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Universidade de Lisboa
Lisboa, Portugal

miguel.p.correia@tecnico.ulisboa.pt

Abstract—Many large-scale computing problems can be mod-
eled as graphs. Example areas include the web, social networks,
and biological systems. The increasing sizes of datasets has
led to the creation of various distributed large scale graph
processing systems, e.g., Google Pregel. Although these systems
tolerate crash faults, the literature suggests they are vulnerable
to a wider range of accidental arbitrary faults (also called
Byzantine faults). In this paper we present an algorithm
and a prototype of a distributed large-scale graph processing
system that can tolerate arbitrary faults. The prototype is
based on GPS, an open source implementation of Pregel.
Experimental results of the prototype in Amazon AWS are
presented, showing that it uses only twice the resources of
the original implementation, instead of 3-4 times as usual in
Byzantine fault-tolerant systems. This cost may be acceptable
for critical applications that require this level of fault tolerance.

I. INTRODUCTION

Graphs are used to model a large number of real problems
in areas such as the web, social networks, and biological
systems. The increasing size of datasets and complexity of
analysis has brought researchers’ attention to this subject.
Several large-scale distributed graph processing engines
were recently proposed, e.g., Pregel [1], PowerGraph [2],
Trinity [3], GraphX [4], Mizan [5], Ligra [6], and Giraph++
[7]. Among these, Google’s Pregel is the most cited. Pregel is
a distributed graph processing system that can run in clusters
with thousands of machines and process graphs with billions
of vertices. Pregel is a proprietary solution, but there are open
source implementations such as Apache Giraph [8], Apache
Hama [9] and GPS [10].

Pregel uses a checkpointing mechanism to tolerate faults.
The state of each process is periodically saved to a reliable
global storage, such as a distributed file system. When a
machine fails, the remaining machines reload their states
from the last checkpoint. The failed machine state is also
loaded and distributed among the remaining ones, allowing
the computation to restart.

Processes and machines crash so often in large-scale
systems that tolerating these faults is essential in graph
processing systems. However, there are more subtle faults
that may affect process/machine correctness without actually
stopping them [11]. These faults are part of the wider class
of accidental arbitrary faults, also known as accidental

Byzantine faults [12]. This class of faults is known for long
to affect real systems [13]. More recently, a two-year study
conducted at Google’s data centers revealed that more than
8% of DIMMs are affected by errors per year [14]. Another
study from Microsoft showed that errors in processors are
relatively frequent as well [15]. The checkpointing mech-
anism used by Pregel and the other similar systems in the
literature cannot cope with accidental arbitrary faults that can
be caused by these errors in DIMMs and processors.

Replication is often used to deal with arbitrary faults,
masking their effects [16]. An example of such technique
is the practical Byzantine fault-tolerant replication algorithm
presented in [17]. However, this algorithm is designed for
client/server applications, so it is not suited for distributed
graph processing systems. Besides, it needs 3f + 1 replicas
to tolerate f faults, thus a minimum of 4 replicas (f = 1),
which is too expensive for large scale systems. A more effi-
cient model was used to make MapReduce tolerate Byzantine
faults [18]. This model replicates f +1 times each map and
reduce task to tolerate f faults (minimum 2 replicas). Task
results are compared after they finish and if they do not
match, new tasks are executed until f + 1 matching results
are obtained. Despite requiring less replicas, this model is
also not suited because graph processing in MapReduce is
up to ten times slower than in Pregel-like systems [19].

In this paper we present Greft, a distributed graph pro-
cessing system based on Pregel that can tolerate arbitrary
accidental faults in an efficient way.1 Greft replicates each
graph vertex in different machines so that their states can be
compared during the computation. Using several techniques,
we were able to reduce the number of replicas to f + 1 to
tolerate f faults. Network traffic is greatly reduced because
only a cryptographic hash of each replica state is transmitted
and compared to detect arbitrary faults. As computation is
replicated, checkpoints can be stored more efficiently in local
disks instead of on a distributed file system, which is used
to store only the overall computation inputs and outputs.

The main contributions of the paper are: the first large-
scale distributed graph processing system that tolerates ac-
cidental arbitrary (or Byzantine) faults; a prototype of the
system based on GPS, an open source Pregel implementa-

1Greft was composed freely from the terms graph and fault tolerance.



tion; a detailed experimental evaluation of the prototype at
Amazon Web Services using a real graph.

