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Abstract

In this paper a new multi-objective approach for the routing problem in Wire-

less Multimedia Sensor Networks (WMSNs) is proposed. It takes into account

Quality of Service (QoS) requirements such as delay and the Expected Transmis-

sion Count (ETX). Classical approximations optimize a single objective or QoS

parameter, not taking into account the conflicting nature of these parameters

which leads to sub-optimal solutions. The case studies applying the proposed

approach shows clear improvements on the QoS routing solutions. For exam-

ple, in terms of delay, the approximate mean improvement ratios obtained for

scenarios 1 and 2 were of 15 and 28 times, respectively.

Keywords: Multi-Objective Optimization, Wireless Multimedia Sensor

Networks, Strength Pareto Evolutionary Algorithm, Quality of Service.

1. Introduction

Wireless Sensor Networks [1] are composed of small devices, called sensor

nodes, which cooperate to forward collected data to a sink node that either

∗Corresponding author at: INESC-ID/Instituto Superior Técnico, Universidade de Lisboa,
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uses the data locally or forwards it to other networks through a gateway, like

for example, the Internet. Sensors are resource-limited devices composed of5

sensing, processing, transceiver, and power units.

The addition of low cost multimedia hardware to sensors fostered the devel-

opment of Wireless Multimedia Sensor Networks [2], allowing the retrieval of

multimedia streams, and/or scalar sensor data. Wireless sensor networks have

many application areas [2] such as multimedia surveillance sensor networks, stor-10

age of potentially relevant activities, traffic avoidance, enforcement and control

system, and many more.

Routing protocols [3] in WSNs can be classified according to the network

structure, protocol operation, how routing information is acquired and main-

tained. In terms of network structure, routing protocols can be divided into15

flat-based routing, hierarchical-based routing and location-based routing. In

flat-based routing, typically nodes have similar roles, whereas in hierarchical-

based routing nodes have different roles. In location-based routing, location in-

formation is used to route data in the network. According to protocol operation,

these protocols can be classified as multipath-based, query-based, negotiation-20

based, QoS-based, or coherent-based routing techniques. In multipath-based

routing, multiple paths are maintained between a source-destination pair. In

query-based routing, the destination node sends a query through the network

and the node with this data, sends an answer. In negotiation-based routing,

high level data descriptors are used to eliminate redundant data transmissions25

through negotiation. In QoS-based routing, certain QoS metrics have to be satis-

fied while routing data through the network. In coherent-based routing, sensors

cooperate in processing data flooded throughout the network. According to

how routing information is acquired and maintained, they can be classified into

proactive, reactive, and hybrid. In proactive protocols, nodes compute routes30

before they are needed. In reactive protocols, nodes compute route on demand.

Hybrid protocols combines ideas of both.

Multimedia applications have different QoS requirements such as, bounded

latency or delay, throughput, jitter, availability, and energy consumption. Since
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energy efficiency is considered as the main goal of most WSNs routing protocols,35

the majority of these protocols does not perform well when applied to QoS-

constrained WMSN. Routing techniques in WMSN can be classified similarly

to those of WSNs. In [4] another categorization for WMSN routing protocols

is presented. Protocols are classified based on the handled data types, data

delivery model types, classes of algorithms adopted, and the used hole-bypassing40

approach.

Many routing schemes [4, 5] have been proposed to address QoS require-

ments. In most of these schemes, only one of the desired objectives is optimized,

while others are assumed as problems’ constraints [6]. In certain applications, a

meta-heuristic approach [7, 8] using a Multi-objective Optimization (MO) algo-45

rithms that can provide several optimal solutions may be preferred, since single

design objective algorithms ignore other relevant objectives. By considering

all objectives simultaneously, a set of optimal solutions can be generated, also

known as the Pareto solutions [9] of the multi-objective problem. It is also known

from [10] that finding optimal routes for multiple objectives in networks (multi-50

constrained QoS routing), is a NP-Complete problem, hence efficient heuristic

search algorithms based on reduced-complexity Evolutionary Algorithms (EAs)

[11] are necessary.

The Expected Transmission Count (ETX) [12] metric is an estimation of the

expected total number of transmissions (including retransmissions) required to55

deliver a packet to the destination node successfully. ETX allows finding high

throughput paths on a multi-hop wireless network, and incorporates the effects

of link loss ratios, asymmetry in the loss ratios between the two directions of

each link, and the interference among the successive links of a path.

This paper proposes a new multi-objective approach for the WMSN routing60

problem that takes into account QoS parameters such as delay and ETX. A

comparison of the proposed approach with two alternative routing protocols

was also presented.

