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Abstract

This paper 1 presents Worm-IT, a new intrusion-tolerant group communication system with
a membership service and a view-synchronous atomic multicast primitive. The system is
intrusion-tolerant in the sense that it behaves correctly even if some nodes are corrupted
and become malicious. It is based on a novel approach that enhances the environment with
a special secure distributed component used by the protocols to execute securely a few cru-
cial operations. Using this approach, we manage to bring together two important features:
Worm-IT tolerates the maximum number of malicious members possible; it does not have
to detect the failure of primary-members, a problem in previous intrusion-tolerant group
communication systems.

Key words: Byzantine fault tolerance, intrusion tolerance, group communication, view
synchrony, asynchronous distributed algorithms

1 Introduction

Group communication is a well-known paradigm for the construction of distributed
applications. This paradigm has been successfully used to support a large range of

1 Appeared as: Miguel Correia, Nuno Ferreira Neves, Lau Cheuk Lung, Paulo Verssimo.
Worm-IT - A Wormhole-based Intrusion-Tolerant Group Communication System. Journal
of Systems & Software, vol. 80, n. 2, pages 178-197, Elsevier, February 2007

Email addresses: nuno@di.fc.ul.pt (Nuno Ferreira Neves),
lau@ppgia.pucpr.br (Lau Cheuk Lung), pjv@di.fc.ul.pt (Paulo Verı́ssimo).

Preprint submitted to Journal of Systems and Software 21 June 2007



fault-tolerant applications, from databases to web servers. Some examples of cur-
rent applications are the Internet Seismic Processing System (INSP) 2 , the Zope
Replication Service 3 and PostgreSQL-R 4 . These applications use group commu-
nication to support replication, thus increasing fault tolerance.

The two main components of a group communication system are the member-
ship and the communication services. The membership service is the component
in charge of keeping an updated list of the group members, processing joins and
leaves of the group, and assessing the failure of members. The communication ser-
vice provides primitives for data transmission in the group, e.g., reliable, causal
order or total order multicasts.

This paper presents the design and evaluation of the Wormhole-based Intrusion-
Tolerant Group Communication System (Worm-IT). This system appears in the con-
text of recent work in intrusion tolerance, i.e., on the application of fault tolerance
concepts and techniques to the security field (Fraga and Powell, 1985; Adelsbach
et al., 2002; Verı́ssimo et al., 2003). A system is intrusion-tolerant if it tolerates
arbitrary faults, including both accidental and malicious faults, such as attacks and
intrusions (also called Byzantine faults in the literature after Lamport et al. (1982)).
In other words, the system should continue to provide correct services and follow
its specification despite a number of intrusions in the processors and attacks in the
network (e.g., delay, modification, or replay of messages), so that it can be used
to implement secure distributed applications. For instance, take the example ap-
plications above that use group communication to tolerate accidental faults. These
applications run in the Internet so the replicas can be attacked by hackers, viruses
or worms. Worm-IT would allow these applications to run as expected if even a
certain number of replicas were successfully attacked.

Most work in group communication has considered only crash failures (see Chock-
ler et al. (2001) for a survey on this topic). Some of these earlier systems evolved for
a weaker model, which considers that the communication can be attacked, e.g., En-
semble (Rodeh et al., 2001) and Secure Spread (Amir et al., 2005). More recently,
interest emerged in designing group communication systems for environments that
may suffer arbitrary faults, including attacks and intrusions: Rampart (Reiter, 1994,
1996), SecureRing (Kihlstrom et al., 2001) and SecureGroup (Moser et al., 2000;
Moser and Melliar-Smith, 1999). Project ITUA implemented an enhanced version
of Rampart (Ramasamy et al., 2002). These systems guarantee not only the security
of their communication, but also that their specification is attained even if some of
the nodes are attacked and start to behave maliciously. All of them, with the ex-
ception of SecureGroup, have optimal resilience, i.e., they tolerate the failure of at
most f = bn−1

3
c out of n members.

2 http://www.3dgeo.com/products/insp.html
3 http://www.zope.com/products/zope replication services.html
4 http://gborg.postgresql.org/project/pgreplication/
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Worm-IT is composed of a membership service and a view-synchronous atomic
multicast primitive (VSAM). It is based on the primary partition model, i.e., only
processors in the the partition with more processors remain in the group if the
network is partitioned for some reason (Birman, 1997).

Contributions

Every one of these past intrusion-tolerant group communication systems assumes
a homogeneous environment: any component can be equally attacked and fail (al-
though only f members can fail in a window of time); and both the processing and
message delivery delays are unknown (i.e., the system is asynchronous). Albeit
this model looks simple, all systems with optimal resilience – both Rampart/ITUA
and SecureRing – suffer from a theoretical problem with practical consequences.
They depend on the correct behavior of a special group component, the primary-
member (called coordinator in Rampart/ITUA, and token-holder in SecureRing). If
this member crashes or suffers an intrusion and starts to behave maliciously, the
system might be prevented from making progress (e.g., from continuing to deliver
messages). Therefore, the liveness of the system depends on the detection and re-
moval of a faulty primary, something that usually requires assumptions about the
maximum execution times of certain primary-member operations (e.g., maximum
period Tmax to respond to a specific request). This is a theoretical problem because
in asynchronous systems one cannot (or should not) make any time assumptions.
Moreover, from a practical point of view, this also has consequences, namely on the
performance and security of the system. For instance, assuming a long Tmax period
will cause the system to take a long time to recover from a crash in the primary.
On the other hand, assuming a shorter period will make the system vulnerable to
attacks that delay the primary, originating a false detection and its eviction from
the group. This allows malicious attackers to impair the assumption that no more
than f = bn−1

3
c out of n members fail, by causing the removal of correct (primary)

members from the group.

This paper takes a different approach that does not suffer from this problem. Al-
though the difficulty of building complex systems that are secure is conspicuous, it
is currently feasible to build secure distributed systems with limited functionality.
In this paper, we consider that most of the system has the same characteristics as
above: insecure and with uncertain timeliness. However, we also assume the exis-
tence of a special secure distributed component called Trusted Timely Computing
Base (TTCB) (Correia et al., 2002b). The purpose of this component is to provide
a small number of simple services to protocols or applications. Worm-IT runs to
most extent in the “normal” system, but occasionally uses the services provided by
the TTCB to execute some critical steps of its protocols. In this innovative kind
of system architecture, these privileged components have been called wormholes
(Verı́ssimo, 2003). Therefore, Worm-IT can be constructed in a completely decen-
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tralized way, avoiding the above-mentioned problem, at the cost of depending on a
distributed secure component – the TTCB.

The main contributions of the paper are: (1) the presentation and evaluation of a
modular intrusion-tolerant group communication system with optimal resilience
that does not suffer from the problem of detecting the failure of the primary dis-
cussed above; and (2) the description of the first reasonably complex system based
on our novel wormhole-enhanced architecture.

2 The TTCB

Like any other distributed system, Worm-IT uses several support services. Exam-
ples are operating system calls, software libraries and communication primitives.
Worm-IT uses also a set of services provided by a distributed component: the TTCB
(Correia et al., 2002b). We present the TTCB component right away, even before
the system model, due to its novelty and importance to the presentation of the sys-
tem. Moreover, the system model depends on the TTCB, so it is convenient to
presented it first.

 T T C B  C o n t r o l  C h a n n e l

P a y l o a d  N e t w o r k

P r o c e s s o r  2
P r o c e s s e s
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P r o c e s s e s

O S
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O S L o c a l
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T T C B  T T C B

Fig. 1. Architecture of a system with a TTCB.

The architecture of a system with a TTCB is presented in Figure 1. The basic setting
is composed of common hosts (e.g., PCs) interconnected by a network (e.g., an
Ethernet LAN). This setting is called the payload system and is equivalent to what
is usually denominated “the system” in the literature.

The TTCB is a distributed component with local parts in hosts – local TTCBs –
and its own private channel or network – the control channel. This component,
represented in white in the figure, has a few important characteristics:

• it is secure and can only fail by crashing;
• it is synchronous, capable of timely behavior;
• it provides a small set of services that can be used to implement intrusion-tolerant

protocols.
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Worm-IT and other applications based on the TTCB can be implemented, for in-
stance, by a set of processes running in the hosts (see figure). These processes
communicate mostly through the payload network, but they can use the TTCB as
a runtime support to perform some critical steps of their execution. The TTCB is
assumed to be secure. This means, that the results returned by any TTCB service
are assumed to be correct, i.e., according to the specification of that service.

2.1 TTCB Services

Worm-IT uses only three of the services provided by the TTCB (see (Correia et al.,
2002b; Verı́ssimo and Casimiro, 2002) for a complete list and details). The Local
Authentication Service establishes a trusted path between a software entity (pro-
cess, thread, component) and a local TTCB. The service also provides an identi-
fication for the entity before the TTCB (eid). The Trusted Timestamping Service
provides globally meaningful timestamps, since the local TTCBs’ internal clocks
are synchronized.

The Trusted Block Agreement Service (TBA) is the main service used by Worm-IT,
therefore we describe it in more detail. TBA delivers a value obtained from the
agreement of values proposed by a set of software entities running in the hosts. The
values are binary blocks with a limited fixed size, and the service is not intended
to do all agreement operations in a system, but rather the steps where fast trusted
agreement on some control information (e.g., cryptographic hashes) can leverage
protocol execution performance.

An entity proposes a value for a TBA execution when it calls TTCB PROPOSE

successfully (when no error is returned). An entity tries to decide a result by call-
ing TTCB DECIDE (“tries” because the result may still not be available when the
function is called). The result is composed not only by a value but also by some
additional information described below. Formally, the TBA service is defined by
the following properties:

TBA1 Termination Every correct entity eventually decides a result.
TBA2 Integrity Every correct entity decides at most one result.
TBA3 Agreement No two correct entities decide differently.
TBA4 Validity If a correct entity decides result then result is obtained applying

the function decision to the values proposed.
TBA5 Timeliness Given an instant tstart and a known constant TTBA, the result

of the service is available on the TTCB by tstart+TTBA.

