
Virtual Static Security Analyzer for Web
Applications

Mihail Brinza, Miguel Correia, João Pereira
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Lisbon, Portugal

{mihail.brinza, miguel.p.correia, joao.d.pereira}@tecnico.ulisboa.pt

Abstract—Web applications are popular victims of injection
attacks such as SQL injection and cross-site scripting. Vulnera-
bility detection tools allow preventing these attacks but are often
bound to a single language and hard to port to new languages. We
propose a new approach to support the addition of new languages
without much effort. In order to achieve this, our solution does
not analyze the source code AST directly, instead, it traverses
the source code AST and builds a generic AST (GAST) from it.
Then, the tool analyzes the GAST to find vulnerabilities. This
way we decouple the analysis and the source code parsing. To
add support for a new language we just need to generate a
parser and write a converter for that AST, which is usually less
than 110 lines of code. We implemented a tool called GT with
this approach. The tool currently supports four languages: Java,
PHP, Python and JavaScript. It was tested against several web
applications written in the same languages.

I. INTRODUCTION

In the past couple of decades, research on web security
and bug finding tools have seen a big increase. This is due
to the fact that software vulnerabilities can have devastating
effects on companies and/or its clients [1]. In 2017, hackers
have compromised the sensitive information of 145 million
American customers from Equifax, one of the three major
consumer credit reporting agencies in the U.S.A., leading to
hundreds of millions of dollars of loss to the company [2].

Web applications are popular victims of security attacks
since they accept potentially malicious user input and incor-
porate it into dynamically generated code. For example, a user
may have to fill a form, post a comment, or submit a username
and a password for authentication. The application then takes
this user-provided input and inserts it into a dynamically
generated program in another language (e.g., a new client-side
script, or an SQL or JavaScript query to a back-end database).
If the user input reaches these scripts/queries without first
being validated and sanitized, then there is probably a vul-
nerability.

Code injection attacks such as SQL injection or cross-
site scripting were considered the top security problems in
2017 by OWASP [3]. These attacks occur when a malicious
user manages to inject his code into dynamically generated
scripts/queries, usually by adding meta-characters to the input.
By doing this, an attacker could change the behavior of the
application, steal data, compromise database integrity and/or
bypass authentication and access control, violating system
correctness, security, and privacy properties.

Injection vulnerabilities are caused mainly by poor user
input sanitization, the use of languages where it is easy to

write insecure code (e.g., PHP, C) and programmers that do
not have much knowledge about software security [4].

In order to detect and prevent injection attacks, we need
automatic detection mechanisms. While researchers have tried
many approaches over the past decades, (e.g., static and
dynamic taint analysis, symbolic execution, etc.) the dominant
trend is towards increasingly complex tools. However, the
more complex a tool is, the worse it scales, the harder it is to
maintain and understand, and the more assumptions it makes,
limiting the programs it can analyze.

One big problem of the increasing complexity in vulnera-
bility detection tools is that most of the times they are not
portable. We use the term portable to refer to approaches that
either support different languages or to which it is easy to add
support for a new one. Although most of the programming
languages we use nowadays to build web applications have
a lot of similarities between them, vulnerability detection
tools still seem to struggle when it comes to supporting more
than one language. Many of them are wedded to a specific
language [5]–[12], a specific compiled code [13]–[15] (e.g.,
x86 binary, bytecode), or depend on modified runtime engines
[5], [16]. Porting one of these tools to another language
basically requires to implement it again from scratch.

Since there is a wide range of languages available to build
web applications, the lack of portability of the detection tools
can be considered a problem and a limitation. However, there
are some approaches that solve this issue to some degree which
we discuss in Section V. Also, the tools that are specific to
a language have the advantage of being able of taking into
account every feature of that specific language, which in theory
could lead to a more precise analysis.

In this paper we present a new static taint analysis ap-
proach, alongside a tool we implemented with this approach,
called Generic Taint analyzer (GT), that aims to solve the
problem of portability while being context-sensitive and keep-
ing low rates of false positives and negatives. Our solution
is not bound to a specific language and can be extended to
support a new language with a relatively small amount of
work and lines of code. Traditional static taint analyzers parse
the code and then analyze the resulting abstract syntax tree
(AST). The nodes that the AST consists of are specific to
the parsed language, making the tools bound to that language.
However, most of the languages we use nowadays to build web
applications are similar. Languages usually consist of classes,
attributes, functions or methods, statements, expressions, etc.
Even between languages such as PHP and Java, that are

1

apparently very different, we find many of these structural
similarities. Based on this fact, our approach converts the
source code AST to a simple, generic abstract syntax tree –
GAST – that can represent a large set of languages used in
web applications. More importantly, GAST does not represent
all the details of a language. Instead, it only has the aspects
that are actually used in the analysis. This way, we use the
same code to find vulnerabilities, regardless of the language
being analyzed. The GAST allows us to keep the source code
parsing and the analysis decoupled.

Due to the use of GAST, the analysis is divided into three
steps, each done by a module (parser, converter, analyzer):

1) Use a parser specific to the language to get the source
code AST

2) Convert the source code AST to a GAST using a specific
converter

3) Run an analyzer on the GAST to find vulnerabilities. In
our case, the analyzer is a static taint analyzer

The only modules that are bound to each language are
the parser and the converter; the analyzer is language-
independent. Since parsing several different languages is a
complex problem, we use ANTLR4 (ANother Tool for Lan-
guage Recognition) to generate the parser, parse the source
code and build the AST. ANTLR4 is a parser generator with a
big community that provides grammars under the MIT license
for virtually any language. This way, when adding support for
a new language we only need to generate a new parser with
ANTLR4 and program a new converter, which in our opinion
requires a small amount of work.