The rest of this paper is organized as follows. Section 2 discusses related

work. Section 3 presents the WMSN routing problem formulation. Section 465
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presents the Multi-objective optimization concept, formulation and our Strength

Pareto Evolutionary Algorithm (SPEA) implementation used to solve the prob-

lem. Sections 5 and 6 present the simulation model and results respectively.

Finally, Section 7 presents conclusions and future work.

2. Related Work70

The Dynamic Source Routing (DSR) [13] protocol, one of the well known

Mobile Ad-hoc Networks (MANETs) routing protocols, is a single path on-

demand routing protocol. If a data packet has to be sent and no route to the

destination is available, the source node starts a route discovery process by

flooding Route REQuest (RREQ) packets targeting the destination node. Each75

neighbor receiving the RREQ packet checks if it is the destination. If so, it sends

a Route REPly (RREP) packet back to the source after adding the accumulated

routing information contained in the RREQ packet. The shortest returned path

is the one used for routing.

The High Throughput Low Coupling Multipath extension to the Dynamic80

Source Routing (HTLC-MeDSR) [14] protocol is a multipath on-demand routing

protocol. Similarly to DSR, a RREQ is issued only if a data packet has to be

sent and no route to that destination exists. The destination also issues RREP

packets to the received RREQ packets. HTLC-MeDSR uses probe packets to

detect link failures and each node overhears other nodes packet transmissions85

to increase the False Routing Failures (FRFs) accuracy. HTLC-MeDSR uses

ETX information to find high throughput paths, and the correlation factor to

find paths with low coupling if they exist. The set of paths with the highest

throughput and the small correlation factor are the ones used.

The authors of [15] proposed a multi-objective routing algorithm that identi-90

fies a set of Pareto Optimal routes, which represent different trade-offs between

energy consumption and communication latency, for both single and multipath

routing problems. One of the reasons behind the selection of the objectives is

that sensor nodes are powered by batteries which makes power conservation an
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important goal. By minimizing the number of hops in a path, communication95

latency can be minimized since in most situations, latency is a consequence

of the number of intermediate nodes along a communication path. WSN and

WMSN have different QoS requirements, as multimedia traffic generally requires

a minimum bandwidth.

In [16], a performance comparison of two Multi-Objective Evolutionary Algo-100

rithms (MOEA), namely the Non-dominated Sorting based Genetic Algorithm-

II (NSGA-II) and the Multi-Objective Differential Evolution (MODE) algo-

rithm, is presented. MOEAs are used to find optimal routes between a source

and a destination nodes taking into account conflicting objectives, like dissi-

pated energy and end-to-end delay in a fully-connected wireless network. Since105

sensors can be deployed over a vast area, fully-connected networks were not

considered in this study.

The closest work to ours was presented in [17]. The authors propose a QoS

based Multi-Objective Optimization algorithm aiming at ensuring certain QoS

levels in Wireless Mesh Networks (WMN). Some of the QoS parameters opti-110

mized are bandwidth, packet loss rates, delay and power consumption. Our

approach targets WMSN QoS requirements instead. The ETX metric is used

since it allows finding high throughput paths taking into account link loss ratios,

links’ asymmetries, and interference among the successive links of a path. The

authors in [14] have shown that low ETXs paths are also energy efficient. The115

selection of a link with a certain bandwidth does not guarantee that the path

has a good throughput. Another difference was on the problem formulation

presented. The authors of [17] presented a linear programming formulation, not

making clear how the presented formulation is used by the multi-objective op-

timization algorithm. We modeled the routing problem as a multi-constrained120

QoS routing problem and consequently used multi-objective optimization algo-

rithms to solve it. In addition, in [17], it was not clear how the MOEA algorithm

was implemented. In contrast, we present and explain in detail how our MOEA

algorithm was implemented, namely: (1) the population initialization process,

(2) how genetic operators were used.125
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Table 1: Summary of related work

Publication MOEA algorithm Scenarios considered Metrics considered

[15] MODE Wireless Sensor Network Energy consumption, delay

[16] MODE, NSGA-II Full-connected network Energy consumption, delay

[17] NSGA-II Wireless Mesh Network Bandwidth, packet loss, energy

consumption and delay

[18] RVGA Wireless Mesh Sensor

Network

Energy consumption, battery

lifetime

The authors of [18] proposed a multi-objective routing optimization approach

that uses a real-valued genetic algorithm (RVGA), which obtain benefits of

better convergence properties by maintaining an unconstrained Pareto archive

without employing an independent search population, aiming at prolonging the

average network lifetime. The proposed approach, whose objectives are to mini-130

mize the total energy consumption, and to maximize the time required for nodes

to recharge or replace their batteries, accomplishes its goal by combining a k-

shortest paths based search space pruning and an edge metric consisting of an

association between a pair of nodes energy cost with its link. Energy efficient

routing protocols are important as they prolong nodes battery lifetime. Routing135

protocols that use the ETX metric can find energy efficient paths, which allow

the overall reduction of the networks energy consumption.