The interface of the service contains the two functions mentioned:

outp ← TTCB PROPOSE(elist, tstart, decision, value)
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outd ← TTCB DECIDE(tag)

The parameters of TTCB PROPOSE have the following meanings. elist is a list of the
eid’s of the entities involved in the TBA. tstart is a timestamp that indicates the in-
stant when the TTCB ceases to accept proposals for the TBA, which means, in some
sense, the latest instant when the TBA starts to run inside the TTCB. The third pa-
rameter, decision, is the function used to calculate the result from a list of proposals.
The protocols in this paper use two of those functions: TBA MAJORITY that returns
the value proposed by the greatest number of entities; and TBA RMULTICAST that
returns the value proposed by the first entity in elist. value is the value proposed.
An execution of the TBA service is uniquely identified by (elist, tstart, decision).

TTCB PROPOSE returns a structure outp with an error code and a tag that is used
later to identify the TBA when the entity calls TTCB DECIDE. This second function
returns a structure outd with: (1) an error code; (2) the value decided (if the TBA
already terminated); (3) a mask proposed-ok with one bit set for each entity that
proposed the value that was decided; and (4) a mask proposed-any with one bit set
per entity that proposed any value.

The purpose of the timestamp tstart is to prevent malicious entities from postponing
TBAs indefinitely by not proposing their values. If all values are available before
tstart, the TBA is initiated sooner, when the last value arrives to the TTCB. If an
entity tries to propose after tstart, it gets an error indicating that the value was not
accepted, and the tag of that specific TBA. Next, it can call TTCB DECIDE to collect
the decision that was calculated using the values proposed by the other entities. For
simplicity, it is assumed throughout the paper that the TTCB can record the output
of a TBA for a long time. In practice, the solution is known: the TTCB will have
to garbage-collect old results, and a delayed entity that is never able to obtain a
decision should be forced to exit the group.

An attacker might attempt a denial-of-service attack against the TBA service simply
by making a large number of calls to TTCB PROPOSE and starting many TBAs.
The TTCB uses two mechanisms to prevent this possibility. The first is a resource
reservation mechanism that makes the TTCB assign a set of resources to an entity.
In the TBA case, this allows an entity to get the guarantee that the TTCB will
run on its behalf a number of TBAs per unit of time. The second mechanism is
an admission control mechanism that rejects any call to a service that exceeds the
resources reserved for the entity.

2.2 TTCB Implementation

The implementation of the TTCB is an issue mostly orthogonal to the present paper.
However, we include a short discussion because it helps the reader get a better
insight into what is the TTCB, since this type of component is novel. The design
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and implementation of a TTCB based on commercial off-the-shelf components was
presented in Correia et al. (2002b), and alternatives were discussed.

The TTCB is assumed to be secure, therefore it has to be isolated from the rest of
the system, except for a well-defined interface. For the local part, the best way to
enforce this isolation is by implementing the local TTCB in a hardware appliance
of some kind. A good option is to use a secure processor, like IBM 4758, but hard-
ware for secure applications is currently an important research trend, with several
solutions being proposed (Smith, 2004). Another solution would be to use a PC/104
board with its own processor, memory and disk-on-chip. In the currently available
COTS-based design, however, a different approach is used. The local TTCB resides
inside a real-time kernel, which is hardened in order to be secure. This solution has
less coverage of the security assumptions than one based on hardware, but has the
advantage of allowing the free distribution of a TTCB by the research community 5 .

Solutions for the implementation of the control channel can range from a dedi-
cated Ethernet LAN (the solution used in the prototype) to some sort of virtual
private network (e.g., a set of ISDN, Frame Relay or ATM connections). The LAN
can be assumed to be secure if it is a short-range inside-premises closed network,
connecting a set of servers from a single institution. For WANs, a combination of
cryptographic techniques and the use of parallel channels can be used to prevent
most attacks.

The implementation of the local TTCB requires a real-time operating system. The
current prototype uses RTAI, a real-time kernel based on Linux and that runs on
standard PC hardware. The control-channel has also to be predictable in terms of
time behavior. This can be enforced in networks with guaranteed bandwidth by
controlling the amount of traffic with an admission control mechanism (Casimiro
et al., 2000).

3 System Model

The main idea behind the system model considered in the paper is that it is hybrid.
Recall the architecture of a system with a TTCB in Figure 1. We make strong as-
sumptions about the TTCB: it is secure and synchronous. However, we do only very
weak assumptions about the rest of the system (payload system). This is what we
mean by hybrid. This section presents the system model. We skip the assumptions
about the TTCB since they were already introduced in the previous section.

The payload system has to most extent unpredictable timeliness, i.e., it is essen-
tially asynchronous. More precisely, we assume no bounds on the communication

5 Download from: http://www.navigators.di.fc.ul.pt/software/ttcb/
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delays, but we make a weak synchrony assumption about delays in hosts: there is
an unknown processors’ stabilization time (PST) such that the processing delays of
correct processes are bounded from instant PST onward, and these processing de-
lays bounds are known. This synchrony assumption is weak when compared with
the usual partial synchrony assumptions, e.g., in Dwork et al. (1988), because pro-
cessing delays are much more deterministic than communication delays. Although
these time assumptions are weak, consensus in this system model is not bound by
the FLP impossibility result (Fischer et al., 1985) since the system is not purely
asynchronous, it includes the TTCB that is synchronous.

The payload system is also unpredictable in terms of failure, i.e., it can fail arbitrar-
ily: processors may be intruded, processes and operating systems can be corrupted,
and the communication may be attacked.

3.1 Communication Model

This paper presents a group communication system for groups of processors, or
hosts. Processors rely on channels to hide some of the communication complexity
in the payload network. Each pair of processors (p, q) is assumed to be intercon-
nected by a secure channel over the payload network. Channels are defined in terms
of the following properties:

SC1 Eventual reliability If p and q are correct and p sends a message M to q, then
q eventually receives M.

SC2 Integrity If p and q are correct and q receives a message M with sender(M) =
p, then M was really sent by p and M was not modified in the channel 6 .

It is assumed that each pair of correct processors shares a secret key known only by
them. The two properties above are simple to implement with these keys. Eventual
reliability is achieved by retransmitting the message periodically until an acknowl-
edgment arrives. Message integrity is attained by detecting the forgery and modifi-
cation of messages using Message Authentication Codes (MACs) (Menezes et al.,
1997). A MAC is a cryptographic checksum, obtained with a hash function and a
secret key. When p sends a message M to q it concatenates a MAC obtained with
their shared secret key to M. When q receives the message it calculates the MAC
in the same way and compares it with the incoming MAC. If they are different, the
message is either fake or was modified, therefore it is discarded. Reliable channels
might also be implemented using the Secure Sockets Layer protocol (Frier et al.,
1996).

6 The predicate sender(M) returns the sender field of the message header.
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3.2 Processor Failure Modes

A processor is correct if it follows the protocol that it is specified to execute. There
are several circumstances, however, that may lead to the processor failure. When
this happens, a processor can stop working, can delay the transmission of messages,
can send messages disregarding the protocol, or can even collude with other mali-
cious processors with the purpose of breaking the protocol. Consider, for now, that
V n is a set with the membership of the group at a certain instant. Worm-IT assumes
that at most f = b |V n|−1

3
c processors in V n can fail, i.e., less than one third of the

processors. Notice that f is not a constant but is defined for every membership V n

in terms of the number of processors |V n|.

This limit of less than one third of the processors being allowed to fail is common
for intrusion-tolerant protocols, since it is the best attainable for consensus to be
solvable (Correia et al., 2006). This assumption requires processors to fail inde-
pendently, something that is not obvious when the source of faults is potentially
intelligent (a human attacker) and processors may have all the same vulnerabil-
ities. It is not possible to act on the attacker side of the problem so we have to
force the vulnerabilities that might lead to failure to be different, since they usu-
ally cannot be entirely avoided. This requires the codes of the system running in
the processors to be different in all, the operating systems to be distinct, the root
and user passwords to be different, etc (Deswarte et al., 1998; Castro et al., 2003).
A solution for the implementation of different code is software diversity obtained
using N-version programming (Avizienis, 1985). The approach consists in making
independent implementations, possibly in different languages, of software with the
same functionality.

3.3 Group Membership Model

Wide-area networks are prone to link failures and other communication fluctua-
tions. These effects can lead to network partitions, i.e., to the virtual separation
of the network in several subnetworks that are temporarily unable to communi-
cate. This may cause the temporary division of a group in two or more subgroups.
To handle this type of failures, Worm-IT uses a primary partition model (Birman,
1997), in which at most one of the subgroups is allowed to make progress. Pro-
cessors belonging to the rest of the subgroups are eventually removed from the
primary partition subgroup. We have to use the primary partition model because
the system needs the contribution from at least 2b |V n|−1

3
c + 1 members to decide

on a new group membership. Therefore, if the group is partitioned in two or more
subgroups, at most one of them will have that number of members and will be able
to make progress.
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Fig. 2. Architecture of Worm-IT.

There is one more assumption related to the group membership. When a processor
wants to join the group, it has to know who are its members, so we assume it can
get this information somehow. This issue is further discussed in Section 5.5.

4 The Architecture of Worm-IT

The architecture of Worm-IT is depicted in Figure 2. The membership service is
implemented by the COLLECT and PICK protocols. The view-synchronous atomic
multicast service is mostly implemented by the RCAST protocol, although it also
uses COLLECT and PICK (see Section 6). All protocols use the secure channels
on the bottom and there is an Application level on the top, which represents the
applications that use Worm-IT to communicate. The Failure Detector module is in
charge of detecting the failure of processors (Section 5.6).

COLLECT is a finite state machine that evolves at each processor between two
states: NORMAL and AGREEMENT. When a processor joins a group, it enters the
NORMAL state. Then, when another processor wants to join or leave, when a pro-
cessor is suspected to have failed, or when data messages are atomically multicas-
ted, certain events are generated and the protocol changes to the AGREEMENT state.
In this state, the processors try to agree on membership changes and/or message de-
liveries by running the PICK protocol. When PICK terminates, the state changes
back to NORMAL.