II. PREGEL AND GPS

Pregel is a programming model and a framework that sup-
ports the model for large-scale distributed graph processing.
A graph is composed by vertices (or nodes) connected by
edges. In Pregel, each graph vertex has an unique ID, a value,
a state (active or inactive), a message queue and an adjacency
list. The adjacency list has the directed edges that connect
this vertex to the others, with an user-defined value for each
edge. The vertices are broken in a set of partitions (sets of
vertices) and distributed to machines in a cluster.

A typical Pregel program is expressed as a sequence of
iterations, called supersteps. In the beginning there is an
input graph. In each superstep, a user-defined function is
called in each vertex of the graph, conceptually all in parallel
(only conceptually, as each machine has a partition of the
vertices). This function defines the behaviour of vertex V in
superstep S. In the function, V can receive messages sent by
other vertices in superstep S � 1, update its value and state
and send messages to other vertices that will be received
only in superstep S + 1. This model is inspired in Valiant’s
Bulk Synchronous Parallel model [20].

A coordination system manages the execution of super-
steps in each machine, making sure that each superstep only
starts after all machines finished executing the previous.
Execution finishes when all vertices are inactive and there
are no pending messages in queues. This model is flexible
enough to implement a wide range of graph algorithms
and ensures that the system is free of dead-locks and data
races, common in asynchronous systems [1]. Since Pregel is
proprietary, Greft’s prototype is based on GPS [10], which
is similar but open.

Figure 1 illustrates an execution of the Single Source
Shortest Path algorithm in the Pregel/GPS model [1]. The
input graph has the origin vertex with zero and the other
vertices with +1. In the first superstep, the origin sends to
all its adjacent vertices messages with its value added to the
weight of the edge that connects them. These messages are
received by the destination vertices in the second superstep.
Each vertex then updates its value with the received messages
minimum value and sends new messages to their adjacent
vertices. Processing continues until a superstep ends with no
new messages being sent by any vertex and all vertices being
in inactive state. At this point, the value of each vertex will
be the shortest path to the origin.

GPS [10] is an open implementation of Pregel that also
introduces improvements in graph partitioning and a global
computation interface. Improvements in graph partitioning
aim to keep vertices that communicate a lot in the same
machine to reduce messages sent and improve performance.
The global computation interface was introduced to simplify
algorithms that would be too complicated to implement with

1: function SINGLE SOURCE SHORTEST PATH(vertex)
2: minDist  isOrigin(vertex) ? 0 : +1
3: for all msg in vertex.messages do
4: minDist  min(msg.dist, minDist)
5: if minDist < vertex.value then
6: vertex.value  minDist
7: for all edge in vertex.edges do
8: send(edge.id, edge.weight+ vertex.value)
9: vertex.active  FALSE

10: end function

Figure 1. Single Source Shortest Path execution and algorithm in Pregel

a Pregel’s vertex-centric view, e.g., clustering algorithms.
GPS is composed of a master process called GPSMaster and
worker processes called GPSWorkers. Hadoop Distributed
File System (HDFS) is used to store checkpoints and com-
putation inputs and outputs. A checkpoint in GPS has all
vertices’s data, including their message queue. HDFS is a
file system optimized to deal with large files and tolerant to
crash faults [21].

III. GREFT

This section presents Greft’s architecture, system model
and algorithms.

A. Architecture and System Model
Greft is composed of a set of distributed processes. Clients

request the execution of an algorithm on a dataset and wait
the computation to finish. A coordination process, GMas-
ter, receives the request, manages the graph partitioning
and distribution among the set of worker processes W
(GWorkers). Each graph partition is replicated in two or
more GWorkers in different machines. GWorkers run the
user-defined function of each vertex in each superstep and
save their states in local checkpoints when requested by the
GMaster. HDFS is used only to store the input and output
files, and is composed of a NameNode (master process that
manages access to the file system), and several DataNodes
(store file blocks). Figure 2 shows Gref’s architecture.

We assume that the clients and GMaster are always
correct, i.e., that they run as expected, which is the same
assumption done for Pregel, GPS, MapReduce and similar
systems. GWorkers can be correct or faulty: they can deviate
arbitrarily from their algorithm, e.g., by crashing, omitting
some messages, or jumping to arbitrary states. We assume



Figure 2. Greft’s architecture

that HDFS tolerates arbitrary faults (we used the standard
HDFS in the experiments, but a Byzantine fault-tolerant
HDFS has been presented in the literature [22]).