Table 1 provides a summary of related multi-objective optimization work

based on MOEA algorithms used, scenarios considered and the metrics used as

objective functions.140

3. Problem Formulation

The notation and terminology used is borrowed from [19]. A Wireless Multi-

media Sensor Network can be represented by a connected graph G(V,E) where

V is the set of vertices representing nodes and E is the set of edges repre-

senting links between the nodes. Each edge e = u → v is associated with k145

weights where ωl(e) > 0,∀e ∈ E and 1 ≤ l ≤ k. Similarly to [19], it is as-

sumed that all constraints are path constrains, and that the weight of a path is
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equal to the sum of the weights of all edges on the path. Thus, for each path

p = v0 → v1 → · · · → vn, ωl(p) =
∑n

i=1 ωl(vi−1 → vi). A path constraint, e.g.,

delay, represents the end-to-end QoS requirement for the complete path.150

Definition 3.1. Multi-constrained QoS routing problem. Given an undirected

graph G(V,E) with each edge e is associated with k weight functions where

ωl(e) > 0,∀e ∈ E and 1 ≤ l ≤ k. A constants vector c = (c1, c2, , ck). A multi-

constrained QoS routing problem consists in finding a path p between a source

s and destination d, so that, ωl(p) ≤ cl, where 1 ≤ l ≤ k.155

Definition 3.2. Multi-constrained Optimal QoS routing problem. Given an

undirected graph G(V,E) with each edge e is associated with k weight functions

where ωl(e) > 0,∀e ∈ E and 1 ≤ l ≤ k and a path p = v0 → v1 → · · · → vn

is considered an optimal QoS path from s to d, if ∃q = s → · · · → d such that

ω(q) < ω(p).160

Each optimal path can possibly satisfy a particular QoS constraint not yet

satisfied by any other path. QoS routing guarantees finding a path that satisfies

the QoS constraints if it exists, by considering all QoS optimal paths. The

number of optimal paths can grow exponentially with respect to the network

size [19].165

The WMSN QoS routing problem can be addressed meta-heuristically using

multi-objective optimization algorithms, as explained in the following section.

4. Multi-Objective Optimization

4.1. Basic Definitions

Multi-objective Optimization Problems (MOP) deals with more than one170

objective function which are to be minimized or maximized, subject to a number

of constraints:
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Minimize/Maximize fm(x), m = 1, 2, ...,M ;

subject to gj(x) ≥ 0, j = 1, 2, , J ;

hk(x) = 0, k = 1, 2, ,K;

x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, , n.


(1)

where, M is the number of objective functions subject to J inequalities and

K equality constraints. A solution x is a vector of n decision variables. The

lower bound x
(L)
i and upper bound x

(U)
i , restricting each decision variable xi,175

constitute a decision variable space D. L and U are the Lower and Upper

bounds restricting each decision variable.

A feasible solution x1 is one that satisfies all constraints and decision variable

bounds. The set of all feasible solutions is called the feasible region (or search

space S).180

Definition 4.1. Domination. A solution x(1) is said to dominate another solu-

tion x(2), if the following conditions are verified:

1. x(1) is not worse than x(2) in all objectives, or fm(x)(1) is not worse than

fm(x)(2) for all m=1,2,3,M.

2. x(1) is strictly better than x(2) in at least one objective, or fm(x(1)) is185

better than fm(x(2)) for at least one m = 1, 2, 3, ...,M .

Definition 4.2. Non-dominated set. For a set of solutions P , a non-dominated

set of solutions P is a set of solutions that are not dominated by any member

of the set P .

Definition 4.3. Globally Pareto-Optimal set. A Globally Pareto-Optimal set190

is a non-dominated set of the entire feasible search space S. Since solutions

of the globally Pareto-optimal set are not dominated by any other within the

search space, they are optimal solutions of the MOP, and are simply referred as

the Pareto-optimal set (POS).