5 Membership Service

A primary partition membership service handles three operations: the addition of
members to a group, the removal of failed members, and the removal of members
on their own initiative (Chockler et al., 2001). These operations will be called re-
spectively join, remove and leave for short. The failure of a processor is detected in
every processor by a failure detector module (see Section 5.6).
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The Worm-IT membership service generates views, i.e., numbered events contain-
ing the group membership. A new view is installed whenever the membership is
changed due to a member join, leave or removal. A group of processors with a
single member is created when the first member joins and installs the first view.
A processor Pj sees a view as an array V n

j containing one entry per each member
processor. The index n reflects the nth view of the group. Every processor Pj keeps
an array V Vj with the views it has already installed. A view V n

j is said to be defined
at processor Pj if V Vj[n] = V n

j , i.e., if that view has been previously installed.

The service guarantees that each correct processor has the same view at every in-
stant of logical time, i.e., after the installation of the same (totally ordered) views
in every processor. The membership service executes a protocol defined formally
in terms of the following properties (similar to Reiter (1996)):

MS1 Uniqueness If views V n
i and V n

j are defined, and processors Pi and Pj are
correct, then V n

i = V n
j .

MS2 Validity If processor Pi is correct and view V n
i is defined, then Pi ∈ V n

i and,
for all correct processors Pj ∈ V n

i , V n
j is eventually defined.

MS3 Integrity If processor Pi ∈ V n
i and V n+1

i is not defined then either at least
one correct processor detected that Pi failed or Pi requested to leave. If processor
Pi ∈ V n+1

i and V n
i was not defined at Pi then at least one correct processor

authorized Pi to join.
MS4 Liveness If b |V n|−1

3
c + 1 correct processors detect that Pi failed or receive a

request to join, or one correct processor requests to leave, then eventually V n+1

is installed, or the join is rejected.

Uniqueness guarantees that all correct processors in a group see the same member-
ship. Validity ensures that if a view is defined at a processor then the processor is
in the view (often called Self-Inclusion property) and that every correct processor
in a view eventually installs the view. Integrity prevents malicious processors from
removing or adding processors to the group. Liveness ensures that a new view is in-
stalled when a number of correct processors detect a failure, or a correct processor
wants to join or leave.

The COLLECT protocol handles the three membership events, corresponding to
the three membership operations mentioned above: join, remove and leave. It also
handles one communication event, related to the atomic multicast protocol (see
Section 6). This section starts by describing the service in terms of generic events
Ev(Pj) – event Ev about processor Pj (for instance, Ev can be the event gener-
ated by the failure detector in a processor indicating that Pj failed and should be
removed). Later, details are given about the correspondence to specific events.
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5.1 Example Execution

As a first insight on the execution of the protocol, we will present an example of
a processor removal by the membership service (see Figure 3). Initially, the group
has four processors, P1 to P4. P4 is malicious and performs malicious actions that
are detected by the failure detectors of processors P1 and P2. When this happens, P1

and P2 multicast a (INFO, Remv(P4)) message saying that P4 should be removed
from the group. Even if P3 does not detect the misbehavior of P4, when it gets
f + 1 = 2 messages stating that P4 should be removed, it knows that at least one
correct processor detected the failure, since at most f = 1 processors can “lie”.
Therefore, when P3 receives the second (INFO, Remv(P4)) message, it multicasts
the same information.

P 1

P 3

P 2

P 4

T T C B

t s t a r t

-  F a i l u r e  d e t e c t i o n

T T C B _ p r o p o s e ( H a s h ( b a g - d e c i s i o n s - t b a ) )

T T C B _ d e c i d e ( H a s h ( b a g - d e c i s i o n s - t b a ) )

-  m e s s a g e  ( I N F O ,  R e m v ( P 4 ) )V n  =  { P 1 ,  P 2 ,  P 3 ,  P 4 }

n e w  v i e w  i n s t a l l e d  
V n + 1  =  { P 1 ,  P 2 ,  P 3 }  

P I C K

L e g e n d :

H a s h ( b a g - d e c i s i o n s - t b a )

( I N F O ,  R e m v ( P 4 ) )

f  =  ( | V n | - 1 ) / 3  =  1

T B A

Fig. 3. Membership service example execution.

When a processor receives 2f + 1 = 3 messages saying P4 failed it knows that
all correct processors will also receive 3 or more messages (justification in the
next section). Therefore, it can move to the AGREEMENT state with the confidence
that all correct processors will do the same. It can put Remv(P4) in a bag called
bag-decisions, where it saves all the changes that have to be applied to the current
view, also knowing that all correct processors will do the same. The bag is used to
store all events that have to be agreed upon by the protocol, but in the case of the
membership, this boils down to view changes.

In the AGREEMENT state, the processors execute the PICK protocol. The objective
is to make all correct processors decide the same changes to the view. The protocol
uses the TBA service of the TTCB to agree on a digest of bag-decisions-tba, which
is usually identical to bag-decisions. In the example, P1 to P3 propose identical
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digests – they have the same Remv(P4) event in the bag – and TBA returns that
digest, since it decides the most proposed value. Next, the new view is installed
and P4 is removed.

5.2 The COLLECT Protocol

The membership service is implemented using two protocols. The basic protocol,
COLLECT, is described first (Algorithm 1) and the PICK protocol is presented
next (Algorithm 2). Throughout the following discussion, it is assumed that each
message carries the current view number. The communication channels only deliver
messages that were transmitted in the current view. Messages that were sent in
a previous view are discarded and messages for future views are stored for later
delivery. The correctness proof of the protocols can be found in Appendix A.

The objective of the first part of the algorithm (lines 6-16) is to guarantee that all
(correct) processors get the same events. Whenever a processor finds out that a new
event Ev(Pj) has occurred, it sends an INFO message – (INFO, myid, Ev(Pj),
valid-tstart-send) – to all processors in the current view, including itself. A pro-
cessor can learn about new events in two ways: (1) it “sees” the event by itself,
e.g., it detects the failure of Pj (lines 6-10 in the algorithm); or (2) it receives
(INFO, *, Ev(Pj), *) messages from f + 1 processors, which mean that at least
one correct processor “saw” the event 7 (lines 11-16). In the message, myid is the
processor identifier and valid-tstart-send is a timestamp (discussed later). Proces-
sors put the INFO messages that arrive in the bag bag-info (lines 11-12). Function
count(Ev(Pj), bag-info) counts the number of INFO messages with Ev(Pj) re-
ceived from different processors (line 13).

When a processor receives (INFO, *, Ev(Pj), *) messages from 2f + 1 different
processors (line 17), it knows that all correct processors will receive at least that
number of messages because: (1) if the processor received 2f + 1 messages then
every correct processor will eventually receive at least f + 1 messages (since at
most f processors can fail); (2) when these correct processors receive these f + 1
messages they will also multicast (line 16). Therefore, when a processor receives
2f + 1 INFO messages about Ev(Pj) it can put Ev(Pj) in bag-decisions, with the
confidence that all correct processors will eventually do the same (lines 17-18). If
the processor is still in the NORMAL state it goes to the AGREEMENT state (lines
19-21), since the first condition in line 19 is always true when Ev is a membership
event. When a processor executes the PICK protocol, it passes an argument with the
smallest valid-tstart-send that was received in INFO messages, which is returned
by the function smallest-tstart (line 21). The meaning of valid-tstart-send will be
clarified in the next section.

7 The star ‘*’ is a wildcard that indicates any value.
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Algorithm 1 The COLLECT protocol.
1: INITIALIZATION:
2: bag-info ←∅; {bag with INFO messages}
3: bag-decisions ←∅; {bag with view changes and messages to deliver}
4: valid-tstart-send ←⊥; {valid tstart to send in INFO messages in this view}
5: state ←NORMAL; {protocol state}
6: when Ev(Pj) do {handle an event}
7: if (I did not multicast (INFO, myid, Ev(Pj), *) in this view) then
8: if (valid-tstart-send = ⊥) then
9: valid-tstart-send ←next-valid-tstart();

10: multicast (INFO, myid, Ev(Pj), valid-tstart-send);

11: when M = (INFO, sender-id, Ev(Pj), valid-tstart) received do {handle INFO msg}
12: bag-info ←bag-info ∪ {M};
13: if (count(Ev(Pj), bag-info)≥ f+1) and (I did not multicast (INFO, myid, Ev(Pj),*)

in this view) then
14: if (valid-tstart-send = ⊥) then
15: valid-tstart-send ←next-valid-tstart();
16: multicast (INFO, myid, Ev(Pj), valid-tstart-send);
17: if (count(Ev(Pj), bag-info) = 2f+1) then
18: bag-decisions ←bag-decisions ∪ {Ev(Pj)};
19: if ((Ev 6= Datamsgs) or (count(Datamsgs, bag-decisions) = WM )) and (state

= NORMAL) then
20: state ←AGREEMENT;
21: execute pick( smallest-tstart(bag-info) );

22: when bag-decisions-picked = pick(tstart) returned do {handle end of PICK}
23: deliver messages corresponding to Datamsg events in bag-decisions-picked or-

dered by mid.tstart; remove them from bag-data-msgs and the events from bag-
decisions-picked;

24: if (there are view change events in bag-decisions-picked) then {install new view}
25: add/remove processors in view change events in bag-decisions-picked from view;
26: view-number ←view-number + 1;
27: bag-info ←∅; bag-decisions ←∅; valid-tstart-send ←⊥; bag-data-msgs ←∅;
28: send system state to new members;
29: state ←NORMAL;

When the PICK protocol decides a value, i.e., a set of view changes, some house-
keeping is performed and the state goes back to NORMAL (lines 22-29). If new
members join the group, they may have to be informed about the system state,
including the current membership (line 28).

An event is only considered for agreement in the PICK protocol when 2f + 1 or
more processors have shown that they know about it. Until this quorum is reached,
the event is simply stored for later processing. Consequently, there might be some
events that still may need to be dealt with when a new view is installed. The solution
that was chosen for this problem requires that these events be re-issued in the next
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view(s), until they are eventually processed. This solution is relatively simple to
implement because it only requires that processors re-send their requests (in case
of joins or leaves), or that the failure detector re-indicates the failure of a processor.

