments [3]:

. A01 CREATE /<A� 10>;

. A01 SELECT ./../../other-user/inbox; and

. A01 SELECT “{localhost=user¼n“}.“

These four test case generation algorithms provide a
good starting point to evaluate the attack injection
methodology and assess its usefulness; in the future, other
algorithms could easily be added to cover more kinds of
problems. The first two test definitions can be very useful in
locating earlier implementation errors on the network
servers. However, in our experiments, neither of them
was able to produce test cases that discovered vulnerabil-
ities in fully developed and tested servers. This is explained
by the simplicity of the generated attacks that can be
immediately blocked by the initial parsing and validation
mechanisms of the server. On the other hand, the value and
the privileged access violation test definitions, while
focusing on trying different malicious values in each field,
resulted in more complex attacks that allowed the detection
of several vulnerabilities.

4.2 Injection Campaign Phase

The injection campaign phase corresponds to the actual process
of executing the previously generated test cases, i.e., the
injection of the attacks in the target system (see AJECT’s

architecture in Fig. 3). The Attack Injector, or simply the
injector, carries out each attack sequentially. It decomposes
each test case in its corresponding network packets, such as
the transition messages to change the protocol state and the
actual attack message, and sends them to the network
interface of the server.

During the attack injection campaign, both the server’s
responses and its execution data are collected by the injector.
The injector resorts to a Monitor component, typically
located in the actual target system, to inspect the execution
of the server (e.g., UNIX signals, Windows exceptions,
allocated resources, etc.). The monitor can provide a more
accurate identification of unexpected behavior. However, its
implementation requires 1) access to the low-level process
and resource management functions of the target system
and 2) synchronization between the injector and the monitor
for each test case execution.

Though such a monitoring component is desirable and
very useful, it is not absolutely necessary, and in some
circumstances, it might even be impractical. Some target
systems, for instance, cannot be easily tampered with or
modified to execute an extra application, such as in
embedded or proprietary systems. In other cases, it might
be just too difficult to develop a monitor component for a
particular architecture or operating system, or for a specific
server due to some special feature (such as acting as a proxy
to other servers). In order to circumvent potential monitoring
restrictions and to support as many target systems as
possible, three alternative monitoring components were
developed:

. Deep Monitor can trace the server’s main process as
well as its children in great detail; the current version
is written in C++ for UNIX-based platforms, and it
can intercept UNIX signals, including any abnormal
signals such as SIGSEGV faults, while maintaining a
record of the server resource utilization.

. Shallow Monitor can be used in virtually any
platform; however, since it does not access the
native features of the underlying operating system, it
can only monitor the program’s termination code;
nevertheless, this code is useful because it still
allows the detection of fatal crashes or other
abnormal behavior; the current version of this
monitor was written in Java.

. Remote Monitor executes in the injector machine,
and therefore, it has no in-depth execution monitor-
ing capabilities; although it complies with the
monitor component interface, i.e., it synchronizes
with the injector, it has to infer the state of the server
based on the network connection (e.g., server replies,
connections errors, etc.); this monitoring solution is
the simplest and fastest approach when using an
unknown or inaccessible target system.

A monitor can also help to control the execution of the
server, such as to restart the program when there is a hang.
The deep and shallow monitors reinitiate the target system
after transmitting to the injector the data collected during
each attack. Restarting the target application has the
advantage of clearing the effects of previous attacks, and
thus, making the execution of the test cases independent of

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

one another. This also simplifies the identification of the test
case that triggered an abnormal behavior since it always
corresponds to the last injected attack. For certain vulner-
abilities, however, this behavior might be a disadvantage.
Some programming flaws might not be activated by a single
attack, but only by stressing the server with a series of
attacks. By continuously injecting different attacks without
restarting the target application, one is accumulating their
successive effects and thus provoking software aging. These
kinds of problems are captured with the remote monitor
because it does not rejuvenate the server between injections.

The deep monitor is our current most complex and
complete monitor. It can observe the target application’s
flow of control, while keeping a record of the amount of
allocated system resources. The tracing capabilities are
achieved with the PTRACE family functions to intercept
any system calls and signals received by the server process
(e.g., a SIGSEGV signal, indicating a memory access
violation, is usually related to buffer overflow vulnerabil-
ities). The LibGTop1 library functions are utilized to fetch
resource usage information, such as the memory allocated
by the process (e.g., the total number of memory pages or
the number of nonswapped pages) and the accumulated
CPU time in user- and kernel-mode, at some specific system
calls. Since the deep monitor is OS-dependent, it can only be
used in UNIX-based systems.

The shallow monitor is much simpler but platform
independent. Though it lacks any real in-depth monitoring
capabilities, it can still control the server (i.e., restart the
process) and collect the return status code after the
completion of every test case. At this moment, both
implementations of deep and shallow monitors have a
limitation—they cannot monitor background processes
(also known as UNIX daemons or Windows services) as
they immediately detach themselves from the main process.
However, this is not a major problem if applications are
tested during development since they are usually built as
regular processes for debugging purposes.

The remote monitor infers the server’s behavior through
passive and external observation. It resides in the injector
machine and collects information about the network
connection between the injector and the server. After every
test case execution, the monitor closes and reopens the
connection with the server, signaling the server’s execution
as failed if some communication error arises.