1A vector of n decision variables (x1, x2, ..., xn)T constitutes a solution x
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4.2. MOP Formulation195

The multi-objective optimization algorithms goal is to produce a diverse set

of optimal solutions that can be used by the user while evaluating trade-offs

between different objectives.

4.2.1. Objective Functions

The goal is to minimize the following metrics: delay and ETX.200

Delay. In computer networks [20], a packet originated in a source node passes

through a set of intermediate nodes, until it reaches its destination node. During

its travel from one node to a subsequent one along a path, the packet suffers, at

each node, from several types of delays, namely nodal processing delay, queuing

delay, transmission delay, and propagation delay. Processing delay (dproc) can205

be seen as the time required (1) to examine the packets header in order to decide

where to direct the packet, and/or (2) to check the packet for bit-level errors that

possible occurred while transmitting it to a subsequent node. Queueing delay

(dqueue) corresponds to the delay packets suffer in nodes queues while waiting to

be transmitted onto the link. Transmission delay (dtrans) is the amount of time210

necessary to transmit all of the packets bits into the link. Propagation delay

(dprop) is the time necessary for all packets bits to propagate from the beginning

of a link of a given node to the subsequent one. The packets bits propagate at

the propagation speed of the link, which depends on type of physical medium of

the link. The propagation speed is in the range from 2·108 to 3·108 meters/sec.215

So, the nodal delay is defined as

delay = dproc+dqueue + dtrans + dprop (2)

dtrans =
L

R
(3)

dprop =
d

s
(4)

where L is the packet length in bits, R is the link transmission rate in bits/sec,

d is the distance among nodes in meters, s is the link propagation speed in
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meters/sec.

Since wireless networks are composed of many nodes, the total delay (dtotal),

also called end-to-end delay, considering that there are K1 intermediate nodes

between a source node and a destination node, is given by

dtotal =

K∑
i=1

delayi (5)

where K is the number of hops in the end-to-end path.220

Expected Transmission Count. The Expected Transmission Count (ETX) [12]

metric is the expected total number of transmissions (including retransmissions)

required to deliver a packet to the destination node successfully. ETX allows

finding high throughput paths on a multi-hop wireless network, and incorporates

the effects of link loss ratios, asymmetry in the loss ratios between the two225

directions of each link, and the interference among the successive links of a

path.

In order to compute the ETX of a link, the link quality (LQ) and the neigh-

bor link quality (NLQ) are used. The link quality (LQ) can be seen as the

measured probability that data packet originated at a given node (e.g., A) suc-230

cessfully arrives at a subsequent node (e.g., B). The neighbor link quality

(NLQ) is a measure of the quality of the link in the opposite direction, i.e., how

many of data packets that were sent from B are received by A.

The probability that a data packet is successfully sent to a neighbor and,

on receiving it, the neighbor successfully replies with a response data packet235

is LQ × NLQ. Since each attempt to transmit a packet can be considered a

Bernoulli trial, the expected number of transmissions is given by

ETX =
1

LQ×NLQ
(6)

Considering that there are K1 intermediate nodes between a source-destination

pair, the total ETX is the sum of the ETX metrics along the path, i.e.,
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ETXtotal =

K∑
i=1

ETXi. (7)

where K is the number of hops in the end-to-end path.240

4.2.2. Constraints

Path Constraint. WMSN applications have different QoS requirements (Q) such

as bounded latency (or delay) L, bandwidth (or throughput) B, jitter J , packet

loss P and energy consumption E, so {L,B, J, P,E} ⊂ Q. Depending on

the constraints, and in order to impose them it is necessary to check whether245

min{ωQ(p)} ≥ Qmin or max{ωQ(p)} ≤ Qmax, where Qmin or Qmax are the

minimum or maximum values allowed. For example, the bandwidth path con-

straint ensures that min{ωB(p)} ≥ Bmin, for all valid paths.

4.3. Strength Pareto Evolutionary Algorithm

The Strength Pareto Evolutionary Algorithm (SPEA) [9] is an elitist multi-250

objective evolutionary algorithm (MOEA) since it ensures that good solutions

found in early runs are only replaced if better solutions are discovered. The

algorithm achieves it by maintaining an external population P l consisting of

a fixed number of non-dominated solutions found before the beginning of the

simulation. If new non-dominated solutions are found during the simulation,255

they are compared with the existing external population and the resulting non-

dominated solutions are stored. The external population participates in the

genetic operators with the current population expecting to influence the pop-

ulation towards good regions of the search space. Below one iteration of the

algorithm step-by-step is described [9]. Initially, a population P0 of size N is260

randomly created, and the external population P 0 with maximum capacity of

N is empty. In generation t,

Step 1. Find the best non-dominated set of Pt and copy these solutions to P t.