5.3 The PICK Protocol

The previous section explains how processors decide to engage in the PICK proto-
col (Algorithm 2). PICK runs as a series of executions of the TTCB TBA service,
each one trying to agree in which way the current view needs to be updated. In the
best case, which corresponds to the most common scenario, only one TBA is exe-
cuted, as illustrated in the example of Figure 3. Later, we will discuss why several
calls to the TBA might be needed.

The core of the protocol is presented in lines 8-19. Each processor goes on propos-
ing to successive TBAs the changes it thinks have to be applied to the current view,
i.e., the processors to add/remove. These updates are put in bag-decisions by the
COLLECT protocol (see previous section). Then, PICK copies bag-decisions to
bag-decisions-tba (line 9), since bag-decisions can be modified by COLLECT dur-
ing the execution of the TBA service. PICK gives TBA a hash of bag-decisions-tba
rather than the actual bag (function Hash in line 12) because the TTCB has a limit
for the size of the values that it accepts. A collision-resistant hash function produces
a fixed size digest of its input with the guarantee that it is computationally infea-
sible to discover another input that gives the same output (Menezes et al., 1997).
The current implementation of the TTCB bounds the values to 160 bits, which is
enough for standard hash functions like SHA-1. Notice that two processors obtain
the same hash of bag-decisions-tba only if their two bags have the same bit-by-bit
content. This goal is achieved by representing bag data in some canonical form, so
that bags with the same content are bitwise identical.

TBA gets the values given by the processors (line 12), then chooses and returns the
most frequently proposed value (TBA MAJORITY decision function). It also returns
a mask proposed-ok indicating which processors gave the value that was decided
(line 14). Processors go on engaging in TBAs until a set with at least 2f+1 elements
proposed the same (line 19). This loop is assured to terminate because all correct
processors (at least 2f + 1) will eventually get the same values in bag-decisions-
tba (see previous section); therefore, they eventually propose identical hashes and
this is the decision value (since they are the majority). TBA is executed inside the
TTCB so its results are reliable and all correct processors receive the same output.

If a processor has the bag-decisions-tba corresponding to the chosen hash (line 21),
it sends that bag to the processors that did not propose the correct hash, to ensure
that all correct processors get the changes to the view (line 22). These processors,
for instance, might have more events in their bag-decisions-tba than the others.
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Algorithm 2 The PICK protocol.
1: FUNCTION pick(tstart)
2: hash-v ←⊥; {hash of the value decided}
3: bag-msgs-picked ←∅; {bag for PICKED messages received}
4: elist ←list with eid’s of processors in V view−number in ascending order;
5: if (tstart < last-tstart) then
6: tstart ←last-tstart;
7: data-msgs-deadline ←⊥;

8: repeat
9: bag-decisions-tba ←bag-decisions; {bag-decisions is shared with COLLECT}

10: if (data-msgs-deadline 6= ⊥) then
11: remove from bag-decisions-tba all events Datamsg with mid.tstart > data-msgs-

deadline;
12: outp ←TTCB PROPOSE(elist, tstart, TBA MAJORITY, Hash(bag-decisions-tba));
13: repeat
14: outd ←TTCB DECIDE(outp.tag);
15: until (outd.error 6= TBA RUNNING);
16: if (data-msgs-deadline = ⊥) and (2f + 1 processors proposed any value) then
17: data-msgs-deadline ←tstart;
18: tstart ←tstart + Tretry;
19: until (at least 2f + 1 processors proposed the value that was decided);
20: last-tstart ←tstart;
21: if (outd.value = Hash(bag-decisions-tba)) then
22: multicast (PICKED, myid, bag-decisions-tba) to processors not in outd.proposed-ok

and not being removed;
23: return bag-decisions-tba; {terminates the algorithm}
24: else
25: hash-v ←outd.value;

26: when M=(PICKED, *, *) received do {message with decisions picked}
27: bag-msgs-picked ←bag-msgs-picked ∪ {M};

28: when (hash-v 6= ⊥) and (∃M∈bag−msgs−picked : Hash(M.bag-decisions) = hash-v) do
29: return M.bag-decisions; {terminates the algorithm}

Therefore, unless they are informed about the necessary updates, they do not know
how to move to the next view. The processing of these messages is done in lines
24-29.

The protocol uses a timestamp data-msgs-deadline to exclude some events from
bag-decisions-tba (lines 7, 10-11, 16-17). This is used only by VSAM so we leave
this discussion for Section 6.
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The parameter tstart

Now, we delve into the details of the parameter tstart, which is passed to PICK (line
1) and used for the successive TBAs (line 12). We start by introducing two notions:

Participation in a TBA A processor participates in an execution of the TTCB
TBA service (or in a TBA) defined by (elist1, tstart1, decision1) iff it calls TTCB

PROPOSE(elist1, tstart1, decision1, *).
Active participation in a TBA A processor participates actively in a TBA de-

fined by (elist1, tstart1, decision1) iff it calls TTCB PROPOSE(elist1, tstart1, de-
cision1, *) before tstart1 8 .

For a correct processor to know which set of view changes (bag-decisions-tba)
should be applied to the current view it is not required to participate in all TBAs
that are executed: it only needs to participate in the TBA that satisfies the condition
in line 19. Let us call this TBA the last TBA. This TBA provides the processor a
hash of the bag-decisions-tba that has to be applied. Therefore, it becomes capable
of selecting the correct bag-decisions-tba: either its own (lines 21 and 23) or one
of the various that might arrive (lines 26-27)

The participation of a processor in a last TBA does not have to be active. If it is
not active, the proposal from this processor is not accepted by the TTCB, but the
processor obtains the tag of that TBA execution, and eventually gets the decision
(lines 13-15).

How do we guarantee that all correct processors participate in the last TBA? First,
we define a discrete set of values that can be used for tstart:

Valid tstart A timestamp is called a valid tstart if it is in the set {∀k∈N , k ∗Tretry},
where Tretry is the interval between valid tstarts.

The value Tretry must be higher than the maximum delay for one execution of
lines 8-19 after PST. However, the value also involves a tradeoff: if Tretry is too
low, on average more TBAs will be used to reach agreement but PICK will usually
terminate faster; if Tretry is too high, on average the contrary will happen: less
TBAs but PICK might take longer to terminate. The function next-valid-tstart()
returns the next valid tstart timestamp after the present instant.

Second, we have to guarantee that when a processor enters the loop in line 8, the
value of tstart is less than or equal to the tstart of the last TBA (since the loop
increases tstart). This condition is ensured if processors initiate the PICK protocol
with the smallest tstart of the INFO messages (lines 8-9, 14-15, and 21 of Algo-
rithm 1). The following reasoning can be used to understand why this is true. In a

8 The admission control mechanism has also to accept the call to TTCB PROPOSE for the
participation to be active.
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PICK execution, the first TBA in which a processor participates has a tstart greater
than or equal to the tstart that was passed as argument in line 1, due to lines 5-6.
The last TBA has the participation of 2f + 1 or more processors, so the tstart of
the last TBA is greater than or equal to the initial tstarts of all the processors that
actively participated in that TBA. On the other hand, a processor passes to PICK
the smallest tstart from the 2f +1 INFO messages that were received (Algorithm 1,
line 21). Consequently, since the intersection of the set of processors that actively
participated in the last TBA and the set of processors that sent the INFO messages
has at least one element (f processors can be malicious and “lie”), the tstart used
for the first TBA in each correct processor is smaller than or equal to the tstart of
the last TBA. This is precisely what we wanted to show.

A malicious processor could attempt to delay the protocol by providing an INFO
message with a “very small” valid tstart, i.e., a timestamp that had passed a long
time ago. To prevent this type of attack, the repeat loop is always initiated with a
tstart larger than the tstart of the previous PICK execution (lines 5-6). The reader
should notice that this attack would not cause any incorrect behavior of the protocol
– it would simply delay the execution.

A final discussion is due on the possibility of having to run several agreements
(TBAs) inside the TTCB in order to make a single agreement outside it. The issue
has to do with the intrinsic real-time nature of the TTCB and the TBA service, and
the asynchrony of the rest of the system. When a processor calls TTCB PROPOSE

it provides a tstart, i.e., a timestamp that indicates to the TTCB the instant when no
more proposals are accepted for the TBA identified by the arguments (elist, tstart,
decision). The processor that calls TTCB PROPOSE is in the asynchronous part of
the system, so tstart is for it a mere integer number, and therefore we can never
assume that the processor will call TTCB PROPOSE before instant tstart, regardless
of the value of this parameter. The consequence to the PICK protocol is that in each
round any number of processors may not be able to propose before tstart. This is
the reason why the protocol may have to run several rounds and call successive
TBAs, until enough processors manage to propose before tstart, i.e., until the con-
dition in line 19 is satisfied. The safety of the protocols asynchronous operation
is thus ensured, despite its use of a synchronous function (TBA). The liveness is
ensured by the assumption on the processors’ stabilization time (Section 3), which
guarantees that eventually enough hosts will be able to call TTCB PROPOSE before
tstart, and the PICK protocol will terminate (lines 12 and 19). The increment to
tstart in line 18 must be higher than the eventual maximum delay for one execution
of lines 8-19, but we assumed there is a known bound for these delays from PST
onward (Section 3). Notice that the safety of the system does not depend of existing
a PST, only its liveness.
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5.4 Processor Leave

The COLLECT protocol was described in terms of generic events Ev(Pj). Now let
us see the corresponding membership events, starting with the event related to the
removal of a member on its own initiative.

A processor Pj can decide to leave a group for several reasons, for example, be-
cause the user wants to shutdown its machine. This decision is usually taken by
a higher-level software module (Application in Figure 2). When that happens the
processor multicasts a message (LEAVE, myid) to all processors in the group (in-
cluding itself). The reception of this message is the leave event Leave(Pj). This
event is then handled by the COLLECT protocol as described in the previous sec-
tions. Notice that a malicious processor cannot remove a correct processor Pj by
sending a (LEAVE, Pj) message due to Integrity property of the communication
channels (see Section 3.1).

