
 

 

Abstract—Dynamic networks, in particular Delay Tolerant Networks (DTNs), are characterized by a lack of end-to-end paths at any 

given instant. Because of that, DTN routing protocols employ a store-carry-and-forward approach, holding messages until a suitable 

node to forward them is found. But, the selection of the best forwarding node poses a considerable challenge. Additional network 

information (static or dynamic) can be leveraged to aid routing protocols in this troublesome task. One could use centrality metrics, 

therefore providing means to differentiate the importance of nodes in the network. Among these metrics, betweenness centrality is one 

of the most prominent, as it measures the degree to which a vertex is in a position of brokerage by summing up the fraction of shortest 

paths between other pairs of vertices passing through it. So, in this paper, betweenness centrality is surveyed, that is, its definitions and 

variants in static and dynamic networks are presented. Also, a survey of standard algorithms used to compute the metric (exact and 

approximate) is presented. Finally, a survey and a discussion on how DTN routing protocols make use of the betweenness centrality 

metric and algorithms to aid message forwarding is also presented. 

 

Index Terms—Delay Tolerant Networks, Betweenness Centrality, Centrality Algorithms, Routing 

 

1 Introduction 

Delay Tolerant Networks (DTNs) [1] are networks in which end-to-end paths might not exist at all time between a source-

destination pair. This contrasts with traditional networks (e.g., Mobile Ad hoc Networks - MANETs) where a continuous end-to-

end path is assumed to exist before messages are exchanged. However, end-to-end connectivity allowing messages to be forwarded 

between any pair of nodes may never exist in real MANETs due to node heterogeneity (different radios, resources), volatile links 

(due to node mobility, devices being turned off or running out of battery), or even energy efficient node operation (duty cycling). 

With the DTN store, carry and forward approach, mobility issues are no longer seen as obstacles, since nodes can carry messages 

with them while moving until an appropriate next node is found. In this approach, messages are relayed from one node into another 

until they reach their destination, or they are discarded. 

Despite its inherent appealing interest, DTN routing presents the challenging task of finding the most suitable node to forward 

messages to. A variety of network information is used to address this problem, namely: (1) dynamic network information (DNI), 

e.g., location information, traffic information and encounter information; (2) static network information (SNI), e.g., social relations 

among nodes. Through social network analysis, static network information that is more stable over time can be leveraged and used 

by DTN routing protocols to facilitate forwarding messages [2]. 

Centrality [3,4], widely used in graph theory and network analysis, can be seen as a quantitative measure of the structural 

importance of a given vertex (or node) in relation to others within the graph. Typically, a vertex can be considered as central if it 

plays an important role in the connectivity of the graph, e.g., if it is much required within a graph for the transportation of 

information, or if it is more apt to connect to other nodes in the graph. In DTNs, central nodes can be seen as good candidates to 

be relay nodes. The three most common centrality metrics are: degree centrality, betweenness centrality and closeness centrality 

[3–5]. Degree centrality, the simplest one, is defined as the number of links, i.e., direct neighbors, incident upon a given node. It 

is a local metric, as it is only determined by the number of neighbors of the node, thus not taking into consideration the global 

structure of the network. The other two are based on measuring shortest paths to quantify the relevance of a node. On the one hand, 

there is closeness centrality, which can be defined as the total geodesic (i.e., shortest path) distance from a given node to all other 

nodes. Closeness can be perceived as a measure of how long it will take to spread information from a given node to all other nodes. 

It lacks applicability in networks with disconnected components, that is, nodes belonging to different components do not have a 
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finite distance among them. On the other hand, there is betweenness centrality, which was introduced independently in [5,6] and 

can be defined as the number of shortest paths passing through a given node. Betweenness takes into account the global structure 

of the network and can be applied to networks with disconnected components. It can be perceived as a measure of the load placed 

on a given node since it measures how well a node can facilitate communication among others. Betweenness is also classified as 

a measure of mediation [4]. However, in most networks, information does not flow only along shortest-paths [7,8]. Consider, for 

example, the famous small-world1 experiment of Milgram2 in 1967, or a modern-day equivalent [9], where despite the explicit 

instructions given to participants to deliver the message to the target using the most direct route possible, there is no evidence of 

effectiveness in this task. Consequently, besides the shortest-path, it can be assumed that more realistic betweenness metrics include 

also paths other than the shortest ones. Also, the determination of betweenness centrality has always been a challenging task, since 

in most cases it requires complete topology knowledge. So, it cannot be directly applied to dynamic networks, such as DTNs.  

Some taxonomies have been proposed to classify routing protocols in DTNs. According to [10], routing protocols in DTNs are 

classified as deterministic (or scheduled), enforced or opportunistic. Deterministic routing happens if contact information is known 

a priori. Enforced routing is used to deliver messages to disconnected parts of a network (i.e., islands) by means of ferries [11] or 

data mules [12]. In opportunistic routing, no additional information (connectivity or mobility) is known a priori, nor special propose 

nodes, such as data mules or ferries, are used. Opportunistic routing can be sub classified into three basic routing primitives, namely 

replication, forwarding and coding. In the message replication scheme, a relay node carrying a message may decide to spawn a 

new copy of the message and forward it to a newly encountered node. This scheme can be further sub classified in greedy, if a new 

copy of a message is spawn and forwarded to any node encountered that does not contain it, controlled, if there is a context (e.g., 

time-based, probability-based or copy-based) associated with each given message keeping track of the number of copies created, 

and utility-based, if a set of parameters related to the nodes in question (i.e., the current custodian and the candidate relay) are 

evaluated in order to assess the candidate node suitableness as a relay for a given message destined to a certain target node. In the 

message forwarding scheme, a relay node carrying a message may decide to pass that message over to another node it encounters, 

and by doing so it relinquishes its copy of the message and ceases to be one of its custodians. In the message coding scheme, a 

message may be coded and processed at the source (i.e., source coding) or as it traverses the network (i.e., network coding). Another 

approach can be used to analyze DTN routing, despite the common goal of finding a path to a destination taking into account the 

available information. The rationale behind it is to treat DTN routing as a resource allocation problem, thus having an intentional 

effect on DTN routing instead of an incidental one. The idea behind resource allocation is to forward or replicate a message to a 

relay based on the available resources in order to maximize the likelihood of message delivery, whenever two nodes meet. Resource 

allocation routing can use any of the three basic routing primitives. Taking into account the delivery semantics [13], routing 

protocols are divided in unicast, multicast and anycast. Unicast schemes deliver messages from a single source to its single 

destination. Multicast schemes deliver messages from a single source to a group of destinations. Anycast schemes deliver messages 

from a single source to any node within the ones composing a group.  

Other taxonomies were also proposed taking into account the amount of social information used. According to [14], routing 

protocols are divided in social-oblivious and social-aware schemes. This classification is based on the amount of social information 

employed while making routing decisions. In social-oblivious schemes, message replicas are randomly diffused hoping that one 

will reach the destination. In social-aware schemes, probabilistic delivery estimation is made by nodes buffering messages to a 

certain destination. The idea is to relay messages to the most promising next hop based on its successful delivery probability. The 

authors of [2] surveyed applications, taxonomy and design-related issues in social-aware routing protocols for DTNs. Social-aware 

routing protocols are classified in self-reported or detected. Self-reported routing protocols are those where routing decisions are 

made taking into account prior completely known social information. If nodes’ social behavior is detected by means of an online 

method, and forwarding decisions are made based on that, these protocols are called detected routing protocols. The authors of 

[15] surveyed and classified social-based routing protocols for DTNs according to the positive or negative effects of their social 

characteristics. Positive social characteristics are those that improve the DTN routing performance. Meanwhile, if nodes attempt 

to maximize their own utility or conserve their resources (that may be limited during operation) they tend to behave selfishly, thus 

presenting a negative social characteristic. Social-(aware or based) routing protocols can be further classified as single-property or 

multi-property (also called hybrid) depending on the number of social properties used. 

A considerable number of social-aware or social-based routing protocols for DTNs, hereinafter called social routing protocols, 

that use centrality3 metrics have been proposed. If the most common centrality metrics are considered, these protocols can be 

grouped as follows: degree centrality [16–19], closeness centrality [20,21] and betweenness centrality [18,22–35]. Among these 

metrics, betweenness centrality has shown its relevance to problems such as identifying important nodes that control flows of 

information between separate parts of a network, and identifying casual nodes to influence other entities behavior (e.g., genes in 

 
1 The small world phenomenon is exhibited by social networks since it was observed that individuals are often linked by a short chain of acquaintances. 
2 The Milgram’s 1967 experiment, is a classic example of the small world problem [67], in which 60 participants in Nebraska were asked to forward a letter to 

be delivered to a stockbroker in Boston. In average the chain length of intermediate holders was approximately 6, which led to the notion of ‘six degree of 

separation’. 
3 An emphasis is given, in this paper, to the social routing protocols using betweenness centrality. 



genomics or customers in marketing studies) [36]. It has been also used to analyze social networks [37–39] and protein networks 

[40], to identify and analyze behavior of key bloggers in dynamic networks of blog posts [41], to identify significant nodes in 

wireless ad hoc networks [42], to study online expertise sharing communities [43], to study the importance and activity of nodes 

in mobile phone call networks [44] and interaction patterns of players on massively multiplayer online games [45] and to measure 

network traffic in communication networks [46]. In relation to DTNs, betweenness centrality  has been used by social routing 

protocols to enhance routing in vehicular networks [47,48], mobile social networks [49–54], pocket switched networks [55] and 

bus switched networks [56]. Additionally, betweenness centrality in DTNs has shown its relevance to problems such as the 

construction of mobile backbone [57], the offloading of data in wireless social mobile networks [58], and to the dissemination of 

information  [59–61] and content placement [62] in opportunistic networks. 

Although surveys about routing in DTNs [10,13] and social routing protocols in DTNs [2,15] have been published, to the best 

of our knowledge no survey about how betweenness centrality is used to enhance routing in DTNs has been published. Therefore, 

the contribution of this paper is threefold: 

 First, a survey of betweenness centrality metrics and its variants in the literature is presented. 

 Second, a survey of standard algorithms used to compute betweenness centrality (exact and approximate ones) within 

literature is presented. 

 Third, a survey of DTN routing protocols that use betweenness centrality to enhance message forwarding is presented. 

In addition, a discussion on how the metric and its standard algorithms are used by DTN routing protocols is also 

presented. 