Step 2. Find the best non-dominated solutions of the modified population P t

and delete all dominated solutions.265
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Figure 1: Solution representation.

Step 3. If |P t| ≥ N , the clustering technique must be used to reduce the external

population size to N . If not, do nothing to P t. The outcome is the

external population P t+1 used in the next generation.

Step 4. Assign fitness to each elite solution i ∈ P t+1 and to each population

member j ∈ Pt.270

Step 5. In a minimization sense and with the previously assigned fitness values,

apply binary tournament selection, crossover and mutation operators in

order to create the new population Pt+1 of size N using the combined

population (P t+1 ∪ Pt) of size (N + N).

The new external and current population that are used in the next gen-275

eration, are obtained through steps 3 and 5 respectively. When the stopping

criteria is satisfied, the algorithm stops.

4.4. SPEA Implementation

A MOEA consists of the individual, the set of individuals also called pop-

ulation, the fitness of each individual and of the genetic operators applied to280

the population. Below a description is given on how each of the components is

obtained:

4.4.1. Individual

Each candidate solution (individual or chromosome) represents a path be-

tween a source node SN and a destination node DN. A link connects two con-285

secutive nodes in a path (see Figure 1). For example, Figure 4a (Section 5.1)

shows a simulation scenario with 49 nodes. The source node is node 0 and the

destination node is node 48. Figure 2 shows a candidate solution (marked on

Figure 4a) for scenario 1.
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Figure 2: A candidate solution for scenario 1.

4.4.2. Population Initialization290

The initial population is created using the Breadth First Search (BFS) [21]

graph search algorithm. It was previously mentioned that HTLC-MeDSR uses

probe packets to determine ETX. A simulation with the HTLC-MeDSR rout-

ing protocol was performed on NS-22 [22] network simulator without any traffic

source and all links ETX and delay values were collected. The probe packet295

size was set to 2312 bytes3, in order to measure the maximum transmission

time. BFS algorithm was fed with all links so that it could compute a set of

individuals. Since BFS explores all possible nodes and links among nodes, its

time complexity is O(|V | + |E|). Consequently, the BFS execution time de-

pends on the networks size [21], i.e., the number of nodes and links, which is300

significant for large networks. To speed up the search process, each branch was

probabilistically explored with a probability of 20% and 1% for scenarios 1 and

2 respectively (see Section 5.1). Thus, the search algorithm was not exhaustive,

and the feasible individuals were found using MOEA’s genetic operators, i.e.,

crossover and mutation, to solve the problem as explained in the following sub-305

sections. The initial population is randomly selected from the sets of individuals

obtained for both scenarios.

4.4.3. Fitness Assignment

Fitness values are assigned to each individual of the initial population using

the ETX and delay values collected in the previous step. An individuals ETX310

is the sum of its links ETX values. An individuals end-to-end delay is the sum

of its links delay values. The set of non-dominated individuals is selected taking

2http://www.isi.edu/nsnam/ns/
3the maximum IEEE 802.11 [23] frame body size
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Figure 3: During the crossover operation, offspring1 and offspring2 are created by con-

catenating parts from parent1 and parent2. For example, offspring1 results from the con-

catenation of nodes starting from SN to common node B from parent1 and with the nodes

following B to DN in parent2.

into account the individual’s fitness values.

4.4.4. Genetic Operators

The goal of applying genetic operators is to produce better solutions than315

the current ones.

Selection Operator. The best individual found in the binary tournament selec-

tion is placed in the mating pool. The binary tournament selection is applied

to all population in two rounds, so that each individual participates at most

twice in the two tournaments. Therefore, the offspring is created from the best320

individuals (parents) which are chosen ’only’ from the mating pool.

Crossover Operator. A single-point crossover with a crossover probability PC

was considered. The algorithm first checks the crossover probability to deter-

mine if crossover will take place. Then, the algorithm tries to obtain a crossover

node by randomly selecting a position after the source and prior to the desti-325

nation node, taking into account the size of the shortest path (see Figure 3). If

no common node exists, a crossover point is randomly selected. If the crossover

node is common between the parents, there is a high probability of producing

valid offspring.

Mutation Operator. The algorithm checks the mutation probability Pm to de-330

termine if mutation shall take place. Then the algorithm randomly obtains a
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mutation position after the source and prior to the destination node. The seg-

ment between the source node s and the node at the mutation position is kept,

and the BFS algorithm is applied to find valid nodes until the destination node.