5 EXPERIMENTAL FRAMEWORK

This section provides the details about the laboratory
conditions in which the experimental evaluation took
place. It includes a description of the network server
protocols that were specified and tried with AJECT and the
testbed configuration.

5.1 Network Server Protocols

The experimental evaluation was designed to assess the
advantages of using attack injection to discover vulnerabil-
ities in real applications. For that purpose, we chose fully

developed and commonly used standard protocols, POP3 [4]
and IMAP4Rev1 [5], instead of obscure or immature proto-
cols that are typically implemented in applications with
reduced levels of testing and utilization. Therefore, finding
bugs in our targets will usually be hard because applications
have gone through several revisions, where all vulnerabilities
had an opportunity to be removed. Additionally, the selected
protocols are not overly complex, leading to much simpler
and less error-prone implementations.

5.1.1 POP Protocol

The Post Office Protocol (POP) is a widely used protocol for
e-mail retrieval. It was designed to allow users without a
permanent connection to remotely view and manipulate
messages. POP3 servers listen on port number 110 for
incoming connections, and use a reliable data stream (TCP)
to ensure the transfer of commands, responses, and
message data.

The POP standard describes three session states through-
out the execution: the authorization, the transaction, and the
update states. However, given the interaction messages
between the client and the server, we have defined a
different state diagram that could more accurately represent
the state transitions. Fig. 5 shows the finite state machine
used in the specification of the POP protocol in AJECT. The
client initiates the connection with the server in the not
identified state. The actual authorization process is com-
posed of two separate steps (transition messages to nonfinal
states are in bold): First, the client must supply its username
(USER command) to the server, changing the protocol to the
not authenticated state, and then it provides the correspond-
ing password (PASS command), which, if correct, brings the
protocol into the authenticated state, where the client can
perform all e-mail message access and retrieval transac-
tions. When the client is finished, it issues the QUIT
command allowing the server to perform various house-
keeping functions, such as removing all messages marked
for deletion, before closing the connection.

All interactions between the client and the server are in
the form of text strings that end with Carriage Return and
Line Feed (CRLF) characters. Client messages are case-
insensitive commands, with three or four letters long,
followed by the respective parameters. Server replies are
prefixed with +OK or -ERR, indicating a successful or

ANTUNES ET AL.: VULNERABILITY DISCOVERY WITH ATTACK INJECTION 7

1. A public library, available at http://directory.fsf.org/libs/LibGTop.
html.

Fig. 5. Finite state machine of the protocol POP3.

unsuccessful command completion.

5.1.2 IMAP Protocol

The Internet Message Access Protocol (IMAP) is a popular
method for accessing electronic mail and news messages
maintained on a remote server. This protocol is specially
designed for users that need to view e-mail messages from
different computers since all management tasks are
executed remotely without the need to transfer the
messages back and forth between these computers and
the server. A client program can manipulate remote
message folders (also known as mailboxes) in a way that
is functionally equivalent to a local file system.

The client and server programs communicate through a
reliable data stream (TCP) and the server listens for
incoming connections on port 143. Once a connection is
established, it goes into one of the four states, as depicted in
the finite state machine in Fig. 6. Normally, the protocol
starts in the not authenticated state, where most operations
are forbidden. If the client is able to provide acceptable
authentication credentials (i.e., a single message with a
valid username and password), the connection goes to the
authenticated state. Here, the client can choose a mailbox,
which causes the connection to go to the selected state,
allowing it to execute commands that manipulate the
mailbox’s messages. The connection is terminated when
the client logs out from the server.

All interactions between the client and the server are in
the form of strings that end with a CRLF. Depending on the
type of the client command, the server response contains
zero or more lines with data, ending with one of the
following completion results: OK (indicating success), NO
(indicating failure), or BAD (indicating a protocol or syntax
error). To simplify the matching between the requests and
the responses, both the client commands and the respective
server completion result are prefixed with the same distinct
alphanumeric tag (e.g., A01, A02, etc.).

IMAP is a much more complex protocol than POP,
offering a wider functionality to its clients. It provides an
extensive number of operations, which include: creation,

deletion, and renaming of mailboxes; checking for new
messages; permanently removing messages; server-based
RFC-2822 and MIME parsing and searching; and selective
fetching of message attributes and texts. Although some of
the protocol commands are very simple (e.g., composed by
a single field), most of them are much more intricate than in
POP and require various parameters.

5.2 Experimental Environment

One of the features of AJECT that we wished to test was its
interoperability, i.e., its ability to support different target
systems, independently of the hardware, operating system,
or software implementations. Therefore, it was necessary to
utilize a flexible testbed to ensure that the distinct require-
ments of the target applications could be accommodated.

The testbed consisted of three PCs with Intel Pentium 4
at 2.80 GHz and 512 MB of main memory, and running
Windows XP SP2. Two of the PCs acted as target systems
and the remaining one as the injector. The target PCs also
executed a VMware virtual machine software on top of the
native OS, configured with 256 MB of RAM. A total of
16 virtual machine (VM) configurations were set up, split
among the two PCs, each installed with its own operating
system (either Windows XP SP2 or Ubuntu 6.10) and
respective network server (one of the 16 tested e-mail
servers). A Shallow Monitor was installed in every
Windows VM, whereas the Ubuntu VMs featured both
the Deep Monitor and Shallow Monitor. The Remote
Monitor was executed remotely from the Injector machine,
so no additional installation was required on the VMs.