5.5 Processor Join

In the crash fault model, a processor that wants to join a group has simply to find a
contact with the information about the group membership. The contact can be any
member of the group or some kind of third party. In the Byzantine fault model, the
problem is more complex since individual processors or other entities may provide
erroneous information. For instance, if a processor that wants to join asks the cur-
rent view from a malicious processor Pi, then Pi could return a group composed
exclusively of malicious members. Therefore, the implementation of the join oper-
ation in an arbitrary failure environment requires the solution of two sub-problems:
first, it is necessary to determine who should be contacted; second, if several an-
swers are received with the information about the group, it is essential that the
correct one be selected.

There are two generic solutions for both problems. Either one considers the exis-
tence of a reliable (i.e., trusted) well-known source, or one has to contact a set of
processors and assume that at least a majority of 2f + 1 of them are correct for f
faulty. Specific examples of these methods are:

• The system administrator manually provides a list of the current group members.
• There is a trusted third party server that always returns correct results.
• There is a set of n′ potential member processors from which no more than f ′ can

fail (n′ ≥ 3f ′+1). Each processor in the set, even if not a current member of the
group, keeps membership information and provides it when requested.

Independently of the selected approach, it is assumed that a joining processor Pj

manages to obtain the current view of the group, V n. Then, Pj multicasts a message
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(REQ JOIN, myid, auth-data) to all processors in V n. auth-data is application de-
pendent authorization information that is independent of the membership protocol.
Therefore, when the REQ JOIN message arrives, the protocol upcalls the applica-
tion asking for the approval of the new processor (passing auth-data as parameter).
If Pj is accepted, a join event Join(Pj) is generated for further processing. Later,
when the new view is installed, Pj gets the group state (Algorithm 1, line 28). The
processor has to wait for f +1 identical copies to know it received the correct state.

5.6 Processor Removal and Failure Detection

The failure detector module in a processor determines if other processors have
failed, and produces events Remv(Pj) which are then handled by the membership
service (Algorithms 1 and 2). Although the design of a Byzantine failure detector
is not the subject of this paper, we provide some insights about its implementation
through the rest of this section.

Byzantine failure detectors have to detect different faulty behaviors in the system,
ranging from accidental crash to malicious actions. Detectors for malicious faults
are hard to develop because they have to be designed, at least in part, in a way
that depends on the protocols being used by the processors monitored (Doudou
et al., 2002; Baldoni et al., 2003). They have to know and understand the expected
behaviors of these protocols, otherwise, some types of attacks cannot be detected.
For this reason, they should look for the following activities during the execution
of the protocols (some of these ideas are borrowed from Malkhi and Reiter (1997);
Doudou et al. (2002); Kihlstrom et al. (2003)):

• Determine if a processor completely stops interacting, either because it crashed
or because it is malicious.

• Find out if a non-crashed processor is silent for some part of a protocol or appli-
cation execution, i.e., if it does not send some expected messages but it continues
to send others. For example, in our particular case, a processor that does not send
a message (INFO, myid, Ev(Pj), *) after receiving f + 1 INFO messages with
the same event.

• Determine if a processor sends incorrectly formed or out-of-order messages. For
example, a processor replays some previously sent message.

• Establish if a processor sends unexpected messages or messages with incorrect
content. For instance, a processor that sends a (INFO, id, Ev(Pj), *) with an id
different from its own.

• Find out if a processor is being externally attacked and intruded. The output of
an Intrusion Detection System could be used as an indication of the intrusion.

Although detecting these problems would be desirable, we discussed in the intro-
duction that theoretically it is impossible to detect crashes in asynchronous systems
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since it is not possible to differentiate when a processor is very slow or crashed.
Moreover, we also discussed that doing so in practice introduces vulnerabilities in
the system since it allows malicious attackers to remove a correct process simply
by forcing it to slow down and causing an erroneous detection of a crash. This rea-
soning might be expanded for other kinds of malicious faults that might be wrongly
attributed to a correct process. Therefore, we have to be conservative and design a
failure detector that satisfies the following property of the taxonomy proposed by
Chandra and Toueg (1996):

Strong Accuracy: No process is suspected before it fails.

This involves giving up to detect failures that involve time, due to the asynchrony
of the payload system. This is a limitation of the asynchronous model that cannot
be circumvented. These kinds of faults that involve time have to be detected ad-
ministratively, possibly with the assistance of a failure detector that provides only
failure suspicions.

The mentioned taxonomy classifies failure detectors also in terms of completeness.
However it is clear that some malicious faults cannot be detected and that no com-
pleteness can be guaranteed.

Notice that the membership and the atomic multicast protocols do not depend on
the failure detector to make progress (on the contrary of Rampart (Reiter, 1996) and
SecureRing (Kihlstrom et al., 2001)). If the failure detector does not detect a failure,
for instance because it is not able to detect a given class of failures, the membership
will not remove the corresponding processor from the view. However, it will still be
able to behave correctly, i.e., to go on installing new views and delivering messages.
Therefore, Worm-IT does not suffer from the same problem as those other works.

6 View-Synchronous Atomic Multicast

This section presents the View-Synchronous Atomic Multicast protocol (VSAM).
This protocol provides a view-synchronous semantics, i.e., it guarantees that all
correct group members deliver the same messages in the same view (Birman and
Joseph, 1987b,a) 9 . Group communication usually involves a set of reliable mul-
ticast primitives with different order properties. VSAM orders messages in total
order, i.e., all correct processors deliver the messages in the same order. The proto-
col is defined in terms of the following properties:

9 View synchrony was originally designated virtual synchrony since the objective was
to give the idea that events occurred synchronously, in the same order, in all pro-
cesses/processors (Birman and Joseph, 1987a). This intuition did not fit well with a second
generation of group communication systems that supported partitionable groups, therefore
the more general definition and designation of view synchrony.
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VSAM1 Validity If a correct processor multicasts a message M, then some correct
processor in group(M) eventually delivers M.

VSAM2 Agreement If a correct processor delivers a message M, then all correct
processors in group(M) eventually deliver M.

VSAM3 Integrity For any message M, every correct processor p delivers M at
most once and only if p is in group(M), and if sender(M) is correct then M was
previously multicast by sender(M).

VSAM4 Total order If two correct processors in group(M) deliver two messages
M1 and M2 then both processors deliver the two messages in the same order.

VSAM5 View synchrony If two correct processors in group(M) install views V n

and V n+1 then both processors deliver the same messages in view V n.

There are several similar definitions of view synchrony in the literature. The def-
inition used in here is inspired in Chockler et al. (2001). The predicate group(M)
indicates the members of the group in the view in which the message is eventually
delivered, since the message does not have to be delivered in the view in which it
was initially multicast. sender(M) is the sender of the message.

6.1 The VSAM Protocol

This section describes the VSAM protocol. The protocol assumes that at most f =
b |V n|−1

3
c processors can fail in a given view V n. VSAM uses the protocol RCAST

(Algorithm 3) to guarantee essentially that all processors deliver the same messages
(properties VSAM1-3) and the protocols COLLECT and PICK to guarantee total
order and view synchrony (properties VSAM4-5).

RCAST uses the payload network to multicast messages and the TBA service to
distribute unique, reliable, hashes of these messages. When a processor wants to
atomically multicast a message with some data, RCAST builds a message (DATA,
elist, tstart, data) and gives its hash to the TBA service (lines 7-8). A message of
the VSAM protocol is uniquely identified by mid = (sender-eid,tstart) 10 . The de-
cision function is TBA RMULTICAST so the value returned by the TBA is the value
proposed by the first entity in elist (Section 2.1), i.e., the hash of the message pro-
vided by its sender. When the sender defines a tstart for the TBA as the current
instant plus a delay Tsched (line 7) it has no guarantee that it will manage to propose
for the TBA before that tstart (line 8). However, the assumption in Section 3 guar-

10 This uniqueness requires the lists with processor identifiers (elist) to be in a canonical
form: the first eid is the sender’s, and the others are in ascending order. A brief justification
for the uniqueness of mid: the sender uses the TTCB TBA service to give all processors
a hash of the message; an execution of the TBA is uniquely identified by (elist, tstart,
decision) (Section 2.1) and decision is hard-coded in the protocol (TBA RMULTICAST); the
sender-eid identifies a single elist in canonical form in a view; therefore it is not possible
to send another message in the same view with the same id.

22



antees that this will eventually happen if Tsched is higher than the maximum delay
for one execution of lines 6-9 after PST. After successfully proposing, the sender
multicasts the DATA message (line 10).

Algorithm 3 RCAST protocol.
1: INITIALIZATION:
2: for all mid do hash-msg[mid]←⊥; {table with info about DATA messages received}
3: bag-data-msgs ←∅; {bag with the messages to be delivered}
4: when VSAM-multicast(data) is called do {SENDER}
5: elist ←all processors in current view in canonical form;
6: repeat
7: M ←(DATA, elist, TTCB getTimestamp() + Tsched, data);
8: outp ←TTCB PROPOSE(M.elist, M.tstart, TBA RMULTICAST, Hash(M));
9: until (outp.error 6= TSTART EXPIRED);

10: multicast M to all processors in current view;
11: bag-data-msgs ←bag-data-msgs ∪ {M};
12: generate event Datamsg(mid); terminate; {terminates protocol for message [mid]}
13: when DATA message M with identifier mid is received do {RECIPIENTS}
14: if (M.elist[0] 6= my-eid) then {handle message only if I’m not the sender}
15: if (hash-msg[mid] = ⊥) then
16: outp ←TTCB PROPOSE(M.elist, M.tstart, TBA RMULTICAST, Hash(M));
17: repeat
18: outd ←TTCB DECIDE(outp.tag);
19: until (outd.error 6= TBA RUNNING);
20: if (outd.error 6= OK) then
21: return;
22: hash-msg[mid] ←outd.value;
23: if (Hash(M) = hash-msg[mid]) then
24: multicast M to processors in the view except those in mask outd.proposed-ok;
25: bag-data-msgs ←bag-data-msgs ∪ {M};
26: generate event Datamsg(mid); terminate;

When a recipient receives a DATA message M for the first time, it participates in
the corresponding TBA to get the hash of the message (lines 13-19). If M corre-
sponds to the hash given by the TBA (line 23), the recipient becomes aware that
the message is indeed the message sent, so it resends it to all processors which did
not provide the correct hash to the TBA (line 24). This guarantees that all correct
processors eventually receive the message.