So, the algorithm enables population diversity.335

5. Simulation Model

The simulation model evaluation objective is twofold. On the one hand, a

simulation with NS-2 was performed aiming at obtaining delay and ETX values

for each edge (or link) in the network. Besides that, simulations with DSR and

HTLC-MeDSR were also performed, and the total delay and ETX values of the340

paths used by the algorithms were obtained, as will be explained in section 6.

On the other hand, the proposed SPEA was evaluated.

5.1. Network Simulator Setup

A simulation model based on NS-2 was used together with two different

network scenarios (see Figure 4). Scenario 1 is a grid network with 49 nodes345

regularly distributed over an area of 500m x 500m. In scenario 2, 100 nodes are

randomly distributed over an area of 700m x 700m. Here, only static scenarios

were considered since they are more common in WMSN [14]. There is only one

source-destination pair which is placed at opposite corners. The simulation du-

ration is of 200s. Ten simulation runs were executed and the results statistically350

analyzed. In order to get non-deterministic results across runs, different seeds

were used. One simulation traffic source was used: Constant Bit Rate (CBR) at

128kbps. The packet size is set to 2312bytes. The mobile hosts channel capacity

varied between 6, 12, 24 and 54Mbps depending on the distance between the

nodes, as for any Wi-Fi link. Higher transmission rates for shorter distances.355

The transmission range is the same for all transmitters. The IEEE 802.11 dis-

tributed coordination function (DCF) was used for Wireless LANs and, finally,

the 802.11Ext [24] was considered as NS-2s MAC protocol.

Table 2 shows the simulation parameters.
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(a) Scenario 1 (b) Scenario 2

Figure 4: The simulation scenarios.

5.2. SPEA Setup360

Table 3 shows the SPEA parameters. Fifteen runs of the proposed SPEA

were performed.

6. Simulation Results

The proposed algorithm was compared with two routing protocols, respec-

tively:365

• DSR: Dynamic Source Routing which is a single path routing protocol.

• HTLC-MeDSR: High Throughput Low Coupling Multipath Extension to

the Dynamic Source Routing (HTLC-MeDSR) protocol which is a multi-

path routing protocol that uses ETX and CF.

6.1. Non-dominated Sets370

Figure 5 presents all solutions (dominated and non-dominated) obtained over

fifteen runs of the proposed algorithm on both scenarios. In scenario 1, 80%
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Table 2: Simulation Parameters

Scenario 1 Scenario 2

Network field 550m x 550m 700m x 700m

Number of Sensor 49 100

Number of Sinks/Number of Sources 1/1

Source Node (SN) 0 0

Destination/Sink Node (DN) 48 15

Packet Size 2312 bytes

Radio Propagation Model Two Ray Ground

Source Data rate 128 Kbps

Traffic type CBR

MAC Layer IEEE 802.11a

Physical Layer data rate 6, 12 Mbps 6, 12, 24, 54 Mbps

Simulation time 200 seconds

of the non-dominated solutions (see Figure 5a) presented the following pairs of

values: (6.5, 12.66) and (6.81, 9.54), for (ETX, Delay) respectively. In scenario

2, the non-dominated sets were close but not overlapping. This was due to the375

increase in network dimension and the use of a random network topology in

comparison to the grid topology of scenario 1.

Table 3: SPEA Parameters

Scenario 1 Scenario 2

Population Size 100 200

External Population Size 3

Number of Generations 20 50

Crossover probability (PC) 0.75

Mutation Probability (Pm) 0.2
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(a) Scenario 1 (b) Scenario 2

Figure 5: Non-dominated Sets.

Table 4: Maximum transmission times

Data rates (Mbps) Txtime (ms)

6 3.15

12 1.59

24 0.80

54 0.41

6.2. Pareto-optimal Sets

Table 4 shows the maximum amount of time necessary to transmit a data

packet among nodes, for each one of the physical layer data rates presented380

on Table 2. The end-to-end delay values presented on Figure 6 and Table 5

are discrete because of all possible combinations of transmission time values

presented on Table 5.