We express our assumptions on GWorker faults in terms
of parameter f . Usually this parameter means the number
of faulty replicas tolerated [17], [22], [23]. In our case,
this parameter has a different meaning: given a replica
set {V1, V2, · · · , Vn

} where V
i

is a vertex, we assume that
f is the maximum number of faulty replicas that finish
a superstep in the same incorrect state. The assumption
for GWorkers is equivalent as vertex replicas must run in
different workers.

The system is asynchronous, i.e., we make no assump-
tions about bounds on communication delays and processing
times, except those needed for a ping-based health-check
mechanism between master and workers. We assume that the
processes are connected through reliable channels, where no
messages are lost, duplicated or corrupted, similarly to those
provided by TCP connections. We also assume the existence
of a collision-resistant hash function (e.g., SHA-3).

B. GMaster Algorithm
Besides f , the algorithm has two other parameters: f

max

,
the maximum number of faults that can happen in a given
set of workers before that set is removed from the system;
spc, the number of supersteps between checkpoints.

Figure 3 shows the algorithm executed by GMaster. Ini-
tially, the input graph is partitioned in P partitions. A parti-
tion is created for each set of f +1 available workers in W
(line 1). Then, each partition is assigned to f +1 GWorkers
(lines 3 to 6). Therefore, each partition is replicated in
f + 1 workers that should go over the same sequence of
states during the computation. By comparing their states, the
system can detect arbitrary values. These sets of replicas are
stored in Variable R. The array F counts the faults detected
in each set of replicas and is also initiated at this point. Any
of the partitioning mechanisms available in GPS can be used
to partition the input graph.

The main part of the algorithm is the superstep loop
(lines 10-35). In this loop, GMaster defines which operations
the workers should perform next and sends messages with
commands instructing the workers to do so. Each message
sent by the GMaster takes one or more commands, which

Command Instructs workers to:
PARTITION Load a partition from the input graph
START SUPERSTEP Start a new superstep
CREATE CHECKPOINT Write current state to a checkpoint
RESTORE CHECKPOINT Load a checkpoint to replace current state
RESTORE REPLICAS Load part of checkpoint from another worker

Table I
COMMANDS SENT IN MESSAGES FROM GMASTER TO GWORKERS

can be seen in Table I. After sending the message to all
GWorkers (line 14), GMaster waits for them to respond or
marks them as suspects of crashing (line 17). A process
is marked as suspect if it fails to respond to the heartbeat
messages sent periodically from GMaster to each GWorker.
This mechanism is simple so it is not detailed in the
algorithm.

To detect an arbitrary value in the vertices’s states, GMas-
ter needs a way to compare the states of each vertex and
its replica(s). However, it would be burdensome to transmit
every vertex state of each GWorker to the GMaster, as this
state may be large. Instead, Greft uses cryptographic hashes
of the replica states. In the response received from each
GWorker after a superstep there is a hash of all its vertex
states. Since the workers are grouped in sets of f+1 replicas
and each set processes the same graph partition, every vertex
of each GWorker of a set of replicas should be in the same
state after each superstep. From this follows that a hash of
every vertex state computed in a defined order in a GWorker
will be equal to the hash computed by its replicas if they
are correct. By comparing the hashes of each set of replicas,
Greft can detect if any of the replicas has produced arbitrary
values, as the collision resistance provided by cryptographic
hash functions implies the hashes will be different in that
case. If any of the processes is marked as suspect or there are
differences in the hashes received from the replicas (lines 18-
19), a system recovery is started. If not, processing continues
to the next superstep.

To recover from a fault, GMaster first orders the load of
the last checkpoint. The current superstep number is replaced
with the number of the superstep in which the checkpoint
was created, and the RESTORE CHECKPOINT command is
added to the message that will be sent to all GWorkers (lines
20-22). Whenever a checkpoint is created by a GWorker, a
hash of that checkpoint is computed and returned to GMaster.
These hashes are included in the message so that GWorkers
can test if their checkpoints are consistent. If the recovery
was motivated by a difference in replica hashes, the system
assumes, optimistically, that a transient fault [12] occurred.
In this case, simply reverting to the last checkpoint puts the
system back in a consistent state, allowing the computation
to continue and finish correctly.