The rest of this paper is organized as follows. Section 2 presents assumptions and notations used by static and dynamic networks. 

Section 3 discusses betweenness centrality metrics for static and dynamic networks. Variants of betweenness centrality are also 

presented. Section 4 presents exact and approximate algorithms, with their computation complexity comparison, that are used to 

compute betweenness centrality. In Section 5, a survey of DTN routing protocols that use betweenness centrality is presented. And 

finally, section 6 presents a discussion and concluding remarks. 

2 Assumptions and Notations 

2.1 Static Networks 

For static networks, a notation similar to [63,64] is used. It is assumed that 𝐺 = (𝑉, 𝐸) is a weighted, directed or undirected 

graph. Each vertex (or node) 𝑣 ∈ 𝑉 can be identified by an integer value 𝑖 = 1,2, … , |𝑉|. Each edge (or link) 𝑒 ∈ 𝐸 ⊆ 𝑉 × 𝑉 is 

identified by a pair (𝑖, 𝑗) representing a connection between vertex 𝑖 and vertex 𝑗 to which a weight 𝜔(𝑖, 𝑗) might be associated by 

𝜔 ∶ 𝐸 → ℝ+.  

 

Definition 1. Walk. In a graph, a walk is a sequence of vertices 𝑣1, 𝑣2, … , 𝑣𝑘, such that (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for 𝑖 = 1,2, … , 𝑘 − 1, and 𝑣1 

and 𝑣𝑘 are the walk’s end vertices. The length of a walk is its number of edges. Two non-adjacent vertices are connected if there 

is at least one walk connecting them. Given a pair of distinct vertices (𝑠, 𝑡) ∈ 𝑉 × 𝑉, 𝑠 ≠ 𝑡, a walk where all vertices and edges are 

distinct is considered a path 𝑝𝑠𝑡 . The vertices s and t are called endpoints of 𝑝𝑠𝑡  and the vertices in Int(𝑝𝑠𝑡) = 𝑝𝑠𝑡\{𝑠, 𝑡} are the 

internal vertices of 𝑝𝑠𝑡 . The shorthand 𝑠 → 𝑡 indicates that 𝑠 is connected to 𝑡, and its transitive closure 𝑠
+
→𝑡 indicates that 𝑠 is 

connected to 𝑡 through a path of one or more edges in 𝐺. 

 

Definition 2. Subgraph. 𝐻 = (𝑉𝐻 , 𝐸𝐻) is a subgraph of 𝐺 = (𝑉, 𝐸), denoted 𝐻 ⊂ 𝐺, if and only if (iff) 𝑉𝐻  ⊂ 𝑉 and 𝐸𝐻 ⊂ 𝐸.   

 

Definition 3. Local subgraph. 𝐻 is a local subgraph with respect to a vertex 𝑣 ∈ 𝑉, iff all vertices in the subgraph can be reached 

from 𝑣. 

 

Definition 4. Geodesic path (or shortest path). A geodesic path between a pair of vertices 𝑠 and 𝑡, is one with the minimum length4 

𝑑𝑠𝑡. A path length is the number of edges connecting vertices 𝑠 and 𝑡. If no paths exist between vertices 𝑠 and 𝑡, then 𝑑𝑠𝑡 = ∞. Let 

𝑆𝑑𝑠𝑡  denote the set of shortest paths between vertices 𝑠 and 𝑡, and 𝑆𝑑𝑠𝑡(𝑣) denote the set of shortest paths between vertices 𝑠 and 𝑡 

that passes through vertex 𝑣. A vertex 𝑣 ∈ V lies on a shortest path between vertices 𝑠, 𝑡 ∈ 𝑉, iff 𝑑𝑠𝑡 = 𝑑𝑠𝑣 + 𝑑𝑣𝑡 . 
 

Definition 5. Vertex-diameter (VD). Let 𝕊𝐺  be the union of all the 𝑆𝑑𝑠𝑡’s, for all pair (𝑠, 𝑡) ∈ 𝑉 × 𝑉 of distinct nodes 𝑠 ≠ 𝑡. The 

vertex-diameter 𝑉𝐷(𝐺) of 𝐺 is the size of the shortest path in 𝐺 with the maximum size, that is, it is the maximum number of 

vertices among all shortest paths in 𝐺, and is given by  𝑉𝐷(𝐺) = max{|𝑝| ∶  𝑝 ∈ 𝕊𝐺}. 
 

Definition 6. Predecessors. The predecessors of a vertex 𝑣 on the shortest path from 𝑠 is 𝑃𝑠(𝑣) = {𝑢 ∈ 𝑉: (𝑢, 𝑣) ∈ 𝐸, 𝑑𝑠𝑣 = 𝑑𝑠𝑢 +
𝜔(𝑢, 𝑣)}. 

 
4 Many geodesic paths may exist between two vertices. 



2.2 Dynamic Networks 

For dynamic networks, a notation similar to [65,66] is used. Consider a set of entities (or vertices, nodes) 𝑉, a set of relations 

(or edges, links) 𝐸 among these entities, and an alphabet 𝐿 incorporating possible properties that such relation might have (e.g., 

terrestrial link, bandwidth of 8MHz); specifically, 𝐸 ⊆ 𝑉 × 𝑉 × 𝐿. It is assumed that entities’ relations happen along a time span 

𝒯 ⊆ 𝕋 called the system’s lifetime. The temporal domain 𝕋 is commonly assumed to be: (1) ℕ for discrete-time systems, (2) ℝ+ 

for continuous-time systems. Thus, the dynamics of the system can be described by a temporal graph (or time-varying graph) 𝒢 =
(𝑉, 𝐸, 𝒯, 𝜌, 𝜁), where  

 𝜌 ∶ 𝐸 ×  𝒯 → {0,1}, named presence function, meaning that an edge is available at a particular time. 

 𝜁 ∶ 𝐸 ×  𝒯 → 𝕋, named latency function, meaning the amount of time necessary to cross a particular edge at a 

particular time (edge’s latency can vary in time).  

 

Definition 7. Journeys. A journey is composed by a sequence of pairs 𝒥 = {(𝑒1, 𝑇1), (𝑒2, 𝑇2), … , (𝑒𝑘, 𝑇𝑘)}, so that {𝑒1, 𝑒2, … 𝑒𝑘} that 

is a walk in 𝐺 is also a journey in 𝒢 iff 𝜌(𝑒𝑖 , 𝑇𝑖) = 1 and 𝑇𝑖+1 ≥ 𝑇𝑖 + 𝜁(𝑒𝑖 , 𝑇𝑖), ∀𝑖 < 𝑘. departure(𝒥) and arrival(𝒥) denote a 

journey’s 𝒥 starting date 𝑇1 and last date 𝑇𝑘 + 𝜁(𝑒𝑘, 𝑇𝑘), respectively. Thus, journeys can be assumed as paths over time from a 

source to a destination having: 

 Topological length, which is the number |𝒥| = 𝑘 of pairs, that is, the number of hops, 

 Temporal length, which is the end-to-end duration: arrival(𝒥) − departure(𝒥). 
 

Definition 8. Distance. Similarly to journey’s length, distance in temporal graphs is also measured in terms of hops and time: 

 The topological distance (𝑑𝑠𝑡,𝑇) from a node 𝑠 to a node 𝑡 at time 𝑇 is given by Min{|𝒥|: 𝒥 ∈ 𝒥𝑠𝑡
∗ , 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒(𝒥) ≥ 𝑇}. 

For a given time 𝑇, a shortest journey is one whose departure is 𝑇′ ≥ 𝑇 and topological length = 𝑑𝑠𝑡,𝑇. 𝒥𝑠𝑡
∗  denotes the set 

of all possible journeys starting at node 𝑠 and ending at node 𝑡. 

 The temporal length (�̂�𝑠𝑡,𝑇)  from a node 𝑠 to a node 𝑡 at time 𝑇 is given by Min{𝑎𝑟𝑟𝑖𝑣𝑎𝑙(𝒥) ∶  𝒥 ∈ 𝒥𝑠𝑡
∗ , 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒(𝒥) ≥

𝑇} − 𝑇.  

o For a given date 𝑇, a foremost journey is one whose departure 𝑇′ ≥ 𝑇 and arrival is 𝑇 + �̂�𝑠𝑡,𝑇. 

o For any given date 𝑇, a fastest journey is one whose departure is 𝑇′ ≥ 𝑇 and temporal length is 𝑀𝑖𝑛{�̂�𝑠𝑡,𝑇: 𝑇
′ ∈

𝒯 ∩ [𝑇,+∞)}.  
 

Definition 9. Temporal graphs as a sequence of footprints. Given a temporal graph 𝒢 = (𝑉, 𝐸, 𝒯, 𝜌, 𝜁), a footprint of this graph 

from 𝑇1 to 𝑇2 is the static graph 𝐺[𝑇1,𝑇2) = (𝑉, 𝐸[𝑇1,𝑇2)) | ∀𝑒 ∈ 𝐸, 𝑒 ∈ 𝐸[𝑇1,𝑇2) iff ∃𝑇 ∈ [𝑇1, 𝑇2), 𝜌(𝑒, 𝑇) = 1. Specifically, the 

footprint aggregates all interactions of a given time windows 𝓌 into static graphs. Considering that 𝒯 is partitioned in consecutive 

sub-intervals 𝜏 = [𝑇0, 𝑇1), [𝑇1, 𝑇2), … , [𝑇𝑖 , 𝑇𝑖+1), … ; so that, [𝑇𝑘 , 𝑇𝑘+1) ⟺ 𝜏𝑘 denotes a sequence of footprints of 𝒢 according to 𝜏 
is 𝑆𝐹(𝜏) = 𝐺𝜏0 , 𝐺𝜏1 , …. 

 

Table 1 presents betweenness relevant notations used in the following sections of this paper. 

Table 1 

Betweenness relevant notations. 