The Pareto-optimal Sets (POSs) for scenarios 1 and 2 are composed of 5 and

4 optimal solutions respectively (see Figure 6). The corresponding ETX and385

end-to-end delay values of all optimal solutions are listed in Table 5. In terms

of the multi-objective optimization, two distinct goals should be considered: (1)

solutions should be as close as possible to the POS, and (2) solutions should be
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Table 5: Optimal solutions for the proposed SPEA

Scenario Solutions
Objective Functions

ETX Delay (ms)

1

[0,2,10,18,26,34,48] 6.5 12.66

[0,8,16,18,26,34,48] 6.5 12.66

[0,8,16,18,32,40,48] 6.5 12.66

[0,2,10,18,32,40,48] 6.5 12.66

[0,8,16,24,32,40,48] 6.81 9.54

2

[0,5,4,99,81,37,71,15] 8.0 14.25

[0,5,61,81,37,71,15] 8.39 14.22

[0,36,4,99,81,37,71,15] 8.73 12.69

[0,5,61,32,42,44,71,15] 9.54 11.9

(a) Scenario 1 (b) Scenario 2

Figure 6: Pareto Optimal Sets.

as diverse as possible in the obtained non-dominated set. In terms of the former

goal, the set of non-dominated solutions presented were the best among all390

runs of the SPEA algorithm whose goal was to minimize both objectives (delay

and ETX). Figure 6 shows that solutions from scenario 2 are better distributed
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across the POS in comparison to those of scenario 1. Despite this, both sets of

solutions satisfy the latter goal.

6.3. QoS Routing395

A WMSN routing protocol must take into account a set of end-to-end QoS

metrics like bandwidth, delay, packet loss, etc. The QoS requirements can be

met if one or multiple paths are used.

For a single path routing protocol, like DSR, whose objective is to discover

paths on-demand from a source node to a destination node, hop-count is the only400

metric taken into account when a path is to be chosen among those discovered.

Since no additional information is available to DSR, the path with the least

number of nodes is selected and used to forward data. Hop-count is a simple

metric because it does not require additional information to be collected and/or

maintained by the nodes.405

HTLC-MeDSR attempts to use multiple paths between a given source-destination

pair if they exist. If the paths are carefully selected, the use of multiple path has

advantages such as fail tolerance, load balancing and data aggregation. Dur-

ing the route selection process, HTLC-MeDSR takes into account ETX and CF

among paths.410

Table 6 shows average objective function values over 10 simulation runs with

95% confidence interval values. The objective function values for the proposed

algorithm were averaged from the 4 non-dominated solutions obtained. It can

be seen that the proposed SPEA outperforms DSR and HTLC-MeDSR in both

metrics for the considered scenarios.415

DSR uses only one path between the source and destination nodes in both

scenarios. If a node fails to send a packet a certain number of times, it discards

the packet and considers that the destination node is no longer available. Since

DSR does not have any mechanism to distinguish collision losses from mobility-

induced errors, a route maintenance procedure is initiated which penalizes the420

packets end-to-end delay, as can be seen on Table 6.

On the other hand, HTLC-MeDSR uses two independent paths to forward
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Table 6: Average Objective Function Values with 95% Confidence interval

Objective Functions Confidence Intervals

Protocol ETX Delay (ms) ETX Delay

S
ce

n
ar

io
1 DSR N/A 313.92 N/A 0.359

HTLC-MeDSR 12.24 52.82 0.76 0.020

Proposed SPEA 5.56 12.04 0.12 0.001

S
ce

n
ar

io
2 DSR N/A 689.43 N/A 0.571

HTLC-MeDSR 19.08 43.77 5.94 0.013

Proposed SPEA 8.88 13.27 1.47 0.001

traffic. Differently from DSR, HTLC-MeDSR uses probe packets to identify

routing failures, which reduces packet losses and consequently unnecessary route

maintenance operations. As only one source rate was considered, contention and425

collisions are the main reason for the end-to-end delay values presented on Table

6.

Table 7 shows ETX and end-to-end Delay improvement ratios between the

proposed SPEA and the routing protocols (DSR and HTLC-MeDSR) for sce-

nario 1 and scenario 2. As can be seen, the proposed SPEA is 2.2 and 2.15 times430

better in terms of ETX than HTLC-MeDSR for scenarios 1 and 2 respectively.

In terms of end-to-end delay, the proposed SPEA is 26.07 and 51.95 times better

than DSR, and 4.39 and 3.3 times better than HTLC-MeDSR, for scenarios 1

and 2 respectively.

Table 7: Proposed SPEA improvement ratio for both scenarios

Protocol ETX Delay

Scenario 1
DSR N/A 26.07

HTLC-MeDSR 2.2 4.39

Scenario 2
DSR N/A 51.95

HTLC-MeDSR 2.15 3.30
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6.4. Discussion435

It is important to mention that, the improvement ratios presented in the pre-

vious sections were obtained comparing simulation results of DSR and HTLC-

MeDSR, with the result of an optimization algorithm (an ideal situation) for

both scenarios. Even if any of the optimal solutions found by the MOEA al-

gorithm was used, due to contentions and collisions, a regular routing protocol440

such as DSR would discard these optimal routes and look for new ones during

the route maintenance operation.