The case of a permanent fault (e.g., some memory bits
stuck-at-0 or 1 [24]) is more complicated as it can prevent
the computation completion, since the replicas may never
produce equal hashes. To deal with this kind of problem the



master counts the faults detected in each set of replicas in
the F array (line 19, 23). If the number of faults detected
in a replica set exceeds f

max

or there is one crashed, the
set of workers is removed from the system (lines 24-25).
If there are additional machines available in N , they are
used to replace those removed. To do so, the PARTITION
command is added to the message that will be sent to them,
instructing them to load the removed machine’s partition
(lines 27-31). If not, the RESTORE REPLICAS command is
added to the message, so that the removed replicas partition
can be redistributed among the remaining GWorkers.

The superstep loop continues while there are active ver-
tices in the graph and/or pending messages to be delivered,
i.e., while the graph is active.

C. GWorker Algorithm

Figure 4 presents the algorithm executed by the GWorkers.
The algorithm is composed of a loop that is executed while
GMaster is active. In this loop, GWorker waits for messages
from GMaster and, when received, executes the commands
in the message. Each message can have more than one
command, and they are executed in the sequence presented
in the algorithm.

When a PARTITION command is received, the worker
loads the indicated graph partition from the input graph
(lines 5-6). The way a partition is loaded is abstracted in
the algorithm by the loadPartition function, as it depends on
which partitioning mechanism is used and the way the graph
is stored. If the CREATE CHECKPOINT command is received,
GWorker creates a checkpoint of its partition and stores it in
the local disk (lines 7-9). Because there is at least one replica
of each GWorker, there is no need to store checkpoints in
a distributed file system to tolerate faults (unlike HDFS and
GFS). If a GWorker fails, its state can be recovered from its
replica(s). A hash of the checkpoint is computed and added
to the response sent to the GMaster.

If RESTORE CHECKPOINT is received, GWorker replaces
its state with the state loaded from the last checkpoint
(lines 10-13). The checkpoint can be loaded from local
disk or from a replica, if the local checkpoint is absent
or inconsistent (done by function partition.restoreChkpt).
Checkpoint consistency is checked using hashes computed
when the checkpoint was created, that are received along
with the RESTORE CHECKPOINT command from GMaster.
This procedure restores the GWorker to the state it was
when the checkpoint was created and is used to recover from
faults. It can be used jointly with the PARTITION command
when new nodes are added to the system: first the parti-
tion is loaded, then the checkpoint is restored, leaving the
GWorker ready to continue. As for the RESTORE REPLICAS
command, it is used when a set of replicas was removed from
the system and there are no available machines to replace
them. In this case, the removed replicas graph partition and
state has to be redistributed among the remaining workers.

Require: W : set of workers, G: input graph, N : available nodes
1: function GMASTER(f , f

max

, spc)
2: P  partition G into b|W|/(f + 1)c subgraphs
3: for all p 2 P do
4: R[p] {w 2W | w1...w

f+1}
5: W  W �R[p]
6: F [p] 0

7: msg  empty message
8: msg.addCmd(PARTITION, R)
9: superstep  1

10: while G.active() do
11: msg.addCmd(START SUPERSTEP, superstep)
12: if superstep mod spc == 0 then
13: msg.addCmd(CREATE CHECKPOINT, superstep)
14: sendToAll(R, msg)
15: msg  empty message
16: superstep  superstep + 1
17: 8r 2 R wait for responses or suspicions
18: for all p 2 P do
19: if (9w 2 R[p] | suspicions[w] = True) or (9w,w

0 2
R[p] | resp[w].hash 6= resp[w0].hash) then

20: checkpoint  lastCheckpoint()
21: superstep  checkpoint.superstep
22: msg.addCmd(RESTORE CHECKPOINT, checkpoint)
23: F [p] F [p] + 1
24: if (F [p] > f

max

) or (9w 2 R[p] | suspicions[w] =
True) then

25: removed  R[p]
26: R R� {removed}
27: if |N | > f + 1 then
28: R[p] {w 2 N | w1...w

f+1}
29: N  N �R[p]
30: F [p] 0
31: msg.addCmd(PARTITION, R[p])
32: else
33: msg.addCmd(RESTORE REPLICS, removed)
34: end function

Figure 3. GMaster (Greft)

When GWorker receives this command, instead of loading
the entire checkpoint and replacing its current state with the
one loaded from the checkpoint, only a part of the checkpoint
is loaded and its contents are appended to the worker’s
current state (done by function partition.restoreChkptPart).
The checkpoint is obtained by the worker from one of the
removed replicas and the same partitioning mechanism used
in the input graph is used in the checkpoint to determine
which part of the checkpoint each set of workers should
load.