Notation Description  Notation Description 

𝛿𝑠𝑡 Pair-dependency of  𝑠, 𝑡  𝑐𝑃𝐵(𝑘) k-path betweenness centrality 

𝜎𝑠𝑡 Number of shortest paths between 𝑠 and 𝑡 𝛿𝑠 Dependency of a vertex s 

𝑐𝐵 Betweenness centrality �̃�𝐵 Unbiased betweenness estimator  

𝑐𝐹𝐵 Flow betweenness centrality  �̃�𝐵
𝐻 

Local approximation of betweenness over the local 

subgraph H  

𝜍𝑠𝑡 Throughput for a fixed s-t pair 𝑐𝐸𝐹𝐵 Egocentric flow betweenness  

𝑐𝐶𝐵 Current-flow betweenness centrality  𝑐𝐷𝐵 Directed betweenness  

𝑐𝑅𝑊𝐵 Random-walk betweenness centrality  𝑐𝐵𝑡 
Importance of delivering messages to the destination 

node 𝑡 

𝑐𝒯𝐵,𝑇 Temporal betweenness centrality at time 𝑇  BetwU𝑣𝑡 Betweenness utility of node 𝑣 to the destination 𝑡 

𝑐𝒯𝐵 
Temporal betweenness centrality over the entire 

temporal graph  
𝑐𝐺𝐵 

Betweenness centrality of a gateway in connecting two 

communities 

𝑐𝐵(ε) 𝜀-betweenness centrality 𝑐𝐵𝑙,𝑙´  Inter-community betweenness  

𝑐𝐵(𝑘) 𝑘-betweenness centrality 𝑐�̃�𝑙,𝑙´ Optimal betweenness set 

 



3 Betweenness Centrality 

In this section, betweenness centrality metrics and variants for static and dynamic networks are presented. 

3.1 Concepts 

In networks, the importance of a vertex or edge can be determined by the number of paths in which it participates. Centrality 

denotes the order of importance that vertices or edges have in a network by assigning real values to them. Since shortest paths are 

defined for both vertices and edges, centrality can be computed for a vertex 𝑣 or an edge 𝑒 (i.e., an element 𝑥) as presented below. 

3.1.1 Shortest-Path  

The shortest-path betweenness centrality [63] of an element 𝑥, which can be a vertex 𝑣 or an edge 𝑒, is based on the number of 

shortest paths that contain 𝑥. Let 𝛿𝑠𝑡 denote the fraction of shortest paths between the pair of vertices 𝑠 and 𝑡 containing vertex 𝑣, 

i.e., 

 

𝛿𝑠𝑡(𝑣) =
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
 

 

where 𝜎𝑠𝑡 = |𝑆𝑑𝑠𝑡| and 𝜎𝑠𝑡(𝑣) = |𝑆𝑑𝑠𝑡(𝑣)|. The ratio 𝛿𝑠𝑡(𝑣), also called pair-dependency of  𝑠, 𝑡 on  𝑣, can be considered as the 

probability of any communication between vertices 𝑠 and 𝑡 involving vertex 𝑣. The shortest-path betweenness centrality 𝑐𝐵(𝑣) is 

defined as 

 

𝑐𝐵(𝑣) = ∑ ∑ 𝛿𝑠𝑡(𝑣)

𝑡≠𝑣∈𝑉𝑠≠𝑣∈𝑉

 (1) 

 

From equation (1), one can conclude that the shortest-path betweenness centrality of a vertex measures the control over 

communications between others, since the shortest paths ending and starting in 𝑣 were excluded. In disconnected networks, any 

pairs of vertices 𝑠 and 𝑡 without any shortest paths between them must add zero to the shortest-path betweenness centrality of 

every other vertex in the network. 

For an edge 𝑒, the pair-dependency of  𝑠, 𝑡 on  𝑒 is given by 

 

𝛿𝑠𝑡(𝑒) =
𝜎𝑠𝑡(𝑒)

𝜎𝑠𝑡
 

 

and, the shortest-path betweenness centrality 𝑐𝐵(𝑒) of edge 𝑒 is given by 

 

𝑐𝐵(𝑒) =∑∑𝛿𝑠𝑡(𝑒)

𝑡∈𝑉𝑠∈𝑉

 

 

3.1.2 Flow  

It was previously mentioned that shortest path based centrality metrics assume that the flow of information happens along the 

shortest paths. By considering small-world experiments [9,67], one could assume that despite the shortest paths, a more realistic 

betweenness metric also included paths other than the shortest ones. In [7], a more sophisticated betweenness metric, called flow 

betweenness centrality5, was proposed also including contributions from non-shortest paths. 

According to [68], flow betweenness centrality of a vertex 𝑣 is defined as the amount of flow through 𝑣 when the maximum 

flow [69] is transmitted from 𝑠 to 𝑡, averaged over all 𝑠 and 𝑡. Since there might not be a unique solution to the flow problem, flow 

betweenness centrality can be more adequately defined as the maximum possible flow through a vertex 𝑣 over all possible solutions 

to the 𝑠𝑡 maximum flow problem6, averaged over all 𝑠 and 𝑡 [7]. It can be seen as a measure of betweenness of vertices in a network 

in which a maximum amount of information is uninterruptedly pumped between all sources and targets. Flow betweenness 

centrality cannot be computed directly by counting paths as the set of edge-independent paths among pairs of nodes are not unique.  

Let 𝑊 denote the matrix of maximum flows among nodes, that is, the number of edge-independent paths among them, and 𝑊[𝑣] 
be the principal submatrix of 𝑊, that is, the matrix resulting from 𝑊 by removing column and row 𝑣. Additionally, let 𝑊[𝑣]∗ be 

the matrix obtained by deleting node 𝑣 from the original network, and recalculating the flow matrix. The flow betweenness 

centrality is given by  

 

 
5 It is called flow betweenness centrality because of the association between the number of edge-independent paths among pairs of nodes and the quantity of 

material that could flow from one node to another through all possible edges [118]. 
6 The maximum flow problem can be solved using standard algorithms [69]. 



𝑐𝐹𝐵(𝑣) =∑
𝑤[𝑣]𝑠𝑡 −𝑤[𝑣]𝑠𝑡

∗

𝑤[𝑣]𝑠𝑡
𝑠𝑡

 (2) 

 

Other betweenness metrics can be obtained from equation (2) by changing matrix 𝑊. Hence, to compute the shortest-path 

betweenness centrality, 𝑊 becomes the shortest path count matrix in which 𝑤𝑠𝑡  gives the number of shortest paths from 𝑠 to 𝑡. 
Note that the value returned by (2) is twice the one returned by (1). 

3.1.3 Current-Flow  

In the current-flow betweenness centrality [63] metric, which is another alternative to the shortest-path betweenness centrality 

metric, the flow of information follows the behavior of an electrical current flowing through an electrical network. An electrical 

network is defined by a connected undirected graph 𝐺 = (𝑉, 𝐸), together with a conductance function 𝑐 ∶ 𝐸 → ℝ. A supply 

function 𝑏 ∶ 𝐸 → ℝ, specifies an external electrical current entering and leaving the circuit. 

Similar to shortest-path betweenness centrality, that counts the fraction of shortest s-t-paths through a vertex, current-flow 

betweenness of a vertex characterizes the portion of unit s-t-supplies through that vertex. The throughput of a vertex 𝑣, for a fixed 

s-t pair, forms the current-flow equivalent of 𝜎𝑠𝑡(𝑣) through 𝑣, i.e., with respect to a unit s-t-supply 𝑏𝑠𝑡 , the throughput of vertex 

𝑣 ∈ 𝑉 is 

 

𝜍𝑠𝑡(𝑣) =
1

2
(−|𝑏𝑠𝑡(𝑣)| +∑|𝑥𝑒|

𝑒∋𝑣

) 

 

where −|𝑏𝑠𝑡(𝑣)| sets to zero the throughput of a vertex with non-zero supply. This guarantees that a given unit s-t-supply is not 

considered for the throughput of its source node 𝑠 and sink node 𝑡, for the current-flow betweenness. Thus, the current-flow 

betweenness centrality 𝐶𝐶𝐵 ∶ 𝑉 → ℝ for an electrical network 𝑁 = (𝐺 = (𝑉, 𝐸)𝑐) is 

 

𝑐𝐶𝐵(𝑣) =
1

(𝑛 − 1)(𝑛 − 2)
∑ 𝜍𝑠𝑡(𝑣)

𝑠,𝑡∈𝑉

, ∀𝑣 ∈ 𝑉 

 

where 1 (𝑛 − 1)(𝑛 − 2)⁄  is a normalizing constant. Current-flow betweenness centrality measures the portion of throughput 

through vertex 𝑣 taken over all possible source-destination pairs. 

3.1.4 Random-Walk  

Due to the lack of global knowledge, it may not be possible sometimes for a vertex to compute shortest paths. For these cases, 

an alternative way of traversing the network can be used by means of a random-walk model. The random walk model consists of 

walking from vertex to vertex, through the network’s edges, i.e. an edge is randomly selected from a vertex 𝑣 to be followed, and 

the process is repeated from the new vertex. 

It is assumed here that the graph is unweighted, connected and undirected. If, for example, a vertex 𝑠 wants to send a message 

to a vertex 𝑡 but neither 𝑠 nor its adjacent vertices knows how to reach 𝑡 through the shortest path, each vertex that gets the message 

for 𝑡, then selects at random one of its adjacent vertices to send the message. 

It was demonstrated in [63] that the random-walk betweenness centrality 𝑐𝑅𝑊𝐵 ∶ 𝑉 → ℝ is equivalent to the current-flow 

betweenness centrality, that is 𝑐𝑅𝑊𝐵(𝑣) = 𝑐𝐶𝐵(𝑣), ∀𝑣 ∈ 𝑉. For a more detailed discussion, please refer to [63]. 

3.1.5 Ego  

An ego network, also known as the neighborhood network (or first order neighborhood) of the ego, can be defined as a network 

consisting of a single actor (ego) along with the actors it is connected to (alters) and all links among the latter. Ego networks allow 

an easier collection of data if compared to collecting data from the entire network, because the ego usually provides complete 

information of the alters (including how they are connected). By sampling such information, statistically significant conclusions 

about the entire population can be attained [70]. 

As previously stated, centrality measures allow finding the most important actors within a network and betweenness centrality 

studies the degree to which an actor is among all other actors within the network. If an actor is between two other actors, it follows 

that no alters on the path connecting the actors share a connection, or else it would form a shortest path. Hence, there is a connection 

between the betweenness centrality of the actor in the whole network and the one in the ego network (even though it may be 

difficult to quantify this association) [70]. Previous works have provided evidence of the usefulness of betweenness centrality in 

ego networks [71]. 

To compute ego betweenness centrality (EBC), first it is necessary to compute betweenness of a single actor. Due to the ego 

networks’ structure, the shortest paths in the network are either of length 1 or 2. Every single pair of non-adjacent alters must have 

a shortest path of length 2 which passes through the ego. Note that shortest paths of length 1 do not contribute to the betweenness 

computation.  