AJECT carried out the injection campaigns on the
remaining PCs and collected the monitoring data from
the monitor components. The protocol specification and the
attacks were also previously generated in this Injector
machine.

6 EXPERIMENTAL RESULTS

6.1 Target Network Servers

The network servers were carefully selected from an
extended list of e-mail programs supporting POP3 and
IMAP4Rev1. All servers were up-to-date applications, fully
patched to the latest stable version and with no known
vulnerabilities. All server applications had gone through
many revisions and are currently supported by an active
development team. Since we wanted to experiment with
targets with distinct characteristics, we chose servers
running in different operating systems (Windows versus
Linux) and programmed under opposing philosophies
regarding the availability of the source code (closed source
versus open source).

Table 1 lists the e-mail servers used in the experiments.
Each server was subject to more than one attack injection
campaign. For instance, since all programs supported both
POP and IMAP, they were tested at least twice, once with
each set of specific protocol attacks. If the servers run in
Windows and Linux, then they were analyzed in both
operating systems. Finally, to evaluate the advantages and
penalties of the different monitoring strategies, each server
was individually experimented with every supported
monitor. This information is summarized in the last column

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 6. Finite state machine of the protocol IMAP.

of Table 1, which shows the monitor components employed
with each e-mail server. The remote monitor, for instance,
was used with all target systems because it probes network
servers remotely. Since the deep monitor was implemented
to test open source Linux servers, it was only utilized with
servers developed for this operating system (except for
Citadel, which did not provide a regular process execution).
Finally, the shallow monitor was used in the experiments
with any e-mail server that could be executed as a command
line foreground process. Overall, each protocol was used in
the 29 possible combinations of server/OS/monitor tuples,
resulting in 58 independent attack injection campaigns.

6.2 Test Configuration

A limited number of experiments were carried out initially
to get a first understanding of how effective were the attack
generation algorithms. These preliminary results showed
that delimiter and syntax test algorithms create test cases
too simplistic to discover vulnerabilities in mature network
servers. The attacks produced from these methods are not
representative of the universe of attacks created by hackers
or penetration testers, and are only useful during the initial
software development phases. As explained previously, the
privileged access violation test algorithm is actually a
specialization of the value test algorithm, requiring very
specific malicious tokens and a more careful and time-
consuming analysis of the results. For this reason, and to
maximize the automation of the several injection cam-
paigns, we decided to center our efforts on testing the
networks servers with the attacks produced with the value
test algorithm. However, should the focus be on a specific
server (e.g., to debug a particular network server), more
time and work should be invested on experimenting larger
sets of attacks, generated with different algorithms.

Fig. 7 shows the contents of the malicious tokens file
used in the value test algorithm. The ability to generate
good illegal data was of the utmost importance, i.e., values
correct enough to pass through the parsing and input
validation mechanisms, but sufficiently erroneous to trigger
existing vulnerabilities. Therefore, picking good malicious

tokens and payload data was essential. Known usernames

and hostnames (“aject”) were defined in these tokens, as

well as path names to sensitive files (e.g., “./private/

passwd”). The special keyword “$(PAYLOAD)” was ex-

panded into various words: 256 random characters,

1000 A’s, 5000 A’s, a sequence of format string characters

(i.e., “%n%p%s%x%n%p%s%x”), a string with many ASCII

nonprintable characters, and two strings with several

relative pathnames (i.e., “../../../” and “./././”).
AJECT’s attack generation created one attack file for each

protocol, containing the attack messages and the transition

messages (to inject the malicious message in the correct

protocol state). For the sake of fairness in the experiments,

only the mandatory protocol functionality (i.e., no protocol

extensions) was tested. Based on the 13 message specifica-

tions of the POP protocol, the algorithm created a 90 MB

attack file with 35,700 test cases, whereas for IMAP, which

has a larger and more complex set of messages, there were

313,076 attacks in a 400 MB file. Given the size of the attack

files, AJECT’s injector only reads and processes one attack

at a time, thus keeping a small memory usage.
The attacks to the POP and IMAP protocols were

generated only once, taking a negligible amount of time—

from a few seconds to a couple of minutes. On the other

hand, injecting the attacks proved to be a more time-

demanding task. The actual time required for each injection

experiment depended on the protocol (i.e., the number of

attacks), the e-mail server (e.g., the time to reply or to

timeout), and the type of monitor (e.g., the overhead of an

additional software component constantly intercepting

system calls and restarting the server application, as

opposed to the unobtrusive remote monitor). Overall, the

POP injection campaigns took between 9 and 30 hours to

complete, whereas the IMAP protocol experiments could

last between 20 and 200 hours.

ANTUNES ET AL.: VULNERABILITY DISCOVERY WITH ATTACK INJECTION 9

TABLE 1
Target POP and IMAP E-Mail Servers

Fig. 7. File with malicious tokens for both protocols. (a) POP protocol.
(b) IMAP protocol.