When the START SUPERSTEP command is received, the
user-defined function is executed on each of the GWorker
partition vertices (lines 14 to 16). After that, a hash of all
vertices’s states is computed and added to the message that
will be sent to GMaster (line 18). The user function defines
what is the state of each vertex: its value, weights of its
edges or both. Vertices are ordered by their numeric id before
the hash is computed. This way the system ensures that if
the states are the same between the replicas, so will be the
hashes. When the system finishes processing, only one of
the replicas of each replica set writes the result to the output
files (function partition.writeResult).



1: function GWORKER(master)
2: while master.active() do
3: msg  waitMessage(master)
4: resp  empty response
5: if msg.PARTITION then
6: partition  msg.partition()
7: if msg.CREATE CHECKPOINT then
8: checkpoint  partition.createCheckpoint()
9: resp.addCheckpointHash(checkpoint.computeHash())

10: if msg.RESTORE CHECKPOINT then
11: partition.restoreChkpt(msg.superstep,

msg.checkpoint.hashes)
12: if msg.RESTORE REPLICAS then
13: partition.restoreChkptPart(msg.replicas,

msg.checkpoint.hashes)
14: if msg.START SUPERSTEP then
15: for vertex 2 partition do
16: vertex.execute(msg.superstep)
17: resp.addSuperstepHash(partition.computeHash())
18: send(resp, master)
19: if not partition.isReplica then
20: partition.writeResult()
21: end function

Figure 4. GWorker (Greft)

IV. GREFT’S IMPLEMENTATION

Greft’s prototype was implement using GPS’ initial ver-
sion, as made available by its authors2. GPS is written in
Java, so modifications will be described in terms of classes.
HDFS was not modified, as explained. Besides implementing
the algorithm described, we had to create saving and restor-
ing checkpoint routines, because they were not available in
GPS.

Parameters f , f
max

and spc were included in the GMaster
class. This class’ graph partitioning routine was modified to
replicate f + 1 times each partition in different GWorkers.
The message to start a new superstep was modified to include
commands to create or restore checkpoints. In the superstep
control loop, after receiving end of superstep messages from
all GWorkers, a routine to compare the hashes of each replica
set was created. If a divergence is detected, the command
to restore the last checkpoint is included in the next start
superstep message, along with the checkpoint file hashes. If a
replica set reached f

max

faults or a machine has crashed, the
replicas are removed. If there are enough available machines
to replace this replica set, they are used. If not, information
about the removed replicas checkpoints are included in the
start superstep message.

In the GWorker class, the superstep control loop was
modified to include the checkpoint creation and restore
routines, and the computation of vertex state hashes. Upon
receiving a start superstep message, GWorker creates or
restores a checkpoint according to the command received.
After the user-defined function is executed for all vertices,
GWorker computes a hash of all vertex states, ordering them

2Obtained in 2014-09-23 at https://subversion.assembla.com/svn/phd-
projects/gps/trunk/

by their numeric ID. This way, replicas with the same set of
vertices with the same values will produce identical hashes.
This hash is added to the end of superstep message sent to
GMaster. If a checkpoint was created in this superstep, its
hash is also added to the message.

V. EXPERIMENTAL EVALUATION

In this section we discuss the experimental results obtained
by executing Greft in a cluster. The experiments aimed to an-
swer the following questions: (1) What is the additional cost
of tolerating arbitrary faults? (2) What is the performance
improvement obtained by saving checkpoints to local disk
instead of a distributed file system? (3) What is the overhead
introduced by recovering from a fault?