Let A be the adjacency matrix of 𝐺, then 𝐴𝑖𝑗
2  contains the number of walks of length 2 connecting vertex 𝑖 and vertex 𝑗. The 

shortest paths can be obtained by counting the number of paths of length 2 of non-adjacent pairs of actors. So, 

 
𝐴2[1−𝐴]𝑖𝑗 (3) 

 

where 1 is a matrix of all 1’s, and (3) gives the number of shortest paths of length 2 between 𝑖 and 𝑗. The ego betweenness centrality 

is given by the sum of the reciprocal of entire entries.  

Computing ego betweenness centrality of the entire network is one order of magnitude faster than computing, for example, the 

shortest-path betweenness centrality. 

3.1.6 Temporal  

Similar to the shortest-path betweenness centrality metric used in static networks, the temporal betweenness centrality [66] of a 

vertex 𝑣 could be defined as the fraction of shortest journeys that pass through 𝑣. However, besides the shortest journeys that pass 

through a vertex, it is also important to consider for how long a vertex along the shortest path holds a message before forwarding 

it, i.e., the fastest journeys among the shortest ones. Therefore, the temporal betweenness centrality of a vertex 𝑣 at time 𝑇 is: 

 

𝑐𝒯𝐵,𝑇(𝑣) =
1

(𝑛 − 1)(𝑛 − 2)
∑ ∑

𝜓𝑠𝑡,𝑇(𝑣)

𝜓𝑠𝑡,𝑇
𝑡≠𝑣∈𝑉𝑠≠𝑣∈𝑉

 

 

where 𝜓𝑠𝑡,𝑇(𝑣) returns the number of fastest journeys among the shortest ones from 𝑠 to 𝑡 passing through vertex 𝑣. 

The temporal betweenness for vertex 𝑣 over the entire temporal graph 𝒢 =  𝐺[𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥) is: 

 

𝑐𝒯𝐵(𝑣) =
1

|𝑆𝐹(𝜏)|
∑ 𝐶𝒯𝐵,𝑇(𝑣)((𝑇 ×𝓌) + 𝑇𝑚𝑖𝑛)

|𝑆𝐹(𝜏)|

𝜏=0

 

 

where |𝑆𝐹(𝜏)| is the number of graphs in the sequence.  

 

Table 2 presents a summary and comparison of betweenness centrality based on the metrics, the type of network, the main idea, 

the type of network knowledge (global or partial), drawbacks and comments. 

Table 2 

A summary and comparison of the betweenness centrality metric. 
Betweenness 

metric 

Network 

Type 
Main idea 

Network 

knowledge 
Drawbacks Comments 

Shortest path Static 
The flow of information happens 

along the shortest paths. 
Global 

The flow of information may 

not take the shortest-path (e.g. 

the small-world experiments). 

It measures the control over 

communications between others. 

Flow 
Static, 

Dynamic 

Although preferring shortest paths, 

the flow of information tries to 

exploit all possible paths. 

Global 

The flow of information may 

not be maximum and not 

follow optimal flow paths from 

source to target nodes. 

It is based on the idea of maximum flow. 

It is a measure of betweenness of 

vertices in a network in which a 

maximal amount of information is 

continuously pumped between all 

sources and targets. 

Current-flow Static 

The flow of information follows 

the behavior of an electrical current 

flowing through an electrical 

network. 

Global 
It can only be applied to 

electrical networks.  

It is equivalent to random-walk 

betweenness. The current flows along all 

paths from source to target, but more on 

along the shortest ones (i.e., the ones in 

which the resistance is smaller). 

Random-walk 
Static, 

Dynamic 

Uses the random-walk model to 

traverse the network. 
Partial 

It includes contributions from 

many paths that are not 

optimal in any sense. 

It is suitable to a network in which 

information wanders around at random 

until it finds its target. 

Ego Static 

It consists in summing the 

reciprocals of entries given by 

number of shortest paths of length 

2 between a pair of non-adjacent 

vertices. 

Partial 

It is difficult to normalize the 

metric scores with respect to 

the ego network size. 

There is no direct connection between 

the betweenness centrality computed for 

the entire network and the EBC. 

Temporal Dynamic 

It is the fraction of fastest journeys 

among the shortest ones that pass 

through a given vertex. 

Global 
Similar to the shortest-path 

version. 

It is based on the concept of shortest 

journeys. It measures the control over 

communications between others over 

time. 

 



3.2 Variants 

In this section, variants of betweenness centrality proposed in the literature are presented. 

3.2.1 Canonical-path betweenness  

The authors of [72] proposed a simple variant of betweenness centrality, called canonical path betweenness centrality (or simple 

canonical centrality), in which only a single canonical shortest path between any source-target pair is considered. The reasoning 

behind this variant are road networks, where multiple routes do exist in practice, but they usually share most edges. As a result, in 

general, 𝛿𝑠𝑡(𝑣) is one or zero. Also, unique shortest paths are enforced by perturbing the edge weights in some route planning 

methods [72]. 

3.2.2 𝜀-betweenness  

In [73], the authors considered terrorist networks models [74–76], which may be large, dynamic and characterized by 

uncertainty7. Terrorist networks are considered: large, as the networks are unknown, i.e., the set of actors being monitored is likely 

a superset of those actually engaged in illicit activities, and dynamic, as the knowledge we have of them changes over time. 

Network’s dynamics, i.e., mobility and nodes joining or leaving the network, may reflect inaccuracies in the shortest path 

calculations (besides the uncertainty in the shortest path length between a pair of nodes, the path itself may also change) causing 

perturbations in the betweenness centrality values. So, it may be necessary to recalculate betweenness values as the network evolves 

through time. Some algorithms [77,78] have been proposed that support network’s dynamics, thus avoiding, for example, the 

recalculation of shortest paths between all pairs of nodes. 

A path 𝑝𝑠𝑡  is called an ε-shortest path if  |𝑝𝑠𝑡| ≤ (1 + ε)𝑑𝑠𝑡. The ε-betweenness centrality is defined as  

 

𝑐𝐵(ε)(𝑣) = ∑ ∑
𝜎𝑠𝑡
ε (𝑣)

𝜎𝑠𝑡
ε

𝑡≠𝑣∈𝑉𝑠≠𝑣∈𝑉

 

 

where 𝜎𝑠𝑡
ε (𝑣) is the number of 𝜀-shortest paths that include vertex 𝑣 ∈ 𝑉, and 𝜎𝑠𝑡

ε  is the number of ε-shortest paths between 𝑠 and 

𝑡 in 𝐺. No analytical or empirical results on the stability of the metric was provided. 

3.2.3 Bounded-distance betweenness 

In [4,79], the authors limited the length of paths based on the idea that very long paths were only occasionally used, consequently 

not contributing to the betweenness centrality of a node. This metric was called bounded-distance betweenness centrality (also 

known as 𝑘-betweenness), where 𝑘 gives the maximum length of paths counted. The bounded-distance betweenness centrality of 

a vertex 𝑣 is defined as the sum of dependencies of pairs at most 𝑘 hops apart, that is,  

 

𝑐𝐵(𝑘)(𝑣) = ∑ ∑ 𝛿𝑠𝑡(𝑣)
𝑡≠𝑣∈𝑉
𝑑𝑠𝑡≤𝑘

𝑠≠𝑣∈𝑉
𝑑𝑠𝑡≤𝑘

. 

 

The bounded-distance betweenness centrality (𝑐𝐵(𝑘)) only considers contributions from shortest paths whose lengths are 

bounded by a constant 𝑘. For 𝑘 = 𝑛 − 1, it is equal to equation (1), and, for 𝑘 = 2, it is similar to EBC (Section 3.1.5) differing in 

that shortest paths of length two with a non-neighbor as intermediate are also taken into account. 

3.2.4 Distance-scaled betweenness 

Another variant of betweenness mentioned in [4,79] counts paths of all lengths, but weights all shortest paths inversely in 

proportion to their length as in  

  

𝑐𝐵(𝑘)(𝑣) = ∑ ∑
𝛿𝑠𝑡(𝑣)

𝑑𝑠𝑡
𝑡≠𝑣∈𝑉𝑠≠𝑣∈𝑉

 

 

This metric is called length-scaled betweenness since the dependencies are scaled by a factor depending only on the length of 

the shortest path, being the same for all its inner vertices. 

3.2.5 𝛼-weight betweenness 

The authors of [80] proposed a variant of the betweenness centrality metric for weighted networks that incorporates both the 

number of ties between nodes (i.e., communication, cooperation, friendship, or trade) and their weights. The weight of a tie can 

have different meanings depending on the context. For example, in social networks, it can be seen as a function of duration, 

emotional intensity, intimacy, or exchange of services, whereas in non-social networks, it quantifies the capacity or capability of 

the tie, such as the number of seats among airports, or the number of synapses and gap functions in a neural network. 

 
7 In covert networks, there may be a deliberate effort to hide illicit activity, thus dynamicity and uncertainty also apply. 



It is commonly assumed when analyzing shortest paths that intermediate nodes may increase the cost of interaction. If a high 

number of intermediate nodes is considered, the necessary interaction time between nodes increases. Intermediate nodes are also 

in the position of powerful third-parties, being able to distort or delay information between nodes.  

Let 𝛼 be a tuning parameter which determines the relative importance of the number of ties compared to tie weights. So, the 

length of the shortest path between two nodes is given by 

 

𝑑𝑠𝑡(𝜔𝛼) = min (
1

(𝜔𝑠𝑖)
𝛼
+⋯+

1

(𝜔𝑖𝑡)
𝛼
) (4) 

 

Equation (4) is an extension of the implementation in [81][82] of the Dijkstra’s algorithm [83] by taking into account the number 

of intermediate nodes. Both the tie weight and the number of intermediate nodes affect the identification of shortest paths. If 𝛼 =
0, the definition falls back to 𝑑𝑠𝑡, whereas if 𝛼 = 1, the definition falls back to Dijkstra’s algorithm. If 0 < 𝛼 < 1, a shortest path 

composed of weak ties is preferred over a longer one with short ties. On the other hand, if 𝛼 > 1, the influence of extra intermediate 

nodes is insignificant in comparison to the strength of the ties and paths with additional intermediaries are favored. 