When implementing the GT tool, we started by adding
support for PHP and Java. Later, to assess portability we
extended the tool to support JavaScript and Python. The
converters for the four languages supported at the current stage
– Java, PHP, Python and JavaScript– are less than 110 lines
of code each.

The main contributions of this paper are: (1) an approach for
improving portability of static security analyzers by converting
the source code AST to a GAST; (2) a open-source tool
that implements this approach written in Java for applications
written in Java, PHP, Python and JavaScript.

II. INPUT VALIDATION VULNERABILITIES

This section briefly presents a list of vulnerabilities con-
sidered in this work. We can divide them in four categories
[17] - query manipulation, client-side injection, file and path
injection and command injection. The main problem of all
these vulnerabilities lies in the improper validation of user
input. Our work focuses on this kind of vulnerability.

A. Query Manipulation
These vulnerabilities are associated with the construction of

queries or filters that are executed by some other engine (e.g., a
database management system). If the query is constructed with
unsanitized inputs, then it is possible to modify the normal
behavior.

All vulnerabilities in this category can be prevented by
sanitizing user input, so it does not contain meta-characters
that can alter the behavior of the engine:

SQL Injection: vulnerability caused by the use of string
building functions to create SQL queries. An attack consists
of mixing normal characters with meta-characters. In the
example of Listing 1, a malicious user can provide a username
"admin’ ---" causing the query to execute without the
need of a password.

1 $name = $_GET[’username’];
2 $pass = $_GET[’password’];
3 $query = "SELECT * FROM users
4 WHERE name=’$name’ AND password=’$pass’";
5 $result = mysql_query($query);

Listing 1. PHP code vulnerable to SQL Injection

NoSQL Injection: Similarly to relational databases, non
relational are also vulnerable to injection attacks.

XPath Injection: This vulnerability is very similar to SQL
Injection, but in this case, data is injected in XML documents,
which are often used to store data or configurations. To prevent
this vulnerability, it is enough to check if the input contains
malicious characters.

LDAP Injection: (Lightweight Directory Access Protocol)
Injection is also exploited by providing meta-characters to
string-building functions. LDAP Injection attacks aim to mod-
ify the structure of the filter and retrieve data from a directory.

B. Client-Side Injection

The vulnerabilities in this category allow an attacker to
execute malicious code in the victim’s browser. This kind of
attack is not against the application itself but against the user
and can be prevented by either sanitizing or encoding the input.

Cross-site scripting (XSS): There are three types of XSS
attacks: reflected or non-persistent, stored or persistent and
DOM-based. In this paper we only consider the first two types.

A program vulnerable to reflected XSS can have a single
line, ”echo $ GET[’user’];” The attack consists of convincing
the user to click on a link to the web application with a
malicious script which will be reflected by the echo instruction.
(e.g., www.a.pt?user=¡script¿ *malicious code*¡/script¿).

A stored XSS consists of two steps: first, the attacker inserts
a malicious script in the server, then later, the server returns
that script to one or more users.

Header injection: allows an attacker to break the HTTP
response with ”\n” and ”\r”. This allows the attacker to inject
malicious code in headers or even a new HTTP response. It
can be avoided by sanitizing these characters.

Email injection: Very similar to Header Injection, it has the
goal to manipulate email components (e.g., sender, destination,
message) by injecting the line termination character. In this
case, sanitizing the input solves the problem as well.

C. File and Path Injection

This category consists of vulnerabilities where the user can
control the path or the URL of the file included. Thus allowing
him to inject malicious files (Remote file inclusion) or read
arbitrary files from the server (Directory/Path traversal).

2

D. OS Command injection

This category consists of vulnerabilities where the user can
control the input to functions that execute OS commands (e.g.,
shell exec in PHP). Allowing the attacker to execute arbitrary
code in the server.

III. GENERIC TAINT ANALYZER

In this section we explain in-depth our approach at solving
the complex problem of developing a portable static taint
analyzer. Our solution, besides being portable, also aims to
be able to perform a context-aware analysis.

As stated before, static analyzers are most often bound to
a single language and depend on the details of that language.
However, there are a lot of similarities between programming
languages, and our approach explores just that. If we take a
look at the top trending languages in 2020, ranked by IEEE
Spectrum [18], used to build web applications, we can divide
them in two categories:

1) Dynamically typed – Languages that do not check
or enforce type-safety at compile-time [19]. Instead,
type-checking is done during runtime (e.g., Python,
JavaScript, PHP and Ruby).

2) Statically typed – Type checking is done at compile-time
or both (e.g., Java, C#, Go and Dart).

The languages from each category have many similarities
between them. Take for instance JavaScript and PHP, which
are very common on web applications. Both of them are
object-oriented, have methods, functions, attributes, variables,
expressions, etc... Even the control flow statements are prac-
tically the same (e.g., if, switch, while, for, do while etc.).
Furthermore, the data flow is almost identical, using assign-
ments.

Now, if we compare Java and C# the same is true. Moreover,
even comparing languages between categories (e.g., Java and
PHP) we see that many of their features overlap. The main
difference is that we know the types when analyzing the
source code. Therefore, we concluded that when it comes to
static taint analysis, we can abstract many web programming
languages.