6.3 Vulnerability Assessment

Each experiment involved the injector in one machine and
the target system in another (i.e., a VM image configured
with either Windows or Linux, one of the 16 target network
servers with one of the supported monitor components).
The monitor component was used to trace and record the
behavior of the e-mail server in a log file for later analysis. If
a server crashed or graciously terminated the execution, for
instance, the fatal signal and/or the return error code was
automatically logged (depending on the type of the
monitor). The server was then restarted (automatically, or
manually in case of the remote monitor) and the injection
campaign resumed for the next attack. At the end of the
experiment, we analyzed the output results, looking for any
unexpected behavior. The log file presents in each line the
result of a test case, making it easier to visually compare
different attacks and to perceive divergent behavior. Any
suspicion of an abnormal execution, i.e., any line in the log
file with dissimilar monitoring data, such as an unusual set
of system calls, a large resource usage, or a bad return error
code, was further investigated. AJECT allows us to replay
the last or latter attacks in order to reproduce the anomaly,
and thus confirm the existence of a vulnerability. The
offending attacks were then provided as test cases to the
developers to debug the server application.

However, in these experiments, we focused on the most
automated log analysis, and only the most evident
abnormal behaviors, related with OS signals, exceptions,
and resource usages, were looked for.

AJECT found vulnerabilities in five e-mail servers that
could eventually be exploited by malicious hackers. Table 2
presents a summary of the problems, including the attacks
that triggered the vulnerabilities, along with a brief explana-
tion of the unexpected behavior as seen by the monitor (see
last column). All vulnerabilities were detected by some fatal
condition in the server, such as a crash or a denial-of-service.
Two servers, hMailServer and Softalk, showed signs of
service degradation before finally crashing, suggesting that
their vulnerabilities are related to bad resource management
(e.g., a memory leak or an inefficient algorithm). In every
case, the developers were contacted with details about the
newly discovered vulnerabilities, such as the attacks that
triggered them, so that they could reproduce and correct the
problem in the following software release (third column of
Table 2). Since the servers were all commercial applications,
we could not perform source code inspection to further

investigate the cause of the anomalies, but had to rely on the
details disclosed by the developers instead.

The first vulnerabilities were discovered in the IMAP
service provided by the hMailServer. This Windows server
gave signs of early service degradation when running with
the remote monitor. The telltale sign was a three-minute
delay, with 100 percent peeks of CPU usage, when
processing the attacks with the LIST command. Since the
remote monitor does not rejuvenate the system, the server
was responding to the request with an extensive list of
mailboxes created from the previous attacks. Further
investigation on this issue showed that the server even-
tually crashed when processing over 20,000 different
CREATE and RENAME messages continuously. After
helping the developers to pinpoint and correct the exact
cause of the problem, they informed us that there was in
fact a stack buffer overflow vulnerability, triggered when
creating several deep-depth mailboxes (e.g., “./././././././
mailbox”). Additionally, there was a second problem,
which could also be remotely exploited to create a denial-
of-service—an inefficient parsing algorithm that was very
slow on large buffers caused the high CPU usage.

NoticeWare server also ceased to provide its service
when the attacks were injected. In the experiment with the
remote monitor, the server was successively crashing after a
series of different attacks. Then, after manually restarting
the server and resuming the experiment, the server
eventually failed again. The attacks were all related to the
LOGIN command, for example, crashing after processing
over 40 LOGIN messages with long arguments. This
indicates that some problem was present in the parsing
routine of that command, and the number and nature of the
attacks hinted that some resource exhaustion vulnerability
existed. However, no details were disclosed about the
vulnerability by the developers (even though they showed
great interest in using our tool themselves), and therefore,
we could not confirm this conclusion.

Softalk was another Windows IMAP server with clear
service degradation problems, probably caused by some
resource exhaustion vulnerability. The IMAP server was
consuming too much memory while processing several
APPEND requests, until it eventually depleted all resources
and crashed. This particular issue was aggravated by the
fact that the attacker did not need to be authenticated in
order to exploit the vulnerability. The overall number of

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

TABLE 2
E-mail Servers with Newly Discovered Vulnerabilities

attacks until resource depletion obviously depended on the
amount of available memory and on the actual hardware
configuration. Nevertheless, it did not require the attacker
much effort to cause the denial-of-service. The developers
were contacted with details to reproduce the anomaly and
eventually corrected their software, but they revealed no
details about the vulnerability.

Both versions of the SurgeMail IMAP server, running on
Windows and Linux, were also found vulnerable. However,
in contrast to the other three cases, only a single message
was needed to trigger the vulnerability. An authenticated
attacker could crash the server by sending one APPEND
command with a very large parameter. Even though the
presence of the large parameter suggests a buffer overflow
vulnerability, the developers indicated that the problem
was related to the execution of some older debugging
function that was left in the production code—this function
intentionally crashed the server when facing some un-
expected conditions.

WinGate could also be exploited remotely by an
adversary. In spite of the simplicity of the attack, oddly
enough it was quite difficult to reproduce the anomaly with
the developers. The denial-of-service vulnerability that was
found stopped the IMAP service by denying further client
connections. The attack was quite trivial and consisted of a
single LIST command with two parameters: several A’s and
an asterisk. After processing the command, the server never
crashed but replied to all new connections with the
following message: “NO access denied” refusing further
access to new clients. This problem affected all new
connections, independently of the IP source address, so
this was not a blacklist defense mechanism. However, in the
few communications with the developers, they were unable
to reproduce the issue. Given this apparent difficulty, we
repeated the same experiment in a separate Windows XP
machine with a fresh server install (instead of the cloned
VM image), still obtaining the same DoS result. Over the
course of the experiments, we kept the developers up-to-
date with our observations, but we received no further
contact from them.