As mentioned before, HTLC-MeDSR incorporates a set of mechanisms, such

as the use of probe packets and different short retry limits at MAC layer, and

the use of ETX and CF to find high throughput paths with low route coupling445

among them at routing layers. During route discovery, the protocol collects

network information and uses it to build a graph which is later on used by a

path finding algorithm, like Dijkstra’s. It is assumed by the authors of [14]

that the destination node is powerful enough to run this type of algorithms.

Thus, the proposed MOEA could be incorporated on HTLC-MeDSR route sets450

building procedure to find the optimal routes from the network topology graph.

Steps 2 and 4 in our MOEA algorithm (in Section 4.3) use also a path finding

algorithm, e.g., BFS. In Step 2, BFS is used to create a set of individuals that

are used later to create the initial population. The path finding algorithms

ensure that the created individuals are feasible, by creating them using edges455

that were provided by the neighborhood information that was collected during

the route request process. Otherwise, if nodes were randomly selected to create

the initial population, more generations would be necessary for the algorithm

to converge, since many non-existing edges could have been created. Another

reason is that a fully connected network is not considered in this paper.460

It was mentioned that due to the BFSs time complexity, the graphs branches

were probabilistically explored to reduce the time necessary to create the set of

individuals. We noticed that the MOEA algorithm would converge to a local

solution instead of a global one, if the population set was not composed of most

of the source nodes direct neighbors. Thus, it is desirable that the algorithm465
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that creates the set of individuals, explores branches composed by the source

nodes direct neighbors, even if a probabilistic approach is used.

It was also previously stated that WMSN applications have different QoS

requirements such as, bounded latency or delay, throughput, jitter, availability

and energy consumption. The proposed approach uses two objective functions:470

delay and ETX. ETX allows finding high throughput paths taking into account

the effects of link loss ratios, asymmetry in the loss ratios between the two

directions of each link, and the interference among the successive links of a

path. If the number of objectives were increased, what happens in this cases is

the increase in the problems complexity, as the search space changes from bi-475

dimensional to tridimensional, increasing also the number of candidate solutions

to be analyzed. But for the problem in hand, delay and ETX are the most

relevant objectives. However, other pairs of objectives could have been selected

which would have kept the algorithms complexity similar.

In this paper, only static simulation scenarios were considered. Nodes mo-480

bility still presents a considerable challenge for most WMSN routing protocols,

since nodes get more often unreachable, rendering paths useless. A way of ad-

dressing the nodes mobility issue is to use a store, carry and forward approach

more common in Delay Tolerant Networks [25]. The use of MOEA algorithms

in DTNs is still an open research area.485

7. Conclusions and Future Work

A multi-objective optimization algorithm aims at producing (1) solutions

as close as possible to the POS, and (2) solutions as diverse as possible in the

obtained non-dominated set. This diverse set of optimal solutions expresses

trade-offs between different objectives. Routing protocols for WMSN must take490

into account a set of QoS requirements like bandwidth, delay, energy consump-

tion. The ETX metric allows finding high throughput paths on a multi-hop

wireless network, and incorporates the effects of link loss ratios, asymmetry

in the loss ratios between the two directions of each link, and the interference
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among the successive links of a path.495

In the route selection process, DSR only considers hop count, not meeting

WMSN QoS requirements. Hop count does not consider the paths links condi-

tions. HTLC-MeDSR uses ETX during the path selection process to evaluate

link conditions along the path. Since HTLC-MeDSR is a multipath routing

protocol, it also considers the Correlation Factor during the path selection pro-500

cess, to find multiple paths with minimum cross interference among a source-

destination pair. The proposed MOEA algorithm allows finding paths that

minimize both objectives, and paths that express trade-offs among objectives.

The paths found by the proposed SPEA present 2.2 and 2.15 times less ETX

than those found and used by HTLC-MeDSR for scenarios 1 and 2 respectively.505

In terms of end-to-end delay, the paths found by the proposed SPEA present

26.07 and 51.95 times less delay than the ones found and used by DSR, and

4.39 and 3.30 times less delay than the ones found and used by HTLC-MeDSR,

for scenarios 1 and 2 respectively.

The insertion of the proposed MOEA on HTLC-MeDSR route sets building510

procedure and subsequent evaluation is left for future work.
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