The RCAST protocol does not enforce the properties of Total Order and View Syn-
chrony, therefore it does not deliver the messages to the Application module, but
saves them in bag-data-msgs instead (lines 11 and 25).

Properties VSAM4-5 are enforced by the COLLECT and PICK protocols. The
membership service handles three types of events: Join, Remv and Leave. RCAST
generates a fourth type of event when it is ready to deliver a message identified by
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mid: Datamsg(mid) (Algorithm 3, lines 12 and 26). This event is handled by Al-
gorithm 1 mostly in the same way as the view change events: an INFO message is
sent (lines 6-10) and when there are 2f + 1 INFO messages it is inserted in a bag
and PICK can be started (lines 11-19). A difference in relation to the membership
events is that a single Datamsg event does not start PICK, to avoid running one or
more TBAs for each DATA message. PICK is started when a certain condition is
satisfied. The code shows one possibility: PICK starts when a certain watermark
number of DATA messages WM are ready to be delivered (line 17). Another pos-
sibility would be to start PICK when a certain time passed from the last delivery.
The code can be easily modified to test this condition or a combination of both.

At this stage, it should be clear that PICK is used with two different but related
purposes. The first is to make all processors agree on the view changes to do to the
current view (see Sections 5.2 and 5.3). The view synchrony property states that
all correct processors deliver the same messages in a view. Therefore, when PICK
decides on view changes it also decides on the non-delivered messages still to be
delivered in the view (if any).

The second purpose of PICK is to agree on messages to be delivered when there are
no view changes. The objective is to satisfy the total order property. In each execu-
tion of PICK all processors agree to deliver the same set of messages. Then, these
messages are ordered according to their tstart and delivered in order (Algorithm 1,
lines 22-23).

The deadline data-msgs-deadline in Algorithm 2 requires some discussion. In Sec-
tion 5.3 we mentioned that this deadline was used only for VSAM. The issue is
that the constant reception of new Datamsg events might prevent PICK from ter-
minating since bag-decisions would go on changing indefinitely. The same cannot
happen with view change events because their number is limited 11 . The solution
for this problem is the definition of a deadline data-msgs-deadline for each PICK
execution (Algorithm 2, lines 7, 11, 16-17). Any message with tstart greater than
data-msgs-deadline is not considered for that execution of PICK (line 11). data-
msgs-deadline is the first tstart in which at least 2f + 1 processors propose any
value for a TBA (lines 16-17), and it was proved in Section 5.3 that all correct
processors participate in that TBA.

The correctness proof of the protocol is sketched in Appendix A.

11 The processors that can be allowed to join have to be known in order to be authenticated,
therefore their number is limited. The number of processors that can leave or be removed
is at most the number of members.

24



7 Performance Evaluation

7.1 Membership Service Performance

The performance of the membership service was evaluated using a COTS-based
TTCB (Correia et al., 2002b). The experiments were performed on a system with
six 450 Mhz Pentium III PCs with 192 Mbytes of RAM. The payload and control
networks were two 100 Mbps switched Fast-Ethernet LANs. The code was imple-
mented in C and compiled with gcc. The versions of software used were TTCB
1.11, RTAI 24.1.10 and gcc 2.96. The MD5 hash function was used both by the
PICK protocol (Section 5.3) and the MACs used to protect the communication
(Section 3.1). The messages were multicast using IP multicast. Since the maximum
number of PCs was limited to six, it was necessary to set f = 1. The value used for
Tretry was 14 milliseconds, a value slightly above the maximum time TBA takes
to run in the current implementation, TTBA = 13 milliseconds. Each measurement
was repeated at least 1000 times, and the figures present average values.
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Fig. 4. Average times to install a new view with the operations remove, join and leave.

The results of the experiments are presented in Figure 4. There were three exper-
iments. The first quantified the time to remove a failed processor that stopped in-
teracting, either because it crashed or was corrupted. The failure detection was
simulated multicasting a short message. The second experiment assessed the time
for a processor to join. The processor multicast a REQ JOIN message to all others,
waited for them to install a new view and to get the state transfer from f + 1 = 2
processors. No authorization scheme was used. The third experiment evaluated the
time for a processor to leave the group. The processor multicast a LEAVE message
to the group and measured the time until the new view was installed without itself.
For the first experiment, the values presented in the figure are the average of the
times measured by all correct processors. For the second and third experiments, the
times were assessed respectively by the processors that joined and left.
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The protocol spends most of the time in the following operations: calculating the
MACs for the INFO messages; exchanging these messages; and executing TBAs.
The time taken executing TBAs is the most important since no public-key cryp-
tography is utilized. A consequence is that the performance does not change much
with the number of processors (see figure). Most experiments required a single ex-
ecution of the TBA service. In 3.4% of the experiments some processors tried to
propose a value to the TBA after tstart, and in a few of these cases two TBAs had to
be executed. The join and leave experiments have similar execution times. The time
to remove a processor from the group is almost the double of the other two. The
reason for this behavior is a subtlety about the TBA service. The stopped processor
did not engage in the PICK protocol, therefore not all the processors participated
actively in the TBAs executed. When this happens, the TBA starts only by tstart,
which is usually later than when all processors participate actively (Correia et al.,
2002b). In the join and leave experiments all processors participated in the TBAs,
usually actively, so the TBAs started and terminated earlier.

Currently, we are aware of only three other implementations of membership ser-
vices for systems that might experience Byzantine faults: Rampart (Reiter, 1996),
ITUA (Ramasamy et al., 2002) and SecureRing (Kihlstrom et al., 2001). The sys-
tem model and experimental settings used in the evaluations of these services were
different from ours, consequently, it is quite difficult to make a comparison among
the various performance results. Nevertheless the performance obtained with Worm-
IT is at least of the same order of magnitude.

7.2 VSAM Performance

The performance of VSAM was evaluated using the same setting as the member-
ship service. The evaluation consisted in three sets of experiments, each one us-
ing at least 1000 messages. The experiments measured the average delivery time
(latency) and the sustainable throughput of the protocol. The experiments were
performed in rounds. Each round started with the processors multicasting and re-
ceiving a set of messages using RCAST. Then, the processors executed the PICK
protocol, delivered the messages and started another round. The prototype did not
send messages during the execution of PICK.

The first set of experiments evaluated the performance of VSAM with 4 processors,
a single sender, no failed processors and watermarks (WM , the number of DATA
messages that causes PICK to start) ranging from 1 to 25 messages (Figure 5). The
messages payload was 100 bytes long (headers not included). The figure shows
a strong increase in the throughput that slows down around WM = 5 messages.
When the watermark is low (WM < 5), the time taken by the PICK protocol to
agree on the messages to deliver is comparable to the time taken to send the mes-
sages, i.e., the time spent in the first part of the round, so each additional value of
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WM causes a considerable improvement of the throughput. When the watermark
is higher (e.g., WM > 10), the time used by the PICK protocol is negligible in
face of the time taken to send messages, so the throughput improves slowly with
WM . The average latency, on the contrary, increased steadily with the watermark,
since the system delivers the messages when PICK terminates. When the water-
mark becomes higher, the time the first messages sent wait for PICK to terminate
also becomes higher.
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Fig. 5. VSAM performance variation with WM (4 processors, one sender, 100 bytes mes-
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Fig. 6. VSAM performance with different message sizes (4 processors, one sender,
WM = 10).

The second set of experiments measured the performance of the protocol with dif-
ferent message sizes (see Figure 6). The value selected for the watermark was
WM = 10, which the first set of experiments indicated to be a good tradeoff be-
tween throughput and latency. The number of processors was 4, there was a single
sender and no failed processors. The figure allows us to conclude that the size of
the message does not affect considerably either the throughput or the latency. Since
the weight of the time to transmit the messages is considerably inferior to the time
to run the dissemination of the messages done by the COLLECT protocol (lines 10
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and 16) and the execution of the PICK protocol.
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cessor (WM = 10, 100 bytes messages).

The third set of experiments compared the performance of the protocol with 4 to 6
processors in three different situations. The results are shown in Figures 7 and 8.
The first case was the same as in the first experiment, i.e., no failed processors, a
single sender and WM = 10 messages. In the second situation all processors sent
messages, instead of only one. The watermark was twice the number of processors,
i.e., respectively 8, 10 and 12. In the third case there was a single sender but one
processor was silent, so it did not participate in the protocol. The idea was to un-
derstand what happens when a processor crashes or there is an intrusion and it does
not run the system code any longer.

The first conclusion from the experiments is that the protocol has a higher through-
put when all processors send, something that usually happens (see, e.g., (Reiter,
1994)). The second conclusion is that a crashed processor does not affect the per-
formance of the protocol due to the nature of the COLLECT and PICK protocols
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that make decisions in a distributed way (instead of in a centralized way like Ram-
part). The throughput is in fact slightly better since the silent processor does not
multicast either DATA or INFO messages. The latency is 2 to 3 ms worse because
the TBA takes longer to run when at least one processor does not propose (Correia
et al., 2002b). The same happened for the membership service.

There are some numbers available for the performance of intrusion-tolerant view-
synchronous atomic multicast protocols in the literature: Rampart (Reiter, 1994)
and its more recent implementation by project ITUA (Ramasamy et al., 2002). Once
more the performance obtained for Worm-IT was comparable to those systems.

7.3 Performance Comparison

Comparing the performance of different systems using experimental results is diffi-
cult since the implementations and experimental conditions usually differ in many
aspects, starting with the hardware used. Therefore, we provide a comparison of
factors known to have an important impact in the performance of intrusion-tolerant
systems in fault-free executions (see Table 1). The first factor is the number of
asynchronous communication steps (steps in the table), which has an important
influence in the latency of the system since it measures the number of times the
communication delay will happen. The second factor is the number of messages
sent, which has an impact mostly in the throughput of the system, although also
on the latency (messages in the table). The third is the number of signatures used,
which affects both the latency and throughput of the system because it is a CPU-
time consuming operation (signatures in the table). The fourth factor is the number
of verifications of signatures of the group, usually the verification of signatures of
2f + 1 or n− f members of the group (sign. verific. in the table).