There was a sixth IMAP server, the 602LAN Suite, that
revealed some intermittent problems, but we were unable to
deterministically reproduce them. Occasionally, the IMAP
server ceased its operation after the first 100,000 attacks,
sometimes it took over 200,000 attacks, but most of the time,
it did not crash at all. Therefore, even though we suspect that
there is some flaw in the target system, we did not have the
time or the tools (e.g., source code) to either confirm or
repudiate the existence of a vulnerability in the server.

6.4 Additional Remarks

Several interesting conclusions also arise just by looking into
the characteristics of the vulnerable servers. These conclu-
sions would, however, benefit from further confirmation
with larger samples of representative servers. First, all
discovered vulnerabilities were related to the IMAP proto-
col, which seems to indicate that more complex protocols
lead to more error-prone implementations, as one would
expect. A rough analysis between the POP and IMAP
protocols, in terms of number of states and messages types,
indicates that POP is a much simpler protocol. Therefore,

implementations of the IMAP protocol usually require more
lines of code, and consequently, more sophisticated tests,
which makes the debugging operations a much harder
process, increasing the chances of some defect being missed.

Second, all vulnerabilities were detected in closed source
commercial servers. In fact, 42 percent of the tested closed
source servers had confirmed vulnerabilities, which is a
quite significant number. In part, this result could be
explained because the number of open source servers was
significantly lower than the closed source servers, account-
ing for only 25 percent of all target systems. Naturally, a
more complete experimental evaluation with a larger and
more balanced sample of network servers could clarify this
particular aspect. Nevertheless, we conjecture that the real
reason why open source servers have fewer flaws is
probably related to the larger, and usually more active,
community behind these servers (testing, utilizing, and
sometimes even developing them). Moreover, only the
mandatory protocol functionality was specified in the attack
generation. Therefore, any extra functionality or complexity
potentially present in some commercial servers was not an
issue, since all testing was restricted to the same set of
common features.

Another interesting result is related to the monitoring
approach required for the detection of the vulnerabilities.
Unfortunately, none of the servers that was found vulner-
able with the remote monitor was supported by other
monitoring approaches. However, based on the attacks and
the observable behavior, one can infer that the deep and
shallow monitors could also detect the vulnerabilities
discovered in the SurgeMail and WinGate servers. In order
to detect the vulnerabilities in hMailServer, NoticeWare,
and Softalk servers, these monitors would need to be
modified to stop restarting the servers between test cases.
These vulnerabilities could only be discovered with soft-
ware aging, via the continuous execution of the server
process—just replaying the last offending attack could not
reproduce the abnormal behavior, which actually required
the reinjection of a larger subset of the most recent attacks.

These results also shed some light on the process of
conducting an injection campaign. As mentioned before,
not restarting the target application between injections has
proven to be advantageous in detecting some vulnerabil-
ities that require software aging. However, since each attack
potentially changes the state of the target application, it
might be possible that two attacks cancel each other out,
thus invalidating the effects of an unpredictable number of
test cases. Therefore, the order in which the attacks are
carried out becomes important, if not determinant. Injecting
the same attacks in a different order might yield different
results, making this approach interesting and worthy of
further study. Whenever possible, both methods should be
used: first, by exhausting all protocol messages individu-
ally, and then, by continuously reinjecting all attacks
without restarting the server, thus emulating the effects of
software aging.

The results presented here show that AJECT can be very
useful in discovering vulnerabilities even in fully developed
and tested software. Actually, even though developers were
not forthcoming in disclosing the details of the vulnerabil-

ANTUNES ET AL.: VULNERABILITY DISCOVERY WITH ATTACK INJECTION 11

ities, which is understandable because all servers were
commercial applications, most of them showed great interest
in using AJECT as an automated tool for vulnerability
discovery. The attack injection methodology, sustained by
the implementation of AJECT, could be an important asset in
constructing more dependable systems and in enforcing the
security of the existing ones.

7 RELATED WORK

This paper describes a methodology and a tool for the
discovery of vulnerabilities on network servers through the
injection of attacks (i.e., malicious faults). This work has
been influenced by several research areas, as given below.

7.1 Fault Injection

This is an experimental approach for the verification of fault
handling mechanisms (fault removal) and for the estimation
of various parameters that characterize an operational
system (fault forecasting), such as fault coverage and error
latency [6], [7]. Traditionally, fault injection has been
utilized to emulate several kinds of hardware and software
faults, ranging from transient memory corruptions to
permanent stuck-at faults. Xception [8] and FTAPE [9] are
examples of tools that can inject hardware or software faults
in a target system under evaluation. The emulation of other
types of faults has also been accomplished with fault
injection techniques, for example, software and operator
faults [10], [11]. Robustness testing mechanisms study the
behavior of a system in the presence of erroneous input
conditions. Their origin comes both from the software
testing and fault injection communities, and they have been
applied to various areas, for instance, POSIX APIs and
device driver interfaces [12], [13]. However, due to the
relative simplicity of the mimicked faults, it is difficult to
apply these tools to more complex faults, like security
vulnerabilities of network servers. AJECT injects more
complex faults, which try to emulate the behavior of an
attacker while probing the interface of a server.

