
From Crash to Byzantine Consensus with 2f + 1 Processes ∗

Giuliana Santos Veronese1, Miguel Correia1, Lau Cheuk Lung2

1Universidade de Lisboa, Faculdade de Ciências, LASIGE
2Dep. de Informática e Estatı́stica, Centro Tecnológico, Universidade Federal de Santa Catarina

giuliana@lasige.di.fc.ul.pt, mpc@di.fc.ul.pt, lau.lung@inf.ufsc.br

Introduction Consensus is an important distributed com-
puting problem that consists in making a set of processes
agree on one of the values that each one of them proposes.
Consensus in the asynchronous Byzantine message-passing
model (the model we consider in the abstract) has been
shown to require n ≥ 3f + 1 processes to be solvable in
several variations of the basic system model, where f is the
maximum number of faulty processes. Reducing the ratio
n/f is important both theoretically, since achieving lower
bounds has been always a goal in distributed computing,
and in practice, as reducing the number of processes re-
duces the cost of a real system. Recently a few solutions
to implement Byzantine fault-tolerant state machine repli-
cation, which involves solving consensus, with only 2f + 1
replicas have appeared [3, 2]. This reduction from 3f + 1
to 2f + 1 is possible by extending the system model with a
trusted/trustworthy component that constrains the power of
faulty processes to have certain behaviors. These compo-
nents have been called wormholes [6].

State machine replication consists in replicating a ser-
vice in a set of n servers, f of which may be faulty. Cor-
reia et al. use a wormhole called TTCB to help define an
order for the execution of the clients’ requests with only
2f + 1 servers [3]. More recently, Chun et al. used an
attested append-only memory (A2M) abstraction with the
same purpose [2].

The main objective of this work is to contribute to a bet-
ter understanding of the problem of consensus with only
2f + 1 processes. Despite these important results, the
problem of solving asynchronous Byzantine consensus with
only 2f + 1 processes is still far from being well under-
stood. There are several reasons for this state of affairs: the
related works we cited are only two and very recent; they
solve consensus but have the solution for this problem sub-
merged in the complications of a larger problem (state ma-
chine replication); they are based on special-purpose, rea-
sonably complex, abstractions/wormholes (TTCB, A2M)

∗This work was supported by the EC through Alban scholarship
E05D057126BR, by the FCT through the Multiannual and the CMU-
Portugal Programmes, and by CAPES/FCT through project TISD.

that researchers other than the authors of those papers are
probably not familiarized with.

2f + 1 Reliable Broadcast with a Wormhole The reli-
able broadcast problem consists basically in making all cor-
rect processes deliver the same messages [1]. Furthermore,
if the process that broadcasts the message is correct, then
all correct processes deliver the message, and no two mes-
sages with the same identifier are delivered by any correct
process. Bracha presented a reliable broadcast algorithm
that needs n ≥ 3f + 1 processes [1]. He does not provide a
proof that 3f + 1 is the minimum number of processes but
it is simple to understand that the algorithm can not work
with n = 2f + 1.

With a wormhole it becomes possible to do reliable
broadcast with n = 2f + 1. Consider that there is a set of
trusted/trustworthy wormholes {w1, ...wn} and that process
pj has access exclusively to wormhole wj . Each wormhole
wj has a public-private key pair. The private key Krj is
known only by wj and is used to produce digital signatures.
Every correct process knows the correct public key Kuj of
every wormhole wj , so it can verify signatures produced
by the wormholes using their private keys. The wormholes
provide a single service that can be abstracted as a function
that is called by the processes: σ ← signj (id ,msg) (for
wormhole wj). The function takes as parameters a mes-
sage identifier id and a message msg. It returns either the
signature σ of (id,msg) or ⊥. The signature is returned if
id > id′, where id′ is the identifier given as parameter in the

Algorithm 1 Reliable broadcast algorithm

Function RELIABLE BROADCAST(id, msg)
Task T1:
1: σ ← signi (id, msg)
2: ∀j 6= i : SEND INITIAL(i, id, msg)σ to pj

Task T2:{exec only once per msg broadcasted}
3: when (message INITIAL(j, id, msg)σ or ECHO(j, id, msg, σ) is received)

and (verify(id, msg, σ, Kuj) do
4: ∀k 6= j : SEND ECHO(j, id, msg, σ) to pk

5: RETURN(id, msg)
6: end when



previous call to the function; otherwise ⊥ is returned. This
service is very simple but it precludes a faulty process from
obtaining two different messages with the same identifier
correctly signed.

Algorithm 1 uses this service to solve reliable broadcast
with any number of faulty processes. It is a variation of
Bracha’s but it has one less communication step due to the
use of the wormhole and requires no bounds on the number
of faulty processes.

Solvability of 2f+1 Consensus We do not present a con-
sensus algorithm designed from scratch, but modify Moste-
faoui and Raynal’s crash fault-tolerant consensus algorithm
(MR-Consensus for short) [5]. Algorithm 2 is the modified
algorithm, 2FBC.