3.2.6 𝑘-path betweenness 

𝑘-path betweenness [36] is based on the random traversal of a message from a source s similarly to the random-walk 

betweenness. The following assumptions were made: (1) messages’ traversals are only along single-paths, and (2) messages’ 

traversals are only along paths of at most 𝑘 edges, where 𝑘 is network dependent. 

The 𝑘-path betweenness centrality of a vertex 𝑣 is defined as the sum over all possible source nodes 𝑠 of the probability that a 

message originating from 𝑠 goes through 𝑣, assuming that the message’s traversals are only along random simple paths of at most 

𝑘 edges.  

Let 𝑝𝑠𝑙  be an arbitrary simple path with start vertex 𝑠 and having 𝑙 ≤ 𝑘 edges, i.e., 𝑝𝑠𝑙 = {𝑠, 𝑢1, 𝑢2, … , 𝑢𝑙−1, 𝑢𝑙}, and let 𝑁(𝑢𝑖) 
denote the set of outgoing neighbors of 𝑢𝑖 , ∀𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑙. For every vertex 𝑣 of 𝐺, 𝑐𝑃𝐵(𝑘)(𝑣) is given by 

 

𝑐𝑃𝐵(𝑘)(𝑣) = ∑ ∑
𝜒[𝑣]

∏ |𝑁(𝑢𝑖−1) − {𝑠, 𝑢1, 𝑢2, … , 𝑢𝑖−2}|
𝑙
𝑖=11≤𝑙≤𝑘𝑠≠𝑣∈𝑝𝑠𝑙

𝑑𝑠𝑙≤𝑙

, 

 

where 𝜒[𝑣 ∶ 𝑣 ∈ 𝑝𝑠𝑙] is 1 if 𝑣 lies on 𝑝𝑠, and 0 otherwise. 

 

Table 3 presents a summary and comparison of betweenness centrality variants based on the type of variant, the betweenness 

metric, the main idea and relevant comments. 

4 Algorithms 

Betweenness centrality is one of the most widely used centrality metrics in social and complex networks analysis and it is based 

on shortest paths enumeration. Since it requires the computation of all shortest paths between a given pair of nodes, its exact 

determination is computationally-expensive. Betweenness computation requires 𝒪(𝑛3) time and 𝒪(𝑛2) space, where 𝑛 is the 

number of vertices in the network [81]. 

Table 3 

A summary and comparison of the variants of betweenness centrality. 

Variant 
Betweenness 

metric 
Main idea Comments 

Canonical-path 

betweenness 
Shortest-path 

Only a single canonical shortest path between any source-

target pair is considered. 
Used in road networks. 

ϵ-betweenness  Shortest-path 
Consists in dynamically updating betweenness centrality in 

face of network’s changes. 
Used in terrorist networks analysis. 

Bounded-distance 

betweenness 
Shortest-path 

Considers only contributions from shortest paths whose 

lengths are bounded by a constant 𝑘. 
NA 

Distance-scaled 

betweenness 
Shortest-path The longer a path, the less valuable it may be to control it. NA 

α-weight 

betweenness 
Shortest-path 

It incorporates both the number of ties and their weights in 

weighted networks. 

There are also variants for degree and closeness 

centrality that incorporate the tuning parameter. 

𝑘-path betweenness Random-walk 

It is based on a similar assumption about the random 

traversal of a message from a source s. It is assumed that 

the message’s traversals are only along random simple 

paths of at most 𝑘 edges. 

Nodes with high k-path centrality have high node 

betweenness centrality. 

 



In this section, algorithms used to compute standard betweenness centrality are presented. These algorithms can be either exact 

[81] or approximate, and the latter can be subdivided according to the type of techniques used, namely random sampling [72,84,85], 

adaptive sampling [86] and local techniques [87]. 

4.1 Exact Computation 

Brandes (2001). In [81], the author  proposed an algorithm to evaluate simultaneously all centrality metrics based on shortest paths, 

thus reducing the algorithm’s time and space requirements. The proposed approach integrates well with traversal algorithms that 

solve the single-source shortest-paths (SSSP) problem. 

It can be seen from equation (1), that in order to determine betweenness centrality two steps are necessary: in the first step, it is 

necessary to compute the length and number of shortest paths between all pairs; in the second step, it is necessary to sum all pair-

dependencies. The author observed that the second step of the betweenness centrality computation was responsible for its 

complexity. 

For 𝑠 ≠ 𝑣 ∈ 𝑉, the combinatorial shortest path counting is given by 

 

𝜎𝑠𝑣 = ∑ 𝜎𝑠𝑢
𝑢∈𝑃𝑠(𝑣)

 (5) 

 

By applying (5) in traversal algorithms like BFS and Dijkstra’s, and if the priority queue is implemented with a Fibonacci heap 

[88], the algorithms run times become 𝒪(𝑚) and 𝒪(𝑚 + 𝑛 log 𝑛), respectively (where 𝑚 is the number of edges in the network). 

To reduce the complexity of the second step of the algorithm, i.e., the need for explicit summation of all pair-dependencies, the 

concept of dependency of a vertex 𝑠 ∈ 𝑉 on a single vertex 𝑣 ∈ 𝑉, was introduced in [81] as  

 

𝛿𝑠(𝑣) =∑𝛿𝑠𝑡(𝑣)

𝑡∈𝑉

 

 

and it was also observed that these dependencies obey a recursive relation. 

 

Theorem 1 ([81]). The dependency of 𝑠 ∈ 𝑉 on any 𝑣 ∈ 𝑉 obeys 

 

𝛿𝑠(𝑣) = ∑
𝜎𝑠𝑣
𝜎𝑠𝑤

(1 + 𝛿𝑠(𝑤))

𝑤∶ 𝑣 ∈ 𝑃𝑠(𝑤)

 (6) 

 

Algorithm 1. First, for each vertex 𝑠 ∈ 𝑉 do a SSSP computation, maintain during the process the lists of predecessors 𝑃𝑠(𝑣). 
Then, for every 𝑠 ∈ 𝑉 compute the dependencies 𝛿𝑠(𝑣) for all other 𝑣 ∈ 𝑉 using the list of predecessors and the information along 

the directed acyclic graph of shortest paths. Finally, in order to obtain the centrality index of a vertex 𝑣, compute the sum of all 

dependencies values.  

 

Thus, for weighted and unweighted graphs, betweenness centrality can be computed in 𝒪(𝑛𝑚 + 𝑛2 log 𝑛) and 𝒪(𝑛𝑚) times, 

respectively and 𝒪(𝑛 + 𝑚) space. For additional details, please refer to [81]. 

4.2 Approximation Techniques 

Taking into account that, for large-scale graphs, the exact centrality computation is computationally-expensive, some 

approximation techniques have been proposed, which are introduced in the following sections. 

 

4.2.1 Random Sampling Techniques 

Brandes and Pich (2007). The authors of [84] presented an experimental study of estimators for centrality metrics based on a 

restricted number of SSSP computations from selected source vertices (a generalized approach of [89]). Source vertices, also 

known as pivots, are those from which the shortest path computations are initiated. 

Let 𝑋1, 𝑋2, … , 𝑋𝑘 be independent random variables, so that 

 

�̅� =
𝑋1 + 𝑋2 +⋯+ 𝑋𝑘

𝑘
   

and 𝜇 = 𝐸[�̅�] is the expected mean. 

 

Theorem 2 ([90]). If 𝑋1, 𝑋2, … , 𝑋𝑘 are independent, 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 , 𝑖 =  1,2, … , 𝑘, then for 𝜉 > 0 

 

𝑃𝑟{|�̅� − 𝜇| ≥ 𝜉} ≤ 𝑒−2𝑘
2𝜉2 ∑ (𝑏𝑖−𝑎𝑖)

2𝑘
𝑖=1⁄  (7) 



 

By (6), the contribution of the source vertex 𝑠𝑖 ∈ 𝑉 to the centrality of a vertex 𝑣 ∈ 𝑉 is given by 𝛿𝑠(𝑣). In order to extrapolate, 

for a single estimate, from the average contributions of 𝑘 source vertices, let 

 

𝑋𝑖(𝑣) =
𝑛

𝑛 − 1
𝛿𝑠(𝑣) 

 

be the random variable. To apply the bounds given by (7), let 𝑎𝑖 = 0, 𝑏𝑖 =
𝑛

𝑛−1
(𝑛 − 2), and 𝜉 = 𝜀(𝑛 − 2). Since the expectation 

of estimate 
1

𝑘
(𝑋1(𝑣) + 𝑋2(𝑣) +⋯+ 𝑋𝑘(𝑣)) is the sum of all dependencies values on 𝑣, (7) guarantees that the error is bounded 

from above by 𝜀(𝑛 − 2) with probability at least 𝑒−2𝑘(
𝜀(𝑛−1)

𝑛
)
2

.  

The authors of [84] concluded that in order for the contributions of 𝑋𝑖(𝑣) to be independent, the pivots needed to be selected at 

random. A drawback of this approach happens to unimportant nodes near a pivot, since it produces large overestimates of the 

betweenness centrality values. For example, if a one-degree node is selected as a pivot, the betweenness centrality of a two-degree 

node connecting the former to the rest of the network is overestimated by a factor of 𝑛 𝑘⁄ . 

 

Geisberger et al. (2008). In [72], the authors proposed a generalized framework, which uses canonical centrality, for unbiased 

approximation of betweenness centrality to address the overestimates’ problem of unimportant nodes near the pivots. 

Let the proposed estimator be parameterized by 

 ℓ ∶ 𝐸 → ℝ on the edges, named length function 

 𝑓 ∶ [0,1] → [0,1], named scaling function. 

Let 𝑃 = (𝑒1, 𝑒2, … , 𝑒𝑘), 𝑘 =  |𝐸| be a path, such that ℓ(𝑃) = ∑ ℓ(𝑒𝑖)
𝑘
𝑖=1 . The algorithm performs, in each interaction, one of 2𝑛 

possible (forward or backward) shortest path searches with uniform probability 1/2𝑛.  A scaled contribution can be defined as 

 

𝛿𝑠𝑡(𝑣) =

{
 
 

 
 𝑓 (ℓ(𝑆𝑑𝑠𝑣)/ℓ(𝑆𝑑𝑠𝑡))

𝜎𝑠𝑡
for forward search

1 − 𝑓 (ℓ(𝑆𝑑𝑠𝑣)/ℓ(𝑆𝑑𝑠𝑡))

𝜎𝑠𝑡
for backward search

 

 

So, 𝑣 gets the following contributions 

 

𝛿(𝑣) =

{
 
 

 
 ∑{𝛿𝑠𝑡(𝑣) ∶  𝑆𝑑𝑠𝑡 ∈ 𝑆𝑑𝑠𝑡(𝑣)}

𝑡∈𝑉

∶= 𝛿𝑠(𝑣) for forward search

∑{𝛿𝑠𝑡(𝑣) ∶  𝑆𝑑𝑠𝑡 ∈ 𝑆𝑑𝑠𝑡(𝑣)}

𝑠∈𝑉

∶= 𝛿𝑡(𝑣) for backward search
 

 

Theorem 3 ([72]). If 𝑋 = 2𝑛𝛿(𝑣) is an unbiased betweenness centrality estimator, then 𝐸(𝑋) = 𝑐𝐵(𝑣). 
 