Although there are no specific benchmarks for distributed
graph processing, there are several real-world graph datasets
available to be used in experiments. We used a large graph
dataset extracted from Twitter [25]. In this directed graph,
each vertex represents an user and the edges his/hers fol-
lowers. This graph has approximately 47.1 million vertices
and 1.47 billion edges. The experiments were performed at
Amazon Web Services (AWS), using 17 r3.large instances
from Elastic Cloud Computing (EC2). This type of instance
has 15GB RAM, 32 GB of SSD storage and 2 Intel Xeon E5-
2670 v2 processor virtual CPUs. All instances were located
in the same availability zone with Ubuntu Server 14.04 LTS
operating system. As GPS and Greft need the whole graph
to fit in memory, this type of instance was chosen because
it has the lowest cost per GiB of RAM among Amazon
EC2 instance types. Moreover, it is in cloud providers such
as Amazon that most real-world large scale processing is
executed, including graph processing.

Three algorithms were used in the experiments: PageRank,
Single Source Shortest Path (SSSP) and Weak Connected
Components (WCC). Pagerank is characterized by high
traffic but low processing per vertex, with all vertices active
during the computation. SSSP and WCC are both charac-
terized by a decreasing number of active vertices during the
computation, so the number of messages exchanged between
vertices also decreases with time. SSSP and WCC are also
characterized by a variable number of supersteps, depending
on the graph topology. PageRank, on the other hand, has a
fixed number of iterations (40 in our experiments).

Greft was parametrized with f = 1, since this is the value
used in most arbitrary fault-tolerant algorithm evaluations
[17], [22], [23], [18]. Besides, considering the meaning of
f in our algorithm, the probability of this assumption being
broken is negligible. Only transient faults were simulated,
because replica removal routines were not fully implemented
in the available version of GPS. The interval of supersteps
between checkpoint parameter (spc) was defined according
to the algorithm characteristics and expected run time. It
was set at 8 for PageRank, 6 for SSSP and 10 for WCC.
We only consider the superstep execution time in our re-
sults. Although the initial partitioning is affected by our
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Figure 5. Execution time on Greft and GPS for SSSP/WCC

algorithm, the overhead introduced is very small because
what dominates this phase is the way input files are stored
in HDFS and the partitioning mechanism chosen, whose
optimization is beyond the scope of this paper. The storage of
the results produces no significant overhead because only one
replica writes the results in the file system. All values shown
represent the mean time of 3 executions of each algorithm.

A. Cost of tolerating arbitrary faults

In the first experiment we compare Greft with the original
GPS by running all three algorithms on Twitter’s dataset. The
average run times (and standard deviations) for PageRank on
GPS and Greft were 1849 (± 62) and 4272 (± 119) seconds;
for SSSP, 233 (± 13) and 411 (± 21) seconds; for WCC,
342 (± 11) and 568 (± 17) seconds. The total run times and
the times for achieving 20/40/60/80% of the processing for
each algorithm are shown in Figure 5. Because PageRank’s
execution time is much longer than SSSP and WCC, its time
is shown separately in a second chart (same figure). Figure
6 shows the same results, but instead of absolute times, it
shows Greft’s execution time divided by GPS’s execution
time (i.e. the ratio between execution times). Both graphs
show that Greft processing time is approximately two times
longer than GPS’s. This was expected as Greft does twice as
much computation as GPS, so with the same resources the
processing time should be the double.

B. Benefit of saving checkpoints to local disk

Greft optimizes checkpoint management by saving the
checkpoints in local disk instead of a distributed file system.
A performance improvement was expected for this reason,

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

3.
0

% of processing

R
at

io

●

●

● ● ●

●
● ● ● ● ●

● ● ●

●

Algorithms
pagerank
sssp
wcc

Figure 6. Execution time ratio between Greft and GPS for PageRank
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Figure 7. Superstep execution time ratio between Greft and GPS

so an experiment was performed where the times to execute
a superstep in Greft and GPS were compared. Figure 7
displays the ratio between execution times of each superstep
for each algorithm. This figure shows that in supersteps
where a checkpoint is created – the lowest points, at 20, 40,
60, 80, and 100% – Greft performs almost as well as GPS
(i.e., the ratio approaches 1), even considering that, because
Greft replicates its workers, its checkpoints are almost twice
as big as GPS’s.