With this in mind, our approach introduces a new way of
building static analyzers, which consists of having a simplified,
generic AST (GAST) that can represent the structure of the
source code of a large set of languages found in web applica-
tions. The GAST, similarly to the micro-grammars approach
[20], does not depend on every detail of the languages. Instead,
it only represents what is absolutely needed to perform a data
flow analysis (in our case, static taint analysis). Section III-B
explains the abstractions that were made to build the GAST.

With the addition of the GAST, our analysis gains an
extra step comparing to traditional tools. Usually, analyzing
a program consists of first parsing the source code and
then traversing the resulting AST to find vulnerabilities. By
contrast, our approach adds a new, additional step, which
consists of converting the source code AST to a GAST.
Then, we perform the taint analysis on the GAST to detect
vulnerabilities in the code. This way, the module that performs

the taint analysis is completely independent of the language
being analyzed.

Next, we describe the architecture and data flow of GT.
Then, we present the structure of the GAST and how to build
it. Finally, we discuss the features of our taint analysis and
the compromises and choices that were made.

A. Architecture and Data Flow
In order to implement a tool that can support several

languages simultaneously, we need a decoupled and modular
architecture. The architecture of our tool, represented in Figure
1, consists mainly of four modules: Parser, AST Converter,
GAST Builder and Taint Analyzer.

Parser: Takes as input the source code and produces a
source code AST, specific to the language. This module is
language-dependent, meaning that every time we add a new
language, we need a new parser for that language. Since
parsing a full-blown language is a complex task, we delegate
it to ANTLR4, which is a widely used parser generator that
uses LL for parsing [21]. ANTRL4 has a big community
and provides grammars under the MIT license for virtually
any language. This way, thanks to ANTRL4, our parsers
consist simply of generated code. Furthermore, ANTRL4 also
generates tree walkers, which we use to traverse the AST.

AST Converter: Traverses the source code AST using the
generated tree walker and raises events to the GAST Builder
(e.g., entering and exiting class, methods or functions dec-
larations). These events allow the GAST Builder to create
the GAST. This module is the only one needed to program
whenever adding support for a new language.

GAST Builder: Reacts to the events from the AST Converter
and internally builds the GAST. Section III-C shows more in-
depth the process of building the GAST.

Taint Analyzer: Module that takes as input the GAST from
the GAST Builder and a configuration file where we can
specify the value of several parameters, such as:

• Sensitive sinks – functions that when called with tainted
arguments may result in a vulnerability (e.g., mysql query
in PHP).

• Sanitization functions – For each sensitive function we
can set a list of functions that can sanitize its inputs.
A sanitization function is a function that cleans the
input from malicious characters and whose return value
is always untainted (e.g., one sanitization function for
mysql query is mysqli real escape string). This map-
ping between sensitive and sanitization functions allows
us precisely specify the correct sanitization function for
each sensitive function, thus reducing false negatives in
our analysis.

• Entry points – the function which is invoked by the server
when the user makes a request. We also specify which
arguments of the entry point function are tainted.

After traversing the GAST, GT produces a vulnerability
report.

B. GAST
Similarly to micro-grammars [20], the GAST aims to be

an intermediate structure that does not depend on every detail

3

source	code	AST

Parser

AST	Converter

Taint	analyzer

source
code

report

options

GAST

GAST	Builder

events

Fig. 1. The GT tool data flow and architecture

of any language. Instead, it abstracts most of the complex-
ity by using generic statements. Each generic statement has
a correspondence with a concrete statement of almost any
programming language. This section describes the GAST
structure by presenting every element that can be part of it.

Constant: Comprises strings, integers, floats, null values,
etc. Basically, everything that is directly hardcoded in the
source code is considered a constant. Since this element never
changes, it is impossible to be tainted.

Variable: As the name says, it represents the variables in the
code. Contains the name of the variable, and if the language
is statically typed, it also contains the type of the variable. It
can become tainted through assignments.

Attribute: Represents an attribute in a class. It has a name
and a type. Also, it can be tainted.

Parameter: Represents a function or a method parameter. It
can be tainted if it is the parameter of the entry point function,
or if the argument passed to a function is tainted.

Expression: Represents a generic abstraction of any ex-
pression (e.g., arithmetic, logical, bitwise, comparison etc.). It
consists of a list of expressions. Take for instance the Listing
2 where to each variable, a, b, c we assign an expression. In
our representation, all these expressions are equal. They all
consist of an expression containing two members: a variable
named ”x” and a constant with value ”5”. This allows us to
abstract any operator due to the fact that in data flow analysis,
operators (except the assignment operators) do not influence
taint propagation. For instance, if the variable x in Listing 2 is
tainted, then, all variables will be tainted, regardless of their
operator.

Since an expression consists only of a list of other expres-
sions, the taint propagation is a result of a logical OR of all
elements in the expression. Meaning that if any element in the
list is tainted, the whole expression is marked as tainted. We
do not consider implicit information flows [22].
1 boolean a = x == 5;
2 int b = x + 5;

3 int c = x * 5;

Listing 2. Expression assignment examples

Function Call: This is a subtype of expression with the
difference that it has a name, referencing the function it
is invoking. The arguments are just a list of expressions
that can contain anything. For instance, the function call
executeQuery(getQuery(”name”)) is named executeQuery and
has as argument another function call named getQuery. The
latter having as argument a constant with value ”name”.