7.2 Fuzzers

Fuzzers deal with this intractability by injecting random
samples as input to the software components. These are much
less methodical than classic fault injection tools. For instance,
Fuzz [14], inspired by the noisy dial-up lines that sometimes
scrambled command line characters and crashed an applica-
tion, generates large sequences of random characters to be
used as testing parameters for command-line programs.
Many programs failed to process the illegal arguments and
crashed, revealing dangerous flaws like buffer overflows. By
automating testing with fuzzing, millions of iterations can
cover a significant number of interesting permutations for
which it could be difficult to write individual test cases [15].
Throughout the years, fuzzers have evolved into less random
and more intelligent vulnerability detectors [16], [17], [18].
Fuzzers do not require any preconception about the system’s
behavior, and thus, can find odd oversights and defects that
manual testing often fails to locate. However, fuzzers only
exercise a random sample of the system behavior, and
frequently, the test cases are either too simplistic or
specialized to be reused on different target systems. Fuzzers
also lack thorough monitoring mechanisms, such as the

different monitoring approaches present in AJECT that
support the detection of many kinds of vulnerabilities, raging
from fatal crashes to resource exhaustion. AJECT is indepen-
dent of the target application and implemented protocol
since it allows the specification of diverse protocols from
which the attacks will be generated.

7.3 Vulnerability Scanners

These are the tools whose purpose is the discovery of
vulnerabilities in computer systems (in most cases, network-
connected machines). Several examples of these tools have
been described in the literature, and currently, there are some
commercial products: Nessus [19], SAINT [20], and Qualys-
Guard [21]. They have a database of well-known vulner-
abilities, which should be updated periodically, and a set of
attacks that allows their detection. The analysis of a system is
usually performed in three steps: First, the scanner interacts
with the target to obtain information about its execution
environment (e.g., type of operating system, available
services, etc.); then, this information is correlated with the
data stored in the database, to determine which vulnerabil-
ities have previously been observed in this type of system;
finally, the scanner performs the corresponding attacks and
presents statistics about which ones were successful. Even
though these tools are extremely useful to improve the
security of systems in production, they have the limitation
that they are unable to uncover unknown vulnerabilities.

7.4 Static Vulnerability Analyzers

These analyzers look for potential vulnerabilities in the code
(i.e., source code, assembly, or binary) of the applications.
This is a different approach from attack injection in which
analyzers inspect the source code for dangerous patterns,
usually associated with buffer overflows, and provide a
listing of their locations [22], [23]. Next, the programmer
only needs to go through the parts of the code for which
there are warnings, to determine if an actual problem exists.
More recently, this idea has been extended to the analysis of
binary code [24]. Static analysis has also been applied to
other kinds of vulnerabilities, such as race conditions
during the access of (temporary) files [25]. In the past, a
few experiments with these tools have been reported in the
literature showing them as quite effective for locating
programming problems. These tools, however, have the
limitation of producing many false warnings and miss some
of the existing vulnerabilities.

7.5 Runtime Prevention Mechanisms

These mechanisms change the runtime environment of
programs with the objective of thwarting the exploitation of
vulnerabilities. The idea here is that removing all bugs from
a program is considered infeasible, which means that it is
preferable to contain the damages caused by their exploita-
tion. Most of these techniques were developed to protect
systems from buffer overflows, and few examples are:
StackGuard [26] and PointGuard [27]. These tools are
compiler-based and determine at runtime if a buffer
overflow occurred, and stop the program execution before
the attack code is executed. A recent study compares the
effectiveness of some of these techniques, showing that they
are useful only to prevent a subset of the attacks [28]. Other
approaches provide the OS with some sort of memory page

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

protection. For example, Windows XP SP 2 introduced Data
Execution Prevention (DEP), which prevents any applica-
tion from execution code from a nonexecutable region,
limiting some forms of code injection attacks [29]. PaX
provides program memory randomization to thwart attacks
that require pointer prediction [30]. Another approach,
Libsafe, intercepts library calls to prevent attackers from
overwriting the return address and hijacking the control
flow of the application [31].

7.6 Software Rejuvenation

Other techniques address the problem of bad resource
management, whose effects accumulate over time in what is
called software aging [32]. Software rejuvenation is meant
to mitigate the effects of the phenomenon and impact of the
software aging [33]. While not being concerned with the
actual cause of the aging effects (e.g., a memory leak or an
unreleased file lock), software rejuvenation is very success-
ful in proactively removing the effects of software aging by
restarting or rebooting the system or part of it. However,
after the system is rejuvenated, the vulnerabilities that
caused or sped up the aging effects are typically not
removed, and thus, the problem will eventually arise again.

8 CONCLUSION

The paper presents a methodology and a tool for the
discovery of vulnerabilities in server applications, which is
based on the behavior of malicious adversaries. AJECT
injects several attacks against a target network server, while
observing its execution. This monitoring information is later
analyzed to determine if the server executed correctly, or on
the other hand, if it exhibited any suspicious behavior
suggesting the presence of a vulnerability.

Our evaluation confirmed that AJECT could detect
different classes of vulnerabilities in e-mail servers and
assist the developers in their removal by providing the
required test cases. The 16 servers chosen for the experi-
ments were fully patched and up-to-date applications and
most of them had gone through many revisions, making
them challenging targets. In any case, AJECT successfully
discovered vulnerabilities in five servers, which corre-
sponded to 42 percent of all tested commercial applications.
Even though few details are available about the vulner-
abilities since they were found in closed source programs, it
was possible to infer that three of the flaws were related to
resource management.