VIEW INSTALLATION TOTAL ORDER DELIVERY

System Steps Messages Steps Messages Signatures Sign.verific.

Rampart 6 6(n-1) 3+3 3(n-1)+ (n-1)+ (n-1)+

/ ITUA 3(n-1) (n-1) (n-1)

Worm-IT 3 n(n-1)(∗) 3+3 (n-1)+ 0 0

n(n-1)(∗)

BFT – – 5 2n2 0 0

Table 1
Comparison of three intrusion-tolerant systems in fault-free runs.

The table compares the performance of Rampart/ITUA and Worm-IT. There is also
a line with data for BFT, which is not a full group communication system, since
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its groups are static 12 , but has a total order primitive and is a very well-known
intrusion-tolerant system in the literature (Castro and Liskov, 2002). The factors
related to total order delivery, both for Rampart/ITUA and Worm-IT, are presented
as a sum of two values. These two values correspond to the two steps used to
deliver a message in total order: (1) to deliver the message to the processors; and
(2) to deliver (Rampart/ITUA) or agree (Worm-IT) about the order of the messages
delivered. This second cost is not relevant when the throughput is high because
there is one ordering step for many messages. We mark with (∗) the number of
messages sent by Worm-IT to indicate that these do not include the messages sent
inside the TTCB. The reason is that in the current implementation each local TTCB
periodically sends messages to all others, even if there is no information to send
(Correia et al., 2002b), something that also happens in some failure detectors.

The table shows that the performance of the systems can be better of worse de-
pending on the relative impact of the factors. Worm-IT has low numbers of steps;
the number of messages is O(n2) but is low if n is also low. Signatures have been
shown to have a high cost in terms of latency and throughput in the experiences
made with Rampart, albeit using cryptographic hardware would reduce this cost
(Reiter, 1994). BFT is known to have an excellent performance, although the ta-
ble shows that Worm-IT can probably have a better throughput if the number of
messages being sent is high, thus reducing the cost of ordering.

Notice that the table does not say anything about the cost of detecting the failure of
the leader/primary, a problem that is shared by both Rampart and BFT. The failure
of a process in Worm-IT has no impact per se in the performance, unless the failure
means flooding the network with messages, something that would equally affect
the other systems.

8 Related Work

The concept of virtually-synchronous group communication (now usually called
view synchrony) was introduced by Birman and Joseph (1987b,a). The idea was to
mimic to some extent a synchronous environment that would deliver all messages
and view changes in the same order. However, ordering all messages and events
was costly. Therefore, the idea of virtual synchrony was to preserve the illusion of
synchrony, but communication primitives with weaker ordering – FIFO, causal, no
order – were provided for applications that were insensitive to that aspect. Several
variants of this semantics were defined, e.g., extended virtual synchrony (Moser
et al., 1994) and weak and strong virtual synchrony (Friedman and van Renesse,
1996).

12 Therefore the table has no information about view changes for BFT.
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Most group communication systems in the literature consider a crash fault model.
A recent survey compares many of those systems (Chockler et al., 2001). Some of
them have evolved to support a stronger model where the network might be attacked
by malicious hackers, but the processors are simply assumed to be secure. Exam-
ples of such systems are Ensemble (Rodeh et al., 2001) and Secure Spread (Amir
et al., 2005). All these systems have a membership service and view-synchronous
communication primitives.

More recently, interest emerged in the problem of designing group communication
systems for environments that might suffer arbitrary faults, often called Byzantine
faults. We are aware of only three intrusion-tolerant membership services: Rampart
(Reiter, 1994, 1996), SecureRing (Kihlstrom et al., 2001, 2003) and SecureGroup
(Moser et al., 2000; Moser and Melliar-Smith, 1999). Project ITUA implemented
an enhanced version of Rampart (Ramasamy et al., 2002).

The Rampart toolkit provides primitives for reliable (no order) and atomic multi-
cast (Reiter, 1994). Both protocols use digital signatures based on public-key cryp-
tography to sign the messages, which is their performance bottleneck. The atomic
multicast protocol relies on an elected sequencer process to order the messages.
The failure of this process has to be detected using timeouts. This approach has
the problem that slow communication, either due to an attack or to network con-
gestion, can cause correct sequencers to be removed, and if sequencers are repeat-
edly removed the system does not make progress. The Rampart membership uses
a three-phase commit style protocol. Processes in the group send failure suspicions
to a leader that tries to change the membership when the majority is received. The
sender uses digital signatures to prove that it received the suspicions. The protocol
relies on the failure detector to remove a failed leader and make progress, e.g., to
eventually install a new view.

SecureRing is designed for LANs and is based on a logical ring imposed on the
communication medium. The membership protocol reconfigures the system when
one or more processors exhibit detectable Byzantine failures, which are detected by
a Byzantine failure detector. Therefore, it suffers from the same failure detection
problem as Rampart. The ring has a digitally signed token that passes from process
to process. The total order of the communication is implicit in the scheme, since
only the process with the token can multicast. The token is used to send checksums
of the messages, so normal messages do not have to be signed using public-key
cryptography, with benefits in terms of throughput. The failure detector is used to
detect if a malicious process does not pass the token or corrupts its information in
some way. Token-based protocols have a well-known problem of latency since it
augments with the number of processors.

SecureGroup is also designed for LANs (Moser et al., 2000; Moser and Melliar-
Smith, 1999). It uses a combination of positive and negative acknowledgments to
order messages in causal order using randomization to circumvent the FLP result.
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The total order is built on top of this causal order. On the contrary to Rampart and
SecureRing, SecureGroup does not provide “multicast” but “broadcast” primitives,
i.e., all communication in the domain is ordered. Therefore, it resists a number of
intrusions (f ) in the processes in the domain, not in the processes in the group, thus
its resilience is lower than the resilience of the other systems. The membership pro-
tocol is simpler than those of Rampart and SecureRing because it is implemented
on the top of the atomic broadcast protocol.

CoBFIT is a framework defined with the objective of supporting the construction of
intrusion-tolerant applications using components (Ramasamy et al., 2004). CoBFIT
is a framework, not a system, but its usage has been demonstrated using ITUA’s
intrusion-tolerant group communication system. CoBFIT allows components to be
changed in runtime, thus allowing a system to adapt itself when failures happen,
usually by replacing a failed component by a new one.

BFT is an algorithm designed with the objective of supporting the implementation
of efficient intrusion-tolerant services based on the state machine approach (Castro
and Liskov, 2002). A service is implemented by a set of servers that run the clients’
requests. BFT is not a full-fledged group communication system since it does not
have a membership service and does not provide generic group communication
primitives. Nevertheless, BFT totally orders the messages, like Worm-IT. The or-
dering algorithm is based on a primary processor that defines the order and whose
failure has to be detected in order to ensure the progress of the system. However, if
the primary is suspected to be failed it is not removed (there are no groups), simply
a new primary is selected. This feature is important because it prevents the problem
of Rampart and SecureRing, whose safety properties can be impaired by forcing
the removal of correct processes from the group simply by delaying and causing a
wrong detection.

Recently, Martin and Alvisi proposed an intrusion-tolerant consensus protocol and
have shown how it can be used to implement state machine replication (Martin and
Alvisi, 2005). The protocol is similar to BFT in the sense that it has also a primary,
whose failure has also to be detected to ensure progress. The protocol is said to
be fast because it needs only two communication steps to deliver messages in total
order when there are no processor failures.

SINTRA is a framework aimed to support the implementation of replicated intrusion-
tolerant services (Cachin and Poritz, 2002). It provides a number of group commu-
nication primitives, like reliable, atomic and causal multicast. The group model is
static, i.e., there is no membership module. The agreement is made using a random-
ized protocol that relies heavily on public-key cryptography.

Several intrusion-tolerant systems have been designed using Byzantine quorum
systems, starting with (Malkhi and Reiter, 1998). COCA is a quorum-based on-line
certification-authority for local and wide-area networks (Zhou et al., 2002). COCA
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uses replicated servers for availability and intrusion-tolerance. The certificates that
it produces are signed using a threshold cryptography algorithm. COCA assumes
that tan adversary takes a certain time to corrupt a number of servers, therefore from
time to time keys are changed (proactive recovery). Systems based on quorums do
not need to make consensus so they are not bounded by the FLP result.

9 Conclusion

This paper explores a novel system architecture and model. Most of the system is
asynchronous and susceptible to arbitrary faults, including attacks and intrusions,
but it includes a distributed trusted and real-time subsystem called TTCB. This sub-
system is an example of a wormhole, a privileged component that provides limited
but useful services for applications and protocols otherwise executed in the nor-
mal weak environment. The primary contribution of the paper is the presentation of
a reasonably complex system that explores this novel architecture. Previous proto-
cols based on the model were considerably simpler (Correia et al., 2002a; Verı́ssimo
et al., 2003; Correia et al., 2005).

Worm-IT is composed of a membership service and a view-synchronous atomic
multicast protocol. The system does not suffer from having to detect failures to
make progress, a problem present in other systems in the literature. The resilience
to intrusions in group members is optimal.
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A Correctness Proofs

A.1 Membership Service

This section proves that the membership service satisfies the properties of MS1
Uniqueness, MS2 Validity, MS3 Integrity and MS4 Liveness (Section 5). Here we
consider the system model presented in Sections 2 and 3. In these proofs we use fn

to indicate the maximum number of processors allowed to fail in the view number
n: fn = b |V n|−1

3
c.

Lemma A.1 For all correct processors Pj that installed V n
j and V n+1

j , V n+1
j =

V n+1.

Proof: Correct processors in view V n execute the PICK protocol (Alg. 2) to agree
on the view changes to V n that give the new view V n+1. The last TBA of the PICK
protocol decides the hash of the view changes to be applied to V n. The proof can
be divided in two cases:

Case 1 If at processor Pj the hash decided in the last TBA is equal to Hash(bag-
decisions-tba) (Alg. 2, lines 8-21), then Pj obtains V n+1 by applying the changes
in bag-decisions-tba to V n. Therefore, Pj installs V n+1.