A function call is considered tainted if any of the following
conditions is true:

• the called function is in the source code and it returns a
tainted value

• the called function is in a library and any of its arguments
is tainted

This element also represents method calls that do not have
an object as a source (e.g., methods from the same class or
any superclass that are not preceded by the keywords this or
super in Java).

Assignment: Statement that represents, as the name indi-
cates, an assignment. Consists of two expressions, one on the
left-hand side and another on the right-hand side. It is the
main way of propagating taint marks. Whenever the expression
assigned on the right is evaluated as tainted, the mark is
also propagated to the expression on the left. Usually, the
expression on the left-hand side is just a variable. Listing 2
contains examples of assignment statements.

Return: Statement that represents the end of the data flow
for a path. The returned value is represented by an expression,
which can be tainted.

Throw: Statement very similar to the return statement. The
only difference is that when a return statement is found in
the callee function, the data flow is transferred to the caller
function. Whilst in the case of a throw statement, the data flow
is transferred to a catch block. The thrown expression can be
tainted.

Method Call: This element represents method calls. It
consists of a source, which can be an object or a class (if
the method is static). Listing 3 shows examples of method
calls where the source is an object and a class respectively.
A method call is tainted if any of the following conditions is
true:

• the method is not in the analyzed code and the source is
tainted

• the method is in the source code and returns a tainted
value

1 context.getUsers();
2 MyClass.myStaticMethod();

Listing 3. Method call examples

New: Expression that represents an object creation. It works
mostly as a function call to the constructor. In most languages,
the constructor has the same name as the class. But in some
languages, the name of the constructor is different from the
name of the class (e.g., PHP, Python). For these cases, we keep
a configuration file with the names. For instance, new Foo()
in PHP would result in the call of construct() function of
the class Foo.

4

Attribute access: Represents a direct access to an object
attribute (e.g., context.myProperty).

Code block: Represents a block of code. Consists of a list
of statements. Listing 2 is an example of a code block with
three statements.

Conditional statement: This element represents loops (e.g.,
for, while, do while etc.). Consists of a code block and a
condition, which is an expression.

Try Catch: Statement composed of a try code block, a list
of catch code blocks and a finally code block.

If: Statement that represents control flow statements (e.g.,
if-else, if-elseif-else and switch). Each option in the control
flow has its own code block (e.g., if-else has two code blocks
– one for if and another for the else).

Function: Element that represents a method or a function.
It has a name, a return type, a list of parameters and a code
block.

Class: Element that represents a class. It has a name, a list
of attributes and a list of methods. Furthermore, it can have a
superclass.

File: This is the root element of any GAST. It has a code
block (for languages like PHP or JavaScript), a list of classes,
a list of functions and a list of imported files (used to trace
calls to imported function).

One important note to keep in mind is that not every
language will use every feature from the GAST. For instance,
the file element can have statements directly in the root block.
Now, this is a feature that it is only used by languages such
as PHP and JavaScript. By contrast, Java and C# do not allow
code outside classes, so they do not make use of this feature.

C. Building the GAST

In order to build the GAST, we first parse the source code
using a parser generated by ANTLR4 to obtain the source code
AST. Then, we convert the AST to the GAST representation.
To do this, we use a tree walker also generated by ANTLR4.
The tree walker, which conceptually is a visitor, traverses every
node of the AST and for each node it invokes a function when
it enters or exits that node. Therefore, in order to convert the
AST to GAST we need to override some of these methods in
the AST Converter to pass state to the GAST Builder. This is
due to the fact that the GAST Builder keeps the current context
in a stack and these methods indicate what is the new context
to push and when to pop it. This way the AST Converter is
just a class that overrides a set of methods from the generated
tree walker.

Listing 4 shows part of the PHP AST Converter. In the
example, we override two methods from the generated tree
walker. The first method is invoked when the tree walker enters
a Func node and the second when it exits the same node.
So, when the tree walker reaches a Func node, it invokes the
method enterFunc from the AST Converter. The latter then
invokes a method from the GAST Builder that pushes the
function element to the stack. This way, the GAST Builder
is able to keep track of the context. For instance, if the tree
walker encounters a Parameter node while in the Func node,
the parameter would be added to the element on the top of the

1 @Override
2 public void enterFunc(FuncContext ctx) {
3 gastBuilder.addFunction(ctx, ctx.name());
4 }
5
6 @Override
7 public void exitFunc(FuncContext ctx) {
8 gastBuilder.exitFunctionOrMethodDeclaration();
9 }

Listing 4. Function declaration example

Assignment

left

Variable

name

a

type

boolean

right

Expression

members

Variable

name

x

type

int

Constant

value

5

Fig. 2. GAST resulting from executing Listing 5

stack, which in this case would be a function. The function is
then popped from the stack when tree walker exits the Func
node, invoking the method exitFunc which calls a method from
the GAST Builder that pops the function (Line 8).

One important note is that we only push to the stack
statements (e.g., functions, classes, assignments, conditional
statements), which are nodes in the AST, while elements such
as variables, constants or parameters are not pushed. This is
due to the fact that they represent leaves in the AST, so they
would be pushed and popped right away. This simplification
allows us to override less methods from the tree walker when
writing the AST Converter (e.g., we do not need to override
exitVariable).