ACKNOWLEDGMENTS

This work was partially supported by the FCT through the
Multiannual Funding and Project POSC/EIA/61643/2004
(AJECT), and by the CMU-Portugal Programs.

REFERENCES

[1] P. Verissimo, N. Neves, C. Cachin, J. Poritz, D. Powell, Y.
Deswarte, R. Stroud, and I. Welch, “Intrusion-Tolerant Middle-
ware: The Road to Automatic Security,” IEEE Security and Privacy,
vol. 4, no. 4, pp. 54-62, July/Aug. 1996.

[2] B. Beizer, Software Testing Techniques, second ed. Van Nostrand
Reinhold, 1990.

[3] N. Neves, J. Antunes, M. Correia, P. Verissimo, and R. Neves,
“Using Attack Injection to Discover New Vulnerabilities,” Proc.
Int’l Conf. Dependable Systems and Networks, June 2006.

[4] J. Myers and M. Rose, “Post Office Protocol—Version 3,” RFC
1939 (Standard), updated by RFCs 1957, 2449, http://www.
ietf.org/rfc/rfc1939.txt, May 1996.

[5] M. Crispin, “Internet Message Access Protocol—Version 4rev1,”
Internet Eng. Task Force, RFC 3501, Mar. 2003.

[6] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault
Injection and Dependability Evaluation of Fault-Tolerant Sys-
tems,” IEEE Trans. Computers, vol. 42, no. 8, pp. 913-923, Aug. 1993.

[7] M.-C. Hsueh and T.K. Tsai, “Fault Injection Techniques and
Tools,” Computer, vol. 30, no. 4, pp. 75-82, Apr. 1997.

[8] J. Carreira, H. Madeira, and J.G. Silva, “Xception: Software Fault
Injection and Monitoring in Processor Functional Units,” Proc. Int’l
Working Conf. Dependable Computing for Critical Applications,
pp. 135-149, http://citeseer.ist.psu.edu/54044.html; http://
dsg.dei.uc.pt/Papers/dcca95.ps.Z, Jan. 1995.

[9] T.K. Tsai and R.K. Iyer, “Measuring Fault Tolerance with the
FTAPE Fault Injection Tool,” Proc. Int’l Conf. Modeling Techniques
and Tools for Computer Performance Evaluation, pp. 26-40, http://
portal .acm.org/citation.cfm?id=746851&dl=ACM&coll=
&CFID=15151515&CFTOKEN=6184618, Sept. 1995.

[10] J. Christmansson and R. Chillarege, “Generation of an Error Set
That Emulates Software Faults,” Proc. Int’l Symp. Fault-Tolerant
Computing, pp. 304-313, June 1996.

[11] J. Durães and H. Madeira, “Definition of Software Fault Emulation
Operators: A Field Data Study,” Proc. Int’l Conf. Dependable
Systems and Networks, pp. 105-114, June 2003.

[12] P. Koopman and J. DeVale, “Comparing the Robustness of POSIX
Operating Systems,” Proc. Int’l Symp. Fault-Tolerant Computing,
pp. 30-37, June 1999.

[13] M. Mendonça and N. Neves, “Robustness Testing of the Windows
DDK,” Proc. Int’l Conf. Dependable Systems and Networks, pp. 554-
564, June 2007.

[14] B.P. Miller, L. Fredriksen, and B. So, “An Empirical Study of the
Reliability of UNIX Utilities,” Comm. ACM, vol. 33, no. 12, pp. 32-
44, 1990.

[15] P. Oehlert, “Violating Assumptions with Fuzzing,” IEEE Security
and Privacy, vol. 3, no. 2, pp. 58-62, http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=1423963, Mar./Apr. 2005.

[16] Univ. of Oulu, “PROTOS—Security Testing of Protocol Imple-
mentations,” http://www.ee.oulu.fi/research/ouspg/protos/,
1999-2003.

[17] M. Sutton, “FileFuzz,” http://labs.idefense.com/labs-software.
php?show=3, Sept. 2005.

[18] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley, 2007.

[19] Tenable Network Security, “Nessus Vulnerability Scanner,”
http://www.nessus.org, 2008.

[20] Saint Corp., “SAINT Network Vulnerability Scanner,” http://
www.saintcorporation.com, 2008.

[21] Qualys, Inc., “QualysGuard Enterprise,” http://www.qualys.
com, 2008.

[22] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken, “A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities,”
Proc. Network and Distributed System Security Symp., Feb. 2000.

[23] E. Haugh and M. Bishop, “Testing C Programs for Buffer
Overflow Vulnerabilities,” Proc. Symp. Networked and Distributed
System Security, pp. 123-130, Feb. 2003.

[24] J. Durães and H. Madeira, “A Methodology for the Automated
Identification of Buffer Overflow Vulnerabilities in Executable
Software without Source-Code,” Proc. Second Latin-Am. Symp.
Dependable Computing, Oct. 2005.

[25] M. Bishop and M. Dilger, “Checking for Race Conditions in File
Accesses,” Computing Systems, vol. 9, no. 2, pp. 131-152, Spring
1996.