Case 2 If that is not true, at least 2fn+1 processors proposed for the last TBA (line
19) therefore at least fn + 1 correct processors did it (since there are at most fn

failed processors). All correct processors will eventually multicast a PICKED
message (line 22), Pj will eventually receive one of them (line 26), terminate
PICK (lines 28-29) and install V n+1.

2

Theorem A.2 If views V n
i and V n

j are defined, and processors Pi and Pj are cor-
rect, then V n

i = V n
j (MS1 Uniqueness).
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Proof: The proof is by induction on views. The group is created by processor P1

so the initial case is when processor P2 joins (view V 2). We assume P2 manages
to get a reliable copy of V1 that contains only P1 (Section 5.5). Then P2 sends P1

a REQ JOIN and waits for f 1 + 1 = |V 1|−1
3

+ 1 = 1 message with the new view
information. Since there is only one processor in V 1, no processor is allowed to fail
(f 1 = 0), therefore considering the communication model, P2 gets a correct copy
of V 2 and V 2

1 = V 2
2 .

The proof that (V n
i = V n

j ) ⇒ (V n+1
i = V n+1

j ) comes directly from Lemma A.1.

Considering that processors can join the group, we have also to prove that V n+1
i =

V n+1
j even if V n

i was defined but V n
j was not. We assume Pj manages to get a

reliable copy of V n. Then, Pj multicasts a REQ JOIN and waits for fn+1 messages
with the new view information. Considering the communication model and that
there are at least 2fn +1 correct processors (at most fn fail), Pj eventually receives
fn + 1 identical copies of V n+1 and installs that view. 2

Theorem A.3 If processor Pi is correct and view V n
i is defined, then Pi ∈ V n

i and,
for all correct processors Pj ∈ V n

i , V n
j is eventually defined (MS2 Validity).

Proof: The first part of the proof – that Pi ∈ V n
i – is trivial. Let us prove that for

all correct processors Pj ∈ V n
i , V n

j is eventually defined. The case of the first view,
V 1, is also trivial. For all other views, V n is installed after the processors in view
V n−1 executed the PICK protocol. Therefore, all processors Pj belong to V n

i for
one of two reasons: Pj ∈ V n−1 and Pj did not exit the group; or Pj joined the group
to view V n.

Case 1 Pj ∈ V n−1 and Pj did not exit the group. Let us prove that all correct pro-
cessors in view V n−1 received at least 2fn−1 + 1 messages (INFO, *, Ev(Pk),
*) from different processors in that view. If V n

i is defined, PICK terminated in
V n−1

i , therefore at least 2fn−1 + 1 processors proposed for the last TBA (Alg. 2,
line 19), so at least fn−1 + 1 correct processors proposed for that TBA. For
those correct processors to participate in the TBA, they must have received at
least 2fn−1 + 1 INFO messages about one event (Alg. 1, lines 17-21). At least
fn−1 +1 of those messages were sent by correct processors so all correct proces-
sors will eventually receive them (communication model). A correct processor
eventually multicasts an (INFO, *, Ev(Pk), *), either because it “saw” the event
or when it receives the (fn−1 + 1)th message. Therefore, all correct processors
eventually multicast the message and receive it at least 2fn−1 + 1 times, the
minimum number of correct processors.

PICK is called with the smallest valid-tstart received in the INFO messages
(Alg. 1, line 21). Let us now prove that the smallest valid-tstart received in any
subset of these 2fn−1+1 messages, from different processors and for this view, is
smaller than or equal to the last TBA tstart (Alg. 2, line 12). A correct processor
multicasts all INFO messages for a view with the same valid-tstart (Alg. 1, lines
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4, 8-9, 14-16). In any subset of 2fn−1 + 1 messages from different processors,
at least fn−1 + 1 where sent by correct processors. The last TBA happens when
at least 2fn−1 + 1 processors manage to propose before tstart (Alg. 2, line 19),
from which at least fn−1+1 are correct. Since there are at least 2fn−1+1 correct
processors, the intersection of these two sets of fn−1 + 1 correct processors has
at least one processor. A correct processor cannot propose with a tstart smaller
than the valid-tstart it sends in its INFO messages for a view (Alg. 1, lines 8-10,
14-16). Therefore, the smallest valid-tstart a correct processor receives in any
subset of 2fn−1 + 1 INFO messages is smaller than or equal to the first TBA
when 2fn−1 + 1 processors manage to propose, i.e., the last TBA.

A processor can receive INFO messages with several events Ev(Pj) in the
same view. When it receives for the first time the (2fn−1 + 1)th INFO message
(from different processors) with the same event, it starts executing PICK with the
smallest valid-tstart in these messages. It calls TBA once or more times, until it
gets the result of the last TBA (Alg. 2, lines 8-19) and installs the view, i.e., V n

j

is defined.
Case 2 Pj joined the group. All correct processors in view V n−1 eventually install

V n since they are included in Case 1. Therefore, they eventually send the new
view information to all processors accepted to join (Alg. 1, line 28). When a
processor allowed to join receives fn−1 + 1 of these messages it installs the new
view.

2

Lemma A.4 If any correct processor Pi receives 2fn + 1 (INFO, *, Ev(Pj), *)
messages for the same view V n and from different senders in the view, then at least
one correct processor in the view “saw” the event Ev(Pj). The meaning of “saw”
depends on the event: Pi detected the failure of Pj (event Remv(Pj)); Pi received a
(LEAVE, Pj) message from Pj (event Leave(Pj)); or Pi received a (REQ JOIN, Pj ,
*) message from Pj (event Join(Pj)).

Proof: In the proof we simply call message to a message (INFO, *, Ev(Pj), *) and
n messages to n of these messages received from different processors and for the
view being considered.

A correct processor multicasts a message for one of two reasons (Alg. 1, respec-
tively lines 6-10 and 11-16) because it “saw” the event Ev(Pj) or because it re-
ceived fn + 1 messages. Assume no correct processor “saw” the event Ev(Pj). If
there are messages it is because a malicious processor has sent it. Since there are at
most fn failed processors, no correct processor receives fn + 1 of messages, there-
fore no correct processor sends messages, so no correct processor receives 2fn + 1
messages. 2

Theorem A.5 If processor Pi ∈ V n
i and V n+1

i is not defined then at least one
correct processor detected that Pi failed or Pi requested to leave. If processor Pi ∈
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V n+1
i and V n

i was not defined at Pi then at least one correct processor authorized
Pi to join (MS3 Integrity).

Proof: First let us prove the first sentence. If processor Pi ∈ V n
i but V n+1

i is never
defined then Pi exited the group. This is only possible if PICK made agreement on
a bag-decisions-tba with an event Leave(Pi) or Remv(Pi). A correct processor puts
an event Ev(Pj) in bag-decisions when it receives the (2f + 1)th message (INFO,
*, Ev(Pj), *) from different processors and for this view (Alg. 1, lines 17-18).
Given Lemma A.4, that happens only if at least one correct processor “sees” the
event, Leave(Pi) or Remv(Pi). To “see” the Leave(Pi) means to receive a message
(LEAVE, Pi) from Pi. To “see” the event Remv(Pi) means to detect the failure of
Pi. This proves the first sentence. The proof of the second is similar so we skip it
for brevity. 2

Theorem A.6 If b |V n|−1
3

c + 1 correct processors detect that Pi failed or receive a
request to join, or one correct processor requests to leave, then eventually V n+1 is
installed, or the join is rejected (MS4 Liveness).

Proof: We prove the assertion for the processor failure and skip the proofs for join
and leave since they are similar. If fn + 1 = b |V n|−1

3
c + 1 correct processors de-

tect that Pi failed they multicast a total of fn + 1 messages (INFO, *, Remv(Pi)).
There are at least 2fn +1 correct processors and all multicast these messages either
because they detected the failure or because they received the mentioned fn + 1
messages. Therefore, all correct processors receive at least 2fn + 1 of these mes-
sages. If PICK is not running then it starts and eventually decides that view change,
considering the weak synchrony assumption made in Section 3. If PICK is already
running that change can be decided or not. If not, we assumed the event is re-issued
in the next view and that it will be eventually agreed (Section 5.2). 2

A.2 VSAM

This section sketches proofs of the correctness of the view-synchronous atomic
multicast protocol (VSAM). We consider the system model and the assumptions in
Sections 2 and 3.

Theorem A.7 If a correct processor multicasts a message M, then some correct
processor in group(M) eventually delivers M (VSAM1 Validity).

Proof: A processor multicasts a message by calling VSAM-multicast (Alg. 3, line 4).
The proof that RCAST eventually delivers M to all correct processors is straight-
forward. Therefore, we know that eventually all correct processors see an event
Datamsg. The proof that this event is eventually decided by the PICK protocol and
the message delivered is similar to the proof of Theorem A.6. 2
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Theorem A.8 If a correct processor delivers a message M, then all correct pro-
cessors in group(M) eventually deliver M (VSAM2 Agreement).

Proof: If a correct processor delivers M then it previously resends M to all processes
that it is not aware to have the message (Alg. 3, line 24). This guarantees that
all correct processes eventually receive M. The proof that all processes eventually
deliver M follows from Theorem A.6. 2

Theorem A.9 For any message M, every correct processor p delivers M at most
once and only if p is in group(M), and if sender(M) is correct then M was previously
multicast by sender(M) (VSAM3 Integrity).

Proof: The proof follows from the secure channels model (Section 3.1). 2

Theorem A.10 If two correct processors deliver two messages M1 and M2 then
both processors deliver the two messages in the same order (VSAM4 Total order).

Proof: If M1 and M2 are delivered in consequence of the result of the same PICK
execution the proof is obvious (see Algorithm 1, line 21). The proof that a correct
processor eventually engages in an execution of PICK follows from Theorem A.6.
This has also the consequence that all correct processors execute the same sequence
of PICKs in a view. Therefore, if M1 and M2 are delivered in two different execu-
tions of PICK, the property is also satisfied. 2

Theorem A.11 If two correct processors install views V n and V n+1 then both pro-
cessors deliver the same messages in view V n (VSAM5 View synchrony).

Proof: Any correct processor delivers a VSAM message only if the PICK protocol
says so. New views are also installed after the execution of a PICK protocol, which
is similar to PICK, therefore the proof follows from the proof of Theorem A.2. 2
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