Let us now consider Listing 5 where Line 1 corresponds to
the assignment being built and Lines 3-9 to the sequence of
calls made by the AST Converter to the GAST Builder. Due
to lack of space, the signatures of the overridden methods are
omitted. When the tree walker enters the assignment, the AST
Converter calls a method that adds an assignment to the stack
(Line 3). Next, it enters a variable and since the assignment
is on the top of the stack, the variable becomes the left side
of the assignment (Line 4). Then, the tree walker enters the
expression ”x == 5” and the AST Converter calls a method
that adds an expression to the stack (Line 5). After that, it
enters a variable and later a constant, which will both be added
to the expression, since it is the top of the stack (Lines 6, 7).
Finally, the tree walker first exits the expression and then the
assignment, calling exitStatementOrExpression twice (Lines 8,
9). Figure 2 shows the GAST representation of the assignment.

1 boolean a = x == 5;
2
3 gastBuilder.addAssignment(ctx);
4 gastBuilder.addVariable(ctx.VarName());
5 gastBuilder.addExpression(ctx);
6 gastBuilder.addVariable(ctx.VarName());
7 gastBuilder.addConstant(ctx.getText());

5

1 String param = req.getParameter("name");
2 StringBuffer buf1;
3 StringBuffer buf2;
4
5 ...
6
7 buf1.append(param);
8 String query = buf2.toString();
9 con.executeQuery(query);

10
11 buf2 = buf1;
12 query = buf2.toString();
13 con.executeQuery(query);

Listing 6. Taint propagation example

8 gastBuilder.exitStatementOrExpression();
9 gastBuilder.exitStatementOrExpression();

Listing 5. Assignment build call sequence

Converting the AST is as simple as identifying the methods
needed to override from the generated tree walker, and then
call the methods from the GAST Builder. For example, the
AST Converter for PHP has 67 lines of code (counting only
statements), and from these 67 statements, there are 29 that
are different, meaning that a lot of the methods invoked are the
same (e.g., exitStatementOrExpression is invoked 23 times).

D. Analysis features

Our approach is to use a context-aware static taint analysis
to find all potential security vulnerabilities. To be able to
statically find vulnerabilities, it is necessary to know what
objects each variable may refer to, a general problem known
as pointer, points-to or alias analysis [23]. Also, the tool must
perform a path aware taint propagation. Furthermore, it must
be able to detect function/method calls between different files.

Next, we discuss the importance of the alias analysis. Then,
we present our solution to a path aware analysis and the
method GT uses to find function/method calls from different
files. Finally, we describe our approach to handle loops.

Pointer information: To illustrate the importance of pointer
information, consider the example from Listing 6. Assume that
param is tainted and that executeQuery is a sensitive function.
In this example, a more conservative approach may assume
that buf1 and buf2 may reference the same object, thus marking
both calls to executeQuery as tainted. Instead, GT traces the
data flow through assignments made in each execution path.
Thus, being able to identify that Line 9 is a safe call and Line
13 is a vulnerability.

Pointer analysis has been subject of much compiler research
over the last decades [24], [25]. Since determining what
heap object a given variable may point to is undecidable,
our approach computes only an approximation based on the
data flow through assignments. Meaning that, in much more
complex cases, when GT is unsure to which reference an
object is pointing to, it assumes that they all point to the same
instance.

Path Analysis: In order to perform a precise static taint
analysis it is very important to be able to track the data through
different paths, ideally all of them. However, in practice, it is

1 String query="SELECT * FROM users WHERE name=";
2 input = null;
3 if (input != null){
4 query = query + input;
5 } else {
6 query = query + "Bob";
7 }
8 con.executeQuery(query);

Listing 8. Path propagation example with unreachable branch

almost impossible since static path analysis is a very complex
problem. The path is often decided at runtime due to features
like instanceof, dynamic dispatch or reflection in Java
[26]. Furthermore, these features differ between languages.
Because of this, we can not have the most precise path analysis
for each language. Instead, we perform an approximate path
analysis based only on the control flow statements, ignoring
their conditions. This means that we only look at the structure
of the code, and for each conditional statement we propagate
the data flow twice: one assuming that the flow enters that path
and another assuming it does not. This assumption has the
disadvantage of propagating taint marks through impossible
paths.

Consider now the example from Listing 7 and assume that
the variable input is tainted. Observing the code, we can easily
identify an SQL injection vulnerability at Line 7, since at Line
3 the query is concatenated with the input. In this example,
GT propagates the taint marks through two paths: the first
executing the if and the second the else. Finally, it reports the
vulnerability at Line 7. Also, it mentions that this vulnerability
only happens if the expression ”input != null” at Line 2 is
true. In more complex cases, for each vulnerability GT returns
the call stack and the conditions that need to be met.
1 String query="SELECT * FROM users WHERE name=";
2 if (input != null){
3 query = query + input;
4 } else {
5 query = query + "Bob";
6 }
7 con.executeQuery(query);

Listing 7. Path propagation example

Let us now consider the example from Listing 8. This
example is almost identical to Listing 7, with the exception
of Line 2. This assignment makes the instruction from Line 4
unreachable, meaning that in practice, the code has only one
possible path. However, GT has exactly the same output as
the previous example: two paths and one vulnerability. This
is due to the fact that GT, and static analysis tools in general,
struggle with detecting whether a condition can be true or not.

This way, we perform an approximate path analysis based
on the control flow statements and their code blocks. The
advantage of this kind of path detection is that it can be applied
to any language. Furthermore, from our testing, most of the
times it is enough to detect vulnerabilities, even though it is
not the most accurate.