Hence, by averaging 𝑘 independent runs of 𝑋𝑖(𝑣), an approximation �̅� of 𝑐𝐵(𝑣) can be obtained. The authors of [72] proposed 

two implementations of their framework, namely a linear and bisection scaling. In the linear scaling, the contribution of the samples 

depends linearly on the distance to the sample, whereas in the bisection scaling, a sample only contributes on the second half of 

the path. According to the authors, both approaches perform better than the one proposed in [84], and the bisection approach even 

produced a good approximation for less important nodes with a small number of pivots. 

 

Riondato et al. (2014). The authors of [85] proposed two efficient algorithms for betweenness centrality estimation, based on the 

random sampling of the shortest paths, which offer probabilistic guarantees on the quality of the approximation. 

With a probability at least of 1 − 𝜑, both algorithms work as follows. The first algorithm estimates the betweenness of all 

vertices, and ensures that the approximate betweenness values are within an additive factor 𝜀 from the real values. The second 

algorithm focuses on the top-K vertices with the highest betweenness. It returns a superset of the top-K vertices, while ensuring 

that the approximate betweenness value is within a multiplicative factor 𝜀 from the real value. According to the authors, it is the 

first algorithm that can compute such approximation for the top-K vertices. 

In order to derive the appropriate sample size necessary to achieve the desired approximation, Vapnik-Chernovenkis (VC) 

dimension theory [85] notions and results are used. A range set associated with the problem at hand is defined, and the upper and 

lower bounds to its VC-dimension are proven. So, the resulting sample size is independent from the number of vertices in the 

network, depending only on the vertex-diameter.  

Let ℐ𝑣(𝑠, 𝑡) ⊆ 𝕊𝐺  be the set of all shortest paths, from 𝑠 to 𝑡, that 𝑣 is internal to 



 

ℐ𝑣(𝑠, 𝑡) = {𝑝 ∈ 𝑆𝑑𝑠𝑡 ∶  𝑣 ∈ Int(𝑝)} 

 

The betweenness centrality of a vertex 𝑣 ∈ 𝑉 in the normalized form is defined as 

 

𝑐𝐵(𝑣) =
1

𝑛(𝑛 − 1)
∑

|ℐ𝑣(𝑠, 𝑡)|

𝜎𝑠𝑡
𝑝𝑠𝑡∈𝕊𝐺

 

 

Theorem 4 ([91,92]). Let ℛ be a range set on a domain 𝐷 with 𝑉𝐶(ℛ) ≤ 𝑑, and let 𝜙 be a distribution on 𝐷. Given 𝜀, 𝜑 ∈ (0,1) 
let 𝑆 be a collection of |𝑆| points from 𝐷 sampled according to 𝜙, with 

 

|𝑆| =
𝑐

𝜀2
(𝑑 + ln

1

𝛿
) (8) 

 

where 𝑐 is an universal positive constant. Then, 𝑆 is an 𝜀-approximation to (ℛ, 𝜙) with probability at least 1 − 𝜑. 

 

In order for the algorithm to compute a set of approximations for the betweenness centrality of the (top-K) vertices in a graph 

through sampling, with probabilistic guarantee on the quality of the approximations, let 𝑑 = ⌊log2 𝑉𝐷(𝐺) − 2⌋ + 1. With (8), the 

resulting sample size 𝑟 is 

 

𝑟 =
𝑐

𝜀2
(⌊log2 𝑉𝐷(𝐺) − 2⌋ + 1 + ln

1

𝜑
) (9) 

 

Algorithm 2. Repeat 𝑟 times the following steps: First, sample a pair 𝑠, 𝑡 of distinct vertices uniformly at random. Second, compute 

the set 𝑆𝑑𝑠𝑡  of all shortest paths between 𝑠 and 𝑡. Third, select a path 𝑝 from 𝑆𝑑𝑠𝑡 at random. Fourth, increase by 1 𝑟⁄  the 

betweenness estimation of each vertex in Int(𝑝). If the sampled vertices 𝑠 and 𝑡 are not connected, the third and fourth steps can 

be skipped. 

 

The unbiased estimator �̃�𝐵(𝑤) for the betweenness 𝑐𝐵(𝑤) of a vertex 𝑤 is the sample average  

 

�̃�𝐵(𝑤) =
1

𝑟
∑ |ℐ𝑤(𝑠, 𝑡)|
𝑝𝑠𝑡∈𝑆

 

 

where 𝑆 is the set of paths sampled in the algorithm. The desired accuracy and confidence are achieved with (9). For additional 

proof, please refer to [85]. 

  

4.2.2 Adaptive Sampling Techniques 

The adaptive sampling technique was proposed in [86] for estimating the size of the transitive closure of a directed graph. The 

proposed algorithm presented adaptive sampling of source vertices. To be precise, the information acquired from each sample 

depends on the number of samples. 

 

Bader et al. (2007). In [86], the authors proposed an approximate algorithm for computing betweenness centrality of a single 

vertex, for both weighted and unweighted graphs, which is based on an adaptive sampling technique. The proposed approximation 

is a sampling algorithm, since centrality is estimated by means of sampling and SSSP computations of a subset of vertices, and, it 

is an adaptive algorithm, since the information acquired from each sample depends on the number of samples. So, this approach 

significantly reduces the number of SSSP computations for high centrality vertices. 

The authors noted that through scores’ extrapolation from a fewer number of path computations, centrality can be estimated in 

contrast to [81] which estimates centrality scores of all vertices in the graph. Nonetheless, betweenness centrality scores are difficult 

to estimate, and the quality of the approximation was found to be dependent on the source vertices. 

Let 𝑎𝑖 = 𝛿𝑣𝑖∗(𝑣) denote the dependency of the vertex 𝑣𝑖 on 𝑣, and let 𝐴 = ∑𝑎𝑖 =𝑐𝐵(𝑣) denote the quantity to estimate. 

 

Algorithm 3. Repeatedly sample a vertex 𝑣𝑖 ∈ 𝑉; using a graph traversal algorithm, do a SSSP from 𝑣𝑖 and maintain a running 

sum 𝜒 of the dependency scores 𝛿𝑠∗(𝑣). Sample until 𝜒 > 𝑐𝑛 (c is a constant and ≥ 2). If 𝑘 is total number of samples, then the 

estimated betweenness centrality score of 𝑣 is  

 



𝑐𝐵(𝑣) =
𝑛𝜒

𝑘
 

 

Theorem 5 ([86]). For 0 < 𝜖 < 0.5, if the centrality of a vertex 𝑣 is 𝑛2 𝛾⁄  for some constant 𝛾 ≥ 1, then with probability greater 

or equal to 1 − 2𝜖 its centrality can be estimated to within a factor of 1 𝜖⁄  with 𝜖𝛾 samples of source vertices. 

 

The authors of [86] demonstrated through experimental evaluation that their algorithm performed similarly for other vertices, 

besides those with high centrality (showed from theoretical results). For detailed discussion of the algorithm, please refer to [86]. 

 

4.2.3 Local Techniques 

Hinne (2011). The authors of [87] proposed a local strategy to derive an approximation and the corresponding error bound’s 

analysis of the true centrality metric using only the vertices directly adjacent to a target vertex. For example, the estimation of the 

vertex’s centrality could be obtained by examining the vertex, its neighbors and its neighbor’s neighbors. 

Let the normalized version of (1) be defined as 

 

𝑐𝐵(𝑣) =
1

(𝑛 − 1)(𝑛 − 2)
∑ ∑

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑡≠𝑣∈𝑉𝑠≠𝑣∈𝑉

 (10) 

 

To obtain a local approximation of (10), the term 𝜎𝑠𝑡(𝑣) can be decomposed as 𝜎𝑠𝑡(𝑣) = 𝜎𝑠𝑣 𝜎𝑣𝑡. By applying this decomposition 

to the summation terms in (10), 

 
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
∝ ∑

𝜎𝑣0𝑣1(𝑣)

𝜎𝑣0𝑣1𝑣0→𝑣→𝑣1
𝑣0≠𝑣1

 

 

where 𝑣0 and 𝑣1 are the predecessors and successors of 𝑣, respectively. So,  

 

𝑐𝐵(𝑣) ∝ �̃�𝐵
𝐻(𝑣) = ∑

𝜎𝑣0𝑣1(𝑣)

𝜎𝑣0𝑣1𝑣0→𝑣→𝑣1
𝑣0≠𝑣1

 

 

where �̃�𝐵
𝐻(𝑣) is the local approximation of betweenness centrality, and 𝐻 is the local subgraph of 𝑣. The approximation error is 

given by  

 

|𝑐𝐵(𝑣) − �̃�𝐵
𝐻(𝑣)| = ∑

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠↛𝑣↛𝑡

 

 

Since local subgraphs are smaller than the graph itself, there is a trade-off between computation and accuracy in local 

approximations. Specifically, smaller subgraphs lead to faster computations, decreasing as a result the approximation accuracy. 

Table 4 

A summary and comparison of the algorithms used to compute betweenness centrality. 

Publication 
Type of Algorithm 

(Section) 
Main idea Complexity 

Brandes (2001) [81] 
Exact computation 

(4.1) 

Compute centrality of all graph’s vertices in the 

same asymptotic time bounds as n SSSP 

computations. 

𝒪(𝑛𝑚) – unweighted graphs 

𝒪(𝑛𝑚 + 𝑛2 log 𝑛) – weighted 

graphs 

Brandes and Pich 

(2007) [84] 

Random Sampling 

(4.2.1) 

The selection at random of source vertices is 

superior to deterministic strategies. 𝒪(𝑘𝑚) – unweighted graphs 

𝒪(𝑘(𝑚 + 𝑛 log 𝑛)) – weighted 

graphs 

𝑘 =
log 𝑛

𝜖2
 

Geisberger et al.  