[26] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks,” Proc. USENIX Security Conf., pp. 63-78, https://
db.usenix.org/publications/library/proceedings/sec98/
cowan.html, Jan. 1998.

[27] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard:
Protecting Pointers from Buffer Overflow Vulnerabilities,” Proc.
USENIX Security Symp., pp. 91-104, http://www.usenix.org/
publications/library/proceedings/sec03/tech/cowan.html, Aug.
2003.

ANTUNES ET AL.: VULNERABILITY DISCOVERY WITH ATTACK INJECTION 13

[28] J. Wilander and M. Kamkar, “A Comparison of Publicly Available
Tools for Dynamic Buffer Overflow Prevention,” Proc. Network and
Distributed System Security Symp., pp. 149-162, Feb. 2003.

[29] Microsoft, Corp., “A Detailed Description of the Data Execution
Prevention (DEP) Feature in Windows XP Service Pack 2,
Windows XP Tablet PC Edition 2005, and Windows Server
2003,” http://support.microsoft.com/kb/875352, Sept. 2006.

[30] “PaX,” http://pax.grsecurity.net/, 2009.
[31] T. Tsai and N. Singh, “Libsafe 2.0: Detection of Format String

Vulnerability Exploits,” white paper, Avaya Labs, 2001.
[32] S. Garg, A.V. Moorsel, K. Vaidyanathan, and K.S. Trivedi, “A

Methodology for Detection and Estimation of Software Aging,”
Proc. Int’l Symp. Software Reliability Eng., p. 283, 1998.

[33] K. Vaidyanathan and K.S. Trivedi, “A Comprehensive Model for
Software Rejuvenation,” IEEE Trans. Dependable and Secure
Computing, vol. 2, no. 2, pp. 124-137, Apr.-June 2005.

João Antunes received the MSc degree in
informatics from the University of Lisboa in
Portugal in 2006. He is currently working
toward the PhD degree in attack injection. He
has been a computer science researcher at
Navigators Research Group of LASIGE, Portu-
gal, since 2004. He has been involved in
national and international research projects in
computer and network security, including
AJECT, CRUTIAL, and the European Network

of Excellence ReSIST. He is the author of several research papers. He
is a student member of the IEEE.

Nuno Neves received the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign in 1998. He is an associ-
ate professor in the Department of Informatics at
the Faculty of Sciences at the University of
Lisboa. His main research interests include
secure and dependable distributed and parallel
systems. He is on the editorial board of the
InderScience International Journal of Critical
Computer-Based Systems. In recent years, he

has been involved in several security-related European projects, such
as CRUTIAL, MAFTIA, and RESIST, and coordinated the national
projects DIVERSE, RITAS, AJECT, and COPE. His work has been
recognized on several occasions, for example, with the IBM Scientific
Prize 2004 and the William C. Carter Award at IEEE FTCS 1998. He has
more than 65 international publications in journals and conferences. He
is a member of the IEEE. More information about his research can be
found at http://www.di.fc.ul.pt/nuno.

Miguel Correia is an assistant professor in the
Department of Informatics on the Faculty of
Sciences at the University of Lisboa, and an
adjunct faculty member of the Carnegie Mellon
Information Networking Institute. He is a member
of the LASIGE Research Unit and the Navigators
Research Team. He has been involved in
several international and national research pro-
jects related to intrusion tolerance and security,
including the MAFTIA and CRUTIAL EC-IST

Projects, and the ReSIST NoE. He is currently the coordinator and an
instructor of the joint Carnegie Mellon University and the University of
Lisboa MSc in Information Security. He has more than 50 publications in
international journals, conferences, and workshops. His main research
interests include intrusion tolerance, security, distributed systems, and
distributed algorithms. He is a member of the IEEE. More information
about his research can be found at http://www.di.fc.ul.pt/mpc.

Paulo Verissimo is a professor in the Depart-
ment of Informatics (DI) at the Faculty of
Sciences at the University of Lisboa (http://
www.di.fc.ul.pt/~pjv), and the director of LASIGE
(http://lasige.di.fc.ul.pt). He is an associate
editor of the Elsevier International Journal on
Critical Infrastructure Protection, and a past
associate editor of the IEEE Transactions on
Dependable and Secure Computing. He was a
member of the European Security and Depend-

ability Advisory Board. He is the past chair of the IEEE Technical
Committee on Fault-Tolerant Computing and of the Steering Committee
of the DSN conference. He leads the Navigators Research Group of
LASIGE. His research interests include architecture, middleware, and
protocols for distributed, pervasive, and embedded systems, in the
facets of real-time adaptability and fault/intrusion tolerance. He is the
author of more than 150 refereed publications in international scientific
conferences and journals, and coauthor of five books. He is a fellow of
the IEEE and the ACM.

Rui Neves received the Eng-diploma and PhD
degrees in electrical and computer engineering
from the Instituto Superior Técnico at the
Technical University of Lisbon, Portugal, in
1993 and 2001, respectively. He has been a
professor at the Instituto Superior Técnico since
2005. In 2006, he joined the Instituto de
Telecomunicações (IT) as a research associate.
His research interests include evolutionary
computation applied to the financial markets,

sensor networks, embedded systems, and mixed signal integrated
circuits. During his research activities, he has collaborated/coordinated
several EU and national projects.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