Cross-file function referencing: In the last decades, web
applications have become increasingly more complex, con-
sisting of many files. For this reason, in order to perform a
precise static analysis, we need to be able to perform taint

6

1 $name = $GET_["name"]
2 $query = "SELECT * FROM users WHERE name="
3 while(true){
4 mysql_query($query);
5 $query += $name;
6 }

Listing 9. Vulnerability in while loop

propagation between files. However, languages have different
ways of importing code. For instance, Java imports packages,
which consist of a set of classes, and PHP imports files directly
[27], [28].

To mitigate this problem, our approach supports two generic
ways of importing code:

1) File inclusion – usually used by dynamically typed
languages, such as PHP, Python and JavaScript. Each
file has a list of imported files. When GT finds a call
to a function that is not found in the file, it searches in
all imported files for that function. If more than one is
found, it analyses all of them.

2) Type tracking – works for most of the object-oriented
languages, such as Java and C#. Consists of checking the
type of the target of the method call and then checking
if that class is in the source code. If the class is found
it tries to find the method. If the method is not found,
it goes to the superclass.

From our testing and analysis, most of the times GT
correctly propagates the flow to other functions.

Loops Analysis: Loops have always been tricky for static
analysis tools. This is due to the fact that in many cases it is
impossible to know how many times a loop will execute, if
any. They are often influenced by the user. For this reason,
our tool takes a simplistic approach to deal with loops, which
is analyzing each loop twice. This approach helps to mitigate
cases where a variable only becomes tainted after the first
iteration. Either way, for more flexibility we left the value
configurable, so we could change it depending on the program
we want to analyze.

To illustrate this issue, consider Listing 9. In this example,
if the while loop executes once, there is no vulnerability. This
happens because in the first iteration $query is not tainted
upon executing mysql query. However, after executing Line 5
once, $query becomes tainted which makes the next call to
mysql query unsafe. By propagating the taint more than once,
GT is able to detect this kind of vulnerability.

IV. EXPERIMENTAL EVALUATION

The objective of this section is to show that GT is capable of
finding vulnerabilities in web applications written in different
languages and that the effort needed to add a new language
to the tool is relatively small. First, we present the results of
analyzing several web applications in Java, PHP, Python and
JavaScript. Then, we discuss the effort needed to add support
for another language.

A. Vulnerability detection
In order to show the ability of GT to analyze and find

vulnerabilities in web applications, we tested GT against two

TABLE I
DELIBERATELY INSECURE WEB APPLICATIONS

Application #loc Language Files Vuln. Found False pos. False neg.

WebGoat 8 13898 Java 320 11 1 0
Vulnado 423 Java 11 3 0 0
Dvja 950 Java 21 4 0 0
DVWA 19651 PHP 358 18 3 0
OWASP Vwa 1018 PHP 27 17 1 0
Vulnerable-node 4207 JavaScript 13 5 0 0
Dvna 771 JavaScript 14 0 0 4
Goof 571 JavaScript 8 3 0 0
NodeGoat 2697 JavaScript 49 6 0 0
Vulpy 2373 Python 57 6 0 0
Dvpwa 674 Python 21 7 0 0

Total 47233 899 78 5 4

TABLE II
REAL-WORLD WEB APPLICATIONS

Application #loc Lang. Files Vuln. found

SquirrelMail 1.5 46214 PHP 376 0
PhpMyAdmin 4.9.5 153576 PHP 740 1

Total 199790 1116 1

types of web applications. First, we chose 11 open source
applications from GitHub that are deliberately insecure, with
documented vulnerabilities. The criteria used to choose them
was the number of stars that each application has on GitHub,
essentially choosing the most known ones. To run the tests,
we had to manually identify the entry points and sensitive
functions for each application, meaning that GT analyzed each
application several times, once for each entry point. Second,
we also tested GT against two real-world open-source web
applications. Since these applications are much bigger, we
assumed that every file from the application is a web page
that can receive user input, tainting the variables that might
be influenced by the user (e.g., $ GET[*] in PHP). Tables I
and II show the results of our analysis. In the data, we only
include files with the extension that we analyzed (e.g., *.java
and *.php). Furthermore, we excluded comments and blank
lines from the lines of code count.

GT analyzed 2015 files and 247023 lines of code and
managed to find 79 documented vulnerabilities, such as SQL
injection, cross-site scripting, command injection and file
inclusion. The analysis times were quite low. The application
that took the longest to analyze was PhpMyAdmin with 82
seconds. However, the analysis times varied a lot depending
on the entry point, meaning that the longer the path through
which the data flows, the longer the analysis time.

In our tests, the tool had 4 false negatives in Dvna because
all the dangerous code is in anonymous functions that are
called by referencing variables, and our tool does do not track
the value of each variable during the analysis of the code.
Also, we had 1 false negative when testing PhpMyAdmin.

GT only raised 5 false positives in the applications from
Table I, due to data flow propagation through impossible paths.
In total we had 12.7% of false positives and negatives.

7

TABLE III
CONVERTERS SIZE AND IMPLEMENTATION EFFORT

Implementation Language #loc Unique Hours to
order statements implement

1 PHP 67 49 –
2 Java 108 78 –
3 JavaScript 50 41 7
4 Python 61 49 7

B. Portability

Since the objective of this work is to support several
languages with as little effort as possible, the portability of the
tool is also a metric that we tested. To test the portability, we
first implemented the tool to support PHP analysis, and then
we added support for Java, which is a substantially different
language. While adding support for PHP and Java we were
also developing the other modules, so it is hard to tell how
much time was spent strictly adding support for each language.
However, later, after the tool was built, we added support
for another two very popular web languages: JavaScript and
Python. Table I already shows that GT is also able to find
vulnerabilities in these two languages.