Some of the modifications to MR-Consensus are obvious
and do not need much discussion: reliable channels are sub-
stituted by authenticated reliable channels and message dis-
seminations are substituted by the reliable broadcast primi-
tive (lines 5, 8). The identifier of a message is composed by
the process identifier, the message type and the round num-
ber. Another modification is that we use Bracha’s message
validation mechanism to prevent some of the attacks that
might be done by faulty processes [1]. In several places the
algorithm only takes into account messages that are valid
(lines 7, 9, 10, 14). Informally, a message is said to be valid
if it is justified by the messages previously received by the
process.

Another difference of 2FBC in relation to MR-
Consensus is line 9. In MR-Consensus, processes wait until
they receive messages from n − f processes, but there is a
crucial difference between the crash and the Byzantine fault
models: while in the crash fault model (MR-Consensus) all
messages in that n−f quorum are sent by processes that fol-
low the algorithm, in the Byzantine fault model (2FBC) f of
those messages can be sent by faulty processes. In fact, in
the worst case, with n = 2f +1 and f Byzantine processes,
in every round that quorum of n−f messages contains f+1
messages, f of which sent by Byzantine processes. To deal
with this problem, line 9 must “know about” all processes
before continuing, i.e., we need an eventually perfect mute-
ness FD – ♦MPA [4]. Line 9 waits for messages from
n − f processes, but also either for messages or to suspect
of the rest of the processes. This ensures that eventually
pi receives messages from all correct processes, as there is
a time after which correct processes are not suspected by
any correct process (eventual strong A-accuracy). This is
also the reason why we need a stronger FD than previous
Byzantine consensus algorithms, that require only eventual
weak A-accuracy. While those algorithms require only that
the coordinator is eventually not suspected, 2FBC requires
that eventually no correct process is suspected, i.e., eventual
strong A-accuracy.

Final Remarks This work shows that it is possible to im-
plement a 2f + 1 asynchronous Byzantine consensus al-
gorithm using simple wormholes and an eventually perfect
muteness failure detector. This is an interesting result due
to practical importance of reducing the number of processes
in real fault-tolerant systems.

Algorithm 2 2FBC Byzantine consensus algorithm

Function 2FBC CONSENSUS(vi)

Task T1:
1: ri ← 0 {ri is pi’s round number}
2: esti ← vi {esti is pi’s current estimate of the value to be decided}
3: while true do
4: ci ← (ri mod n) + 1; ri ← ri + 1 {ci = current coordinator}

{—————- phase 1: coordinator to all —————- }
5: if (ci = i) then RELIABLE BROADCAST PHASE1(ri, esti) end if
6: wait until (message PHASE1(ri,−) is received from pci

or pci
is sus-

pected by pi’s FD module)
7: if (valid message PHASE1(ri, v) received from pci

) then auxi ← v
else auxi ← ⊥ end if

{———————- phase 2: all to all ———————- }
8: RELIABLE BROADCAST PHASE2(ri, auxi)
9: wait until (valid messages PHASE2(ri,−) are received from at least n− f

processes)
and (∀j : valid message PHASE2(ri,−) is received from pj or

pj is suspected by pi’s FD module)
10: ∀j : if (valid message PHASE2(ri, v) received) then Ri[j] ← v else

Ri[j]← ⊥ end if
11: if (∃v : #v(Ri) ≥ n − f ) then esti ← v; ∀j 6= i : SEND DECI-

SION(ri, esti) to pj ; RETURN(esti) else
12: if (∃v : #v(Ri) ≥ n− 2f ) then esti ← v end if end if
13: end while

Task T2:
14: when valid message DECISION(r, est) is received do
15: ∀j 6= i : SEND DECISION(r, est) to pj ; RETURN(est)
16: end when

References

[1] G. Bracha. An asynchronous b(n− 1)/3c-resilient consensus
protocol. In Proceedings of the 3rd ACM Symposium on Prin-
ciples of Distributed Computing, pages 154–162, Aug. 1984.

[2] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. At-
tested append-only memory: making adversaries stick to their
word. In Proceedings of the 21st ACM Symposium on Operat-
ing Systems Principles, October 2007.

[3] M. Correia, N. F. Neves, and P. Verissimo. How to tolerate
half less one Byzantine nodes in practical distributed systems.
In Proceedings of the 23rd IEEE Symposium on Reliable Dis-
tributed Systems, pages 174–183, Oct. 2004.

[4] A. Doudou, B. Garbinato, and R. Guerraoui. Tolerating ar-
bitrary failures with state machine replication. In H. B. Diab
and A. Y. Zomaya, editors, Dependable Computing Systems
Paradigms, Performance Issues, and Applications, chapter 2.
Wiley, 2005.

[5] A. Mostefaoui and M. Raynal. Solving consensus us-
ing Chandra-Toueg’s unreliable failure detectors: A general
quorum-based approach. In Proceedings of the 13th Inter-
national Symposium on Distributed Computing, pages 49–63,
1999.

[6] P. Verissimo. Travelling through wormholes: A new look at
distributed systems models. SIGACT News, 37(1):66–81, 2006.