(2008) [72] 

Random Sampling 

(4.2.1) 

Obtain good betweenness centrality estimates of 

unimportant nodes. 

Bader et al. (2007) 
[86] 

Adaptive Sampling 

(4.2.2) 

Reduce the number of SSSP computations of 

vertices with high centrality. 

Riondato et al. 

(2014) [85] 

Random Sampling 

(4.2.1) 

Compute betweenness estimation, based on the 

random sampling of the shortest paths, which offer 

a probabilistic guarantees on the quality of the 

approximation. 

𝒪(r(n +m)) – unweighted graphs 

𝒪(r(m + n log𝑛)) – weighted 

graphs 

Hinne (2011) [87] 
Local Techniques 

(4.2.3) 

Gives a local centrality estimate based on  a 

subgraph of vertices around a specific vertex. 

𝒪(𝑛𝑘2𝑑), 𝑘2𝑑 < 𝑚  

where 𝑘 is the average degree, and 𝑑 

denotes distance 

 

 



 

Table 4 presents a summary and comparison of the algorithms used to compute betweenness centrality based on the type of 

algorithm, the main idea and their complexity. 

5 DTN Routing Protocols 

DTNs routing protocols face a troublesome task of finding a suitable next node to forward messages, due to the network’s 

dynamics. This problem is augmented when additional requirements, such as good delivery probability or low end-to-end delay, 

are foreseen. Many routing protocols have been proposed up until now, and in some social network analysis is leveraged to enhance 

the delivery of messages. Some of the routing protocols hereby presented make use of many social metrics, where at least one is 

betweenness centrality. Let it be noted that betweenness centrality is computed over some inherent social network (see column 3 

of Table 5), and not directly over the DTN. 

5.1 SimBet 

The authors of [22] proposed a DTN routing protocol called SimBet that exploits two social metrics for data forwarding, namely 

betweenness centrality and social similarity8. If neither the sender nor its contacts know how to reach the destination node, the 

message is forwarded to a node structurally more central as its odds of discovering a suitable carrier are higher. Unlike previous 

works, no assumptions of control of node movements, or knowledge of future movements is made. It is assumed that only a single 

copy of each message exists in the network, which reduces resource consumption if compared to multi-copy strategies. 

The authors argued that metrics based on direct or indirect encounters were not appropriate for discovering suitable carriers for 

routing messages, since some networks contained cliques (i.e., groups of nodes – clusters – that interacted more among them than 

with members of other clusters). So, node’s centrality was estimated in the network in order to identify bridge nodes, i.e., message 

carriers among disconnected groups. Based on concepts from graph theory and network analysis, centrality is used to quantify a 

vertex’s importance within graphs. 

 

As previously stated, betweenness centrality measures the extent to which a node has control over information flowing between 

others. Thus, high betweenness centrality nodes are regarded as having a capacity to facilitate interactions between nodes they 

link, i.e., having a capacity of facilitating communication to other nodes in the network. It was also previously referred that a well-

known disadvantage of centrality metrics is their computational complexity for large networks. Due to this, the authors used ego 

networks which do not require complete knowledge of the network as ego network analysis is performed locally by each individual 

node. 

It was shown in [93] that betweenness centrality based on egocentric measures is not equivalent to its sociocentric counterpart, 

despite the node’s ranking based on both metrics being identical. Consequently, a comparison of locally calculated betweenness 

values between two nodes can be made, and the one with the higher value may be found. The betweenness values show ‘how much 

a node connects nodes that are themselves not directly connected’. SimBet calculates betweenness centrality using an egocentric 

network representation of nodes with which the ego node has come into contact. Therefore, egocentric betweenness centrality is 

given by equation (3). 

5.2 SimBetAge 

In [23], the authors proposed a DTN routing protocol for highly dynamic socially structured networks called SimBetAge. The 

routing scheme proposed in [22] was exploited while simultaneously taking into account social relations’ strengths and gradual 

aging, i.e., the progression of the social network over time. Similarity and betweenness centrality were modeled over weighted 

graphs instead of unweighted ones as in [22]. 

A more realistic view of a social network is modeled by a weighted time dependent graph 𝐺(𝑇) = (𝑉, 𝐸, 𝜔(𝑒, 𝑇)), where 𝐺(𝑇) 
is a fully connected graph, the weight 𝜔 is called freshness of an edge. If 𝑒 = (𝑢, 𝑣) and 𝑇 ∈ 𝕋, 𝜔(𝑒, 𝑇) = 0 means that the nodes 

in 𝑒 have never been connected; 𝜔(𝑒, 𝑇) = 1 means a permanent connection between them. The freshness of a single edge can be 

perceived as an indicator of the likelihood of two nodes 𝑢 and 𝑣 being connected at a given time 𝑇, due to its representation as a 

logistic growth function (i.e., the contacts become fresher at each new encounter), and exponential decay function (i.e., the contacts 

become older with time). The freshness of a path 𝜔(𝑃, 𝑇) is defined by the product of all freshness values in it.  

The authors proposed a new metric called egocentric flow betweenness defined as  

 

𝑐𝐸𝐹𝐵(𝑣) = ∑
(𝜔𝑣𝑢 𝜔𝑣𝑤)

2

𝜔𝑣𝑢 + ∑ ∑ 𝜔𝑣𝑢 𝜔𝑣𝑤𝑤≠𝑣∈𝑉∗(𝑣)𝑢≠𝑣∈𝑉∗(𝑣)
,

𝑢,𝑤∈𝑉∗(𝑣)

 

 

 
8 Similarity expresses the amount of common features of a group in social networks. In sociology, the probability of two individuals being acquainted increases 

with the number of common acquaintances between them. 



i.e., 𝑐𝐸𝐹𝐵(𝑣) is the sum over the age of all paths between pairs of nodes 𝑢,𝑤 ∈ 𝑉∗(𝑣) passing through 𝑢 divided by the age of all 

possible paths between them, and weighted with the age of the edges between 𝑢 and 𝑣, and 𝑢 and 𝑤. If two nodes 𝑢 and 𝑤 want 

to compare their utilities to a destination 𝑡 in an ego-centric manner: 

 Betweenness should be used, if both nodes are far away from 𝑡; 
 Similarity should be used, if 𝑡 is at most two hops away of any of them; 

 Directed betweenness should be used otherwise, as it considers only the paths containing 𝑡 instead of all possible paths 

in the neighborhood of 𝑣. Directed betweenness is defined as 

 

𝑐𝐷𝐵(𝑣, 𝑡) = ∑
(𝜔𝑣𝑢 𝜔𝑣𝑤)

2

𝜔𝑣𝑢 + ∑ ∑ 𝜔𝑣𝑢 𝜔𝑣𝑤𝑤≠𝑣∈𝑉∗(𝑣)𝑢≠𝑣∈𝑉∗(𝑣)
𝑢,𝑤∈𝑉∗(𝑣)

𝑡∈𝑉∗(𝑣) ∨ 𝑢=𝑡

 

5.3 Bubble Rap 

In [24], a DTN routing protocol for pocket switched networks (PSN) called Bubble Rap was proposed. A PSN is a network 

without infrastructure composed of a multitude of devices carried by persons. Therefore, two social metrics, namely community 

and centrality, are exploited for data forwarding, instead of mobility due to the network’s unpredictability and highly dynamic 

topological structure. Node mobility is used by MANET and DTN routing algorithms to build and update their routing tables. 

According to sociology, a community can be defined by a group of people living in the same location. So, people from the same 

community tend to interact more often between themselves, than with a randomly chosen member of the population [94]. Another 

important aspect to consider within a community is the degree of interaction among its members. Usually, some members tend to 

interact more than others. For example, the postman meets customers more often, in comparison to a network engineer. As a 

consequence, there are more popular members (hubs) which have higher centrality values, and these popular hubs are a better 

choice for relays than unpopular ones. 

In [24], the authors assumed that each node belonged to at least one community, and that it had a global (for the whole system) 

and local (for its local community) centrality values. Also, a node could belong to a single node community or to multiple 

communities, thus having multiple local centrality values. 

A PSN is modeled as a temporal network (or a time evolving network) due to its characteristics. Thus, betweenness centrality 

of a node in a temporal graph is obtained by counting the number of times a node acted as a relay for other nodes on all the shortest 

delay deliveries9, over a large number of emulations of unlimited flooding with different uniformly distributed traffic patterns.  

In order to approximate centrality, the authors found out that the degree per unit-time (e.g., the number of unique nodes seen per 

t hours) and the node centrality had a high correlation value (for t = 6, the correlation coefficient is 0.9511). This correlation led 

them to conclude that what mattered was the frequency of interaction, not the number of known persons. They compared the 

average unit-time degree with a greedy ranking algorithm called RANK, and found out that they performed similarly. RANK, 

which is similar to the greedy strategy in [95], assumes that each node only knows its ranking and the ranking of those it encounters. 

But, it does not know the ranking of the other nodes it does not encounter, neither does it know which node has the highest rank in 

the system. However, since in a distributed manner, it is difficult to compute the average unit-time degree individually throughout 

the whole experiment, two approaches were proposed, namely: (1) the single window (S-Window) approach, in which upon an 

encounter, nodes compare how many unique nodes they met in the previous unit-time slot; (2) the cumulative window (C-Window) 

approach, which consists in calculating the average value on all previous windows (e.g., from yesterday until now), and then 

calculating the average degree for every t hours. C-Window is similar to a statistical technique called exponential smoothing [96]. 

The authors used two centralized community detection algorithms, namely K-CLIQUE [97] and weighted network analysis 

(WNA) [98], to identify local community structures as it would be helpful in designing good strategies for information 

dissemination. They use the two since each has useful features and they complement each other. 

Bubble Rap Forwarding works as follows: if a node wants to send a message to a destination, this node first bubbles (forwards) 

this message up based on the global centrality until it finds a node which is in the same local community as the destination of the 

message. Then the local centrality is used instead of the global one, and the node continues to bubble up the message based on the 

local centrality through the local community until the destination is found or the message expires. 