Table III presents the order in which the languages were
added to our tool, the number of lines of each converter,
the number of unique statements and the number of hours
spent developing the tool to support each language. The time
spent to support JavaScript and Python was roughly the same,
seven hours. This is a very low number which validates our
approach for building a portable vulnerability detection tool.
It was possible to

This was due to the fact that the converter needed to develop
to support a programming language is very simple and requires
a small number of lines of code to implement. Basically, the
converter consists of calls to the GAST Builder. In the worst
case, for Java, this component has 108 lines, 30 of which
are repeated (e.g., exitStatementOrExpression() is invoked 19
times), leaving us with 78 unique statements.

In our opinion, the main challenge when adding support
for a new language is identifying which elements from the
grammar are important to the analysis. After that, we just have
to write the converter and some unit tests to make sure the
converter works properly.

V. RELATED WORK

There is a rich body of work in the area of vulnerability
detection, we just summarize the main detection methods by
discussing representative papers, while leaving many others
unreferenced due to lack of space.

Taint Analysis is the most common data flow analysis
technique used for searching for vulnerabilities [6], [8], [13]–
[15], [29]–[31]. It consists of tracking the flow of sensitive
information by marking user input as tainted and then prop-
agate the taint marks recursively to the variables that are
influenced by other tainted data. Then, it checks if tainted data
reaches sensitive functions (e.g., eval, my sql query in PHP).
If it does, then there is probably a vulnerability that could

be exploited. Taint analysis can be applied to either source,
binary or intermediate code.

Static analysis tools are used to automate the detection
of bugs and vulnerabilities. Nowadays, they are often part
of the development process, with their use being automated
by continuous integration pipelines [32]. The reason is that
they are a cheap way of detecting issues in code, giving the
developers more confidence in their software.

SonarQube [33] is a widely used commercial static analysis
tool. Performs static analysis based on a set of rules that
can be defined by the user. It is able to detect bugs (e.g.,
possible null references) or bad practices in source code (e.g.,
empty catch blocks in Java). Furthermore, it also performs
static taint analysis to find vulnerabilities. The taint analysis
supports 4 languages, while other features support more than
20. However, since SonarQube is a commercial tool and it
is not open source, we can not make any assertion about its
complexity.

FlowDroid [8], is a precise static taint analyzer specifically
tailored for Android and Java applications. Analyzes apps’
bytecode and configuration files to find vulnerabilities. Flow-
Droid is precise because it models the lifecycle of android
apps and it is context, field, object and flow-sensitive. Pixy
[7] performs taint analysis on PHP source code and extends it
by using alias analysis, which takes into account the existence
of aliases i.e., of two or more variable names that reference
the same variable.

Notzli and Engler proposed the notion of micro-grammars
[20]. They used this concept to implement an effective static
analysis tool to find bugs in programs (e.g., null pointers,
deadlocks). By levering micro-grammars, the tool is orders of
magnitude less complex. This was possible by using a new
source code parsing technique based on incomplete micro-
grammars, instead of depending on every syntax detail of a
language or its compiler. Traditional checking systems use
parsers designed to parse a complete language syntax, thus
rejecting any input that does not lead to a valid parse. On the
other hand, micro-grammars parsing for bug finding has two
main differences from traditional parsing: (1) When a tradi-
tional parser finds a non-matching input to its specifications,
it returns an error. By contrast, when a micro-grammar parser
hits a non-matching input, it simply slides forward by one
token and tries again. (2) Micro-grammars allow developers
to perform fine-grained input skipping by using wildcard non-
terminals that lazily match any input up to a suffix.

The implementation of this static checker is very modular
and it is composed of a lexer, parsers and checkers. There
is a parser for each non-terminal, for example the parser for
C is composed of smaller parsers for if statements, while
loops, for loops, etc. Then all these small parsers compose
the parser for C. This modularity brings another big advantage,
the possibility of reusing a lot of these small parsers between
languages, for example, C and Dart share many parsers. The
use of micro-grammars and modular architecture make the
tool relatively easy to port to other languages. This somehow
inspired our work, since our tool also does not depend on
every detail of a language.

Andromeda [34], is a demand-driven static taint analysis

8

tool that supports Java, C# and JavaScript. It is flow and
context-sensitive. Furthermore, it extends its analysis by being
integrated with Framework For Frameworks (F4F), which is a
solution for augmenting taint analysis with precise framework
support [30].

VI. CONCLUSION

In this paper we presented an approach that aims to reduce
the complexity of static security analyzers. To do this, we
build a generic AST (GAST) from the source code AST.
The GAST is not bound to any language and can represent
a large set of languages used in web applications. This way,
we perform our analysis on the GAST, allowing us to decouple
the source code parsing from the vulnerability detection. The
solution was implemented in a tool called GT, using Java
with parsers and tree walkers generated by ANTLR4. Our
evaluation shows that GT can find vulnerabilities in different
types of programming languages (statically and dynamically
typed) and that our goal was successfully achieved. Moreover,
the evaluation also shows that our approach requires a small
amount of development time to support a new programming
language.