Figure 8 shows the percentage of time spent processing
and creating checkpoints. This figure shows that Greft man-
ages checkpoints more efficiently than GPS, as it spends less
time on checkpoints and more on processing when compared
to GPS.
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Figure 8. Percentage of time processing and creating checkpoints



C. Overhead of recovering from a fault
To test the overhead introduced by recovering from a

fault, an experiment was performed where a transient fault
was injected during the computation. Two scenarios were
evaluated. Recovery time is dominated by running again
the supersteps passed between the checkpoint creation and
the fault detection. Therefore, the best case is when a fault
is detected right after a checkpoint was created, because
only one superstep would have to be executed again. The
worst case, however, is when a fault is detected right before
a checkpoint would be created, because in this case all
supersteps in the interval defined by spc would have to be
executed again.

Figure 9 display the results that the recovery time in the
best case is small, limited to reloading the state and running
one superstep. The worst case has a longer recovery time,
but is also limited to the number of supersteps that had to
be executed again. Table II details these values. The worst
value is for the worst case of SSSP. The reason is that SSSP
has only 17 supersteps in the graph tested, with spc = 6,
so processing these supersteps again implies redoing a high
percentage of the processing. Otherwise, even in the worst
case the maximum overhead is 16.08%.
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Figure 9. Execution times with and without faults

Time no fault best case worst case
PageRank 4272 s 4425 s 4959 s
SSSP 411 s 457 s 648 s
WCC 568 s 572 s 645 s
Overhead no fault best case worst case
PageRank 0 3.6% 16.08%
SSSP 0 11.2% 57.7%
WCC 0 0.7% 13.6%

Table II
EXECUTION TIMES (SECONDS) AND OVERHEADS OF A FAULT

VI. RELATED WORK

There is a vast literature on the subject of arbitrary
/ Byzantine fault tolerance, with models dating from the
1980s [26]. State Machine Replication is a generic technique
to mask faults [16] that has been shown to be able to

F.T. mechanism Fault type Replicas
Pregel/GPS Backward recovery crash -
PowerGraph Backward recovery crash -
Trinity Backward recovery crash -
GraphX RDD crash -
Imitator Replication crash f + 1
Greft Replication arbitrary f + 1

Table III
RELATED WORKS AND THEIR CHARACTERISTICS

tolerate Byzantine faults efficiently [17]. After that work,
several other efficient algorithms were published, such as the
UpRight library [22] and MinBFT [23]. Byzantine fault tol-
erance in large scale processing models such as MapReduce
were also the subject of studies such as [18], [27]. However,
as already discussed, these models are not suited for graph
processing due to the costs involved.

The graph processing models more related to this work
are briefly described in Table III. Pregel [1] is one of the
first and the one that introduced many of the concepts used
by the other works, e.g., supersteps and vertex-oriented pro-
gramming. However, Pregel tolerates only crash faults using
a checkpoint-based recovery mechanism. GPS adds a few
features to Pregel, as explained in Section II. PowerGraph [2]
and Trinity [3] use similar mechanisms and also tolerate only
crash faults. GraphX [4] tolerates faults extending Spark’s
Resilient Distributed Datasets (RDD). This mechanism stores
changes made to each vertex instead of the data itself. None
of these systems uses replication to tolerate faults.

Imitator [28] is based on Pregel but uses in-memory vertex
replication to tolerate crash faults without using checkpoints.
Some distributed graph processing engines have a vertex
replication mechanism that is used to optimize access to high
degree vertices [2]. These vertices are replicated in different
machines so that its values can be accessed directly, without
exchanging messages between machines. Imitator extends
this mechanism creating a replica of every vertex. When a
machine crashes, their replicas are used to restore the system.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented Greft, an algorithm and proto-
type of an accidental arbitrary fault-tolerant distributed graph
processing engine. Experimental results were also presented,
confirming that Greft can recover from accidental arbitrary
faults in an efficient manner, using only twice the original
version resources with f = 1. We consider this a realistic
value, because accidental arbitrary faults are rare and the
probability of such a fault leaving two replicas in the same
state is negligible. The optimizations introduced in Greft’s
checkpoint management also proved to be satisfactory, sig-
nificantly reducing the time spent in this task when compared
to the original version.

As future work we plan to study ways to tolerate malicious
faults in Greft. We also plan to improve its fault detection
algorithm so that it can detect precisely which process of



a replica set is faulty. This will improve the fault recovery
time by using healthy replicas states to recover from faults
instead of restoring checkpoints, whenever possible.
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