Acknowledgements We warmly thank Prof. Ibéria Medeiros for
feedback on an earlier version of this work. Research supported
by national funds through Fundação para a Ciência e Tecnolo-
gia (FCT) with reference PTDC/CCI-INF/29058/2017 (SEAL) and
UIDB/50021/2020 (INESC-ID).

REFERENCES

[1] R. Telang and S. Wattal, “An empirical analysis of the impact of software
vulnerability announcements on firm stock price,” IEEE Transactions on
Software Engineering, vol. 33, no. 8, pp. 544–557, 2007.

[2] H. Berghel, “Equifax and the latest round of identity theft roulette,”
Computer, vol. 50, no. 12, pp. 72–76, 2017.

[3] J. Williams and D. Wichers, “OWASP Top 10 - 2017 rcl - the ten most
critical web application security risks,” OWASP Foundation, Tech. Rep.,
2017.

[4] S. Jain and M. Ingle, “Review of security metrics in software de-
velopment process,” International Journal of Computer Science and
Information Technologies, vol. 2, no. 6, pp. 2627–2631, 2011.

[5] S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia: detecting code
injection attacks with precision and efficiency,” in Proceedings of the
20th ACM Conference on Computer and Communications Security,
2013, pp. 1181–1192.

[6] I. Papagiannis, M. Migliavacca, and P. Pietzuch, “PHP Aspis: using
partial taint tracking to protect against injection attacks,” in 2nd USENIX
Conference on Web Application Development, vol. 13, 2011.

[7] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool
for detecting web application vulnerabilities,” in 2006 IEEE Symposium
on Security and Privacy (S&P’06), 2006, pp. 6–pp.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, 2014.

[9] P. J. C. Nunes, J. Fonseca, and M. Vieira, “phpSAFE: a security analysis
tool for oop web application plugins,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2015, pp. 299–306.

[10] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in 2008 ACM/IEEE 30th International Conference on
Software Engineering, 2008, pp. 171–180.

[11] J. Dahse and T. Holz, “Simulation of built-in PHP features for precise
static code analysis,” in Network and Distributed System Security
Symposium, vol. 14, 2014, pp. 23–26.

[12] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
Java applications with static analysis,” in USENIX Security Symposium,
vol. 14, 2005.

[13] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis
framework,” in Proceedings of the ACM International Symposium on
Software Testing and Analysis, 2007, pp. 196–206.

[14] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” in Network and Distributed System Security Symposium,
vol. 5, 2005, pp. 3–4.

[15] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “DTA++: dy-
namic taint analysis with targeted control-flow propagation,” in Network
and Distributed System Security Symposium, 2011.

[16] J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow in
commodity jvms,” ACM Sigplan Notices, vol. 49, no. 10, pp. 83–101,
2014.

[17] I. V. de Sousa Medeiros, “Detection of vulnerabilities and automatic pro-
tection for web applications,” Ph.D. dissertation, Doctoral dissertation,
Universidade de Lisboa, 2016.

[18] S. Cass, “The top programming languages: Our latest rankings put
Python on top-again-[careers],” IEEE Spectrum, vol. 57, no. 8, pp. 22–
22, 2020.

[19] L. Tratt, “Dynamically typed languages,” Advances in Computers,
vol. 77, pp. 149–184, 2009.

[20] F. Brown, A. Nötzli, and D. Engler, “How to build static checking
systems using orders of magnitude less code,” ACM SIGPLAN Notices,
vol. 51, no. 4, pp. 143–157, 2016.

[21] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic
Bookshelf, 2013.

[22] D. E. Denning, “A lattice model of secure information flow,” Commu-
nications of the ACM, vol. 19, no. 5, pp. 236–243, 1976.

[23] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav, “Alias
analysis for object-oriented programs,” in Aliasing in Object-Oriented
Programming. Types, Analysis and Verification. Springer, 2013, pp.
196–232.

[24] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden, “Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for Java,” in
30th European Conference on Object-Oriented Programming, 2016.

[25] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, 2001, pp. 54–61.

[26] C. Hammer, R. Schaade, and G. Snelting, “Static path conditions
for Java,” in Proceedings of the third ACM SIGPLAN workshop on
Programming languages and analysis for security, 2008, pp. 57–66.

[27] A. Rountev, S. Kagan, and M. Gibas, “Static and dynamic analysis
of call chains in Java,” in Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2004, pp.
1–11.

[28] M. Hills, P. Klint, and J. J. Vinju, “Static, lightweight includes reso-
lution for PHP,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, 2014, pp. 503–514.

[29] D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE Software, vol. 19, no. 1, pp. 42–51,
Jan/Feb 2002.

[30] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg,
“F4F: taint analysis of framework-based web applications,” in Proceed-
ings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, 2011, pp. 1053–
1068.

[31] I. Medeiros, N. F. Neves, and M. Correia, “DEKANT: a static analysis
tool that learns to detect web application vulnerabilities,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 1–11.

[32] S. M. Mohammad, “Continuous integration and automation,” Interna-
tional Journal of Creative Research Thoughts, pp. 2320–2882, 2016.

[33] G. A. Campbell and P. P. Papapetrou, SonarQube in action. Manning
Publications Co., 2013.

[34] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri, “An-
dromeda: Accurate and scalable security analysis of web applications,”
in International Conference on Fundamental Approaches to Software
Engineering. Springer, 2013, pp. 210–225.

9