5.4 PQBCF 

The authors of [25] proposed a peer-to-peer (P2P) query algorithm based on betweenness centrality forwarding (PQBCF) for 

Social Opportunistic Networks (SONs). In SONs, mobile devices are carried by people and consequently the mobility model 

exhibits social characteristics. Since betweenness centrality quantifies the importance of nodes in message delivery throughout the 

network, nodes with higher betweenness values can be seen as more active and having more opportunities of encountering more 

nodes. So, they are naturally good candidates to act as relay nodes. 

 
9 The delivery with shortest delay when the same message is delivered to the destination over different paths. 



To share or publish contents in SONs, a message dissemination scheme commonly used is the P2P inquiry/response10 that works 

as follows: first, a query node sends an inquiry message throughout the network searching for a node with the response message; 

then, the response message is forwarded to the query node. 

In PQBCF, a node looking for some data, e.g., an audio file, generates an inquiry message containing the description of the 

required data. To reduce the expected query latency, assuming that many nodes contain the requested data, multiple copies of the 

inquiry message are created. With more copies, the query delay reduces, but the network overhead also increases as a result of the 

additional number of message copies occupying nodes’ buffers, as well as more message transmissions. Therefore, a tradeoff 

between the query delay and overhead should be obtained by the inquiry/response scheme. PQBCF achieved this by calculating 

the number of copies of the inquiry message in the network based on the expected query delay, the mobility and the nodes density. 

During the inquiry message dissemination, betweenness centrality is used as the metric for relays selection. If the inquiry message 

is passed to a node with information matching the inquiry message, it creates a response message, calculates the number of copies 

of the response message, and sends it back to the inquiry node. 

The betweenness centrality of a node 𝑣 is defined as  

 

𝑐𝐵(𝑣) =
2

(𝑛 − 1)(𝑛 − 2)
∑ ∑

𝑔𝑠𝑡(𝑣)

𝑔𝑠𝑡
𝑡≠𝑣∈𝑉𝑠≠𝑣∈𝑉

 

 

where  𝑔𝑠𝑡 is the number of all the messages successfully delivered between a pair of nodes 𝑠 and 𝑡, and 𝑔𝑠𝑡(𝑣) represents the 

number of messages that passed through node 𝑣 during the forwarding process. The ratio 𝑔𝑠𝑡(𝑣) 𝑔𝑠𝑡⁄  indicates the importance of 

node 𝑣 in delivering messages between 𝑠 and 𝑡. If the destination node is fixed, the importance of node 𝑣 in delivering messages 

to the destination node 𝑡 is given by  

 

𝑐𝐵𝑡(𝑣) =
2

(𝑛 − 1)
∑

𝑔𝑠𝑡(𝑣)

𝑔𝑠𝑡
𝑠≠𝑣∈𝑉

 

  

Each node maintains a table with the necessary information to calculate 𝑐𝐵(𝑣) and 𝑐𝐵𝑡(𝑣) which can be obtained in a distributed 

manner.  

5.5 GrAnt 

Multi-agent systems in which the behavior of a single agent (also known as artificial ant) is inspired by the behavior of real ants, 

are called ant systems. The Ant Colony Optimization (ACO) metaheuristic [99], a particular class of ant algorithms which use 

artificial swarm intelligence [100], is inspired on an experience by Gross et al. [101] using an ant system. Some example problems 

where ant algorithms have been used are classical traveling salesman and routing in telecommunications networks. 

In [18], the authors proposed Greedy Ant (GrAnt), a prediction-based routing protocol for DTNs, which uses a greedy transition 

rule of the ACO metaheuristic aiming at exploiting, if available, good previous solutions, and to select the most suitable message 

forwarder. 

To cope with DTN, the following modifications were proposed allowing to differentiate GrAnt from traditional ACO algorithms: 

(1) to increase the possibility of reaching the destination, forwarder ants, which are ant agents responsible for discovering paths to 

the destination nodes, are encapsulated into data messages; (2) to find a path to an unknown destination, a dynamic number of 

forwarder ants, whose computation takes into account the utilities of the already established message forwarders and the success 

of the message delivery, is used; (3) to provide exploitation of good solutions already found or to forward the message to the most 

promising node, a greedy ACO transition rule is used while considering heuristic functions and pheromone concentration. The 

pheromone concentration indicates how useful a global solution was, which serves as a history of the best previous movements of 

the ants. The heuristic function values indicate an explicit influence towards more useful local information; (4) besides the best 

path, redundant ones are also allowed due to the dynamics of DTNs. An event-driven evaporation happens if and only if a node 

detects a new path being constructed to the destination. And, since the pheromone deposited by ants is based on information about 

nodes in each constructed path, the evaporation process prevents the occurrence of undue convergence of the algorithm to the same 

subset of paths. 

The GrAnt protocol provides modules for (i) routing, by determining which route a message should follow to reach its 

destination. The forwarding decision consists in adopting a greedy transition rule that considers the pheromone at a link in the path 

to the destination (or local heuristic information, in the absence of pheromone) and the heuristic function associated with an 

intermediate node in the path to the destination, (ii) scheduling, by deciding in which order messages must be transmitted, and (iii) 

buffer management, by indicating which message(s) must be dropped whenever the buffers occupancy limit has been reached. 

The heuristic function is based on two criteria: Social𝑣𝑡, representing the social proximity between nodes 𝑣 and 𝑡, and BetwU𝑣𝑡 , 
representing the betweenness utility of node 𝑣 in relation to the destination 𝑡. The node betweenness utility computation is slightly 

 
10 In [119], an inquiry/response scheme was proposed combining content-based routing with probabilistic-based routing. 



different from [3]. In order to have a high betweenness utility to a destination 𝑡, a node 𝑣 must appear with high frequency in paths 

between any source node and the destination 𝑡. So, differently from [3] and [22], no shortest path verification is required by 

betweenness utility and no list of all previous encounters is exchanged, respectively. 

5.6 Kim et al. (2014) 

In [28], the authors proposed a routing scheme by using DNI (i.e., node’s local contact history) and SNI (i.e., the expanded ego-

network betweenness centrality). Since computing the real betweenness involves global network knowledge it is in general 

impractical in DTNs due to the lack of network-wide end-to-end connectivity. Therefore, each node computes betweenness by 

means of its local expanded ego network built using the node’s social network composed of information of its neighbors and of its 

neighbors’ neighbors. The result is used as an estimate of its true betweenness over the entire network due to their high correlation 

[102].  

Routing is composed of two strategies, namely, edge weight and centrality based strategies. In the former, each node calculates 

the edge weight [103] using DNI. If the edge weight is high between a pair of nodes it means that there is a high future contact 

opportunity. Similarly to [103], a node carrying a message to a remote destination forwards it to a given relay node if the edge 

weight between the relay and the remote destination is higher than the one between him and the destination node. The latter is used 

to improve routing efficiency. Each node constructs its own social network, and calculates the expanded ego betweenness 

centrality. As some nodes might get very low edge weights since they hardly meet with other nodes, and if these isolated nodes 

are the destination, proper relays might be difficult or even impossible to find by the source node using the former strategy. This 

message would probably be discarded due to Time-To-Live (TTL) expiration. Therefore, the node carrying the message also 

forwards the message to another node if it presents a higher value of betweenness centrality even though it presents a lower edge 

weight value, since nodes with higher betweenness centrality values are more socially related to other nodes.  

Additionally, a message management scheme was also proposed to reduce the overall delivery cost. A node carrying a message 

can delete the message from its buffer after forwarding the message to another node with an edge weight higher than all edge 

weights in its social network. 

5.7 LocalCom 

Previous works [22,24,104] confirmed that with high probability nodes in DTNs tend to meet more a certain group of nodes 

than other nodes outside this group, and that the grouping structure remains stable over time. Hence, it is of interest to utilize the 

grouping structure of DTNs to facilitate message forwarding. 

In [26], the authors proposed LocalCom, a community-based epidemic forwarding scheme for routing, which efficiently detects 

the community structure, using limited information, and improves the forwarding efficiency based on the community structure. In 

LocalCom, the statistics of the separation period is selected in order to shorten nodes’ knowledge. Based on the frequency and 

length of the node’s contacts, each node calculates the average separation period towards its neighbors. It also applies the Gaussian 

similarity function [105] to represent the closeness in the relationship. A closer relationship is reflected by a shorter average 

separation period. At the same time, an irregularity in the relationship is reflected by the variance of the separation period. 

Therefore, closeness and irregularity metrics are used to deduce the similarity metric, which shows the relationship between each 

pair of nodes in the network. Similarity also captures the core temporal and spatial encounter information. 

Differently from [22][24], a distributed scheme was developed and it only requires local information to form communities in 

LocalCom. It uses an extended clique, which is based on virtual links, to represent underlying community structures. A virtual link 

allows the representation of a neighboring relationship between a pair of nodes, if at least one path with up to 𝑘 hops exists between 

them. 

High similarity and short hop-count distances that are some of the desirable properties within a community can aid intra-

community communication based on the single-copy source routing. So, packets will be directly forwarded along a virtual link. 

Through flooding, inter-community packet forwarding is performed using nodes that have direct neighboring relationship with 

nodes in other communities (also called gateways). Since not all gateways are necessary, some pruning is performed to avoid 

unnecessary redundancy. Bridges, which are the actual forwarding nodes are selected from gateways using two marking and 

pruning schemes: static pre-pruning and dynamic pruning. The former is conducted by each gateway based on local information. 

Nodes marked as bridges during the former further define their role dynamically based on additional information received. 

In order to forward a packet between nodes residing in different communities: first, the inter-community forwarding mechanism 

is used to forward the packet to the current communities’ bridges, and then, the bridges forward the packet to other communities 

they are connected to. Each gateway calculates its centrality for the communities it connects. The betweenness centrality of a 

gateway 𝑣 in community 𝐴 connecting community 𝐵 is given by 

 

𝑐𝐺𝐵(𝑣) =∑∑
∑ (∏ 𝜔𝑖𝑗(𝑖,𝑗)∈𝑝 )𝑝∈𝑃𝑠𝑡(𝑣)

∑ (∏ 𝜔𝑖𝑗(𝑖,𝑗)∈𝑝 )𝑝∈𝑃𝑠𝑡𝑡∈𝐵𝑠∈𝐴

 

 



where 𝑃𝑠𝑡  represent the set of all paths between 𝑠 and 𝑡 in the neighboring graph, and 𝑃𝑠𝑡(𝑣) denotes the subset of 𝑃𝑠𝑡  containing 

all the paths from s to t that pass through v. The numerator and denominator are the sum of all path weights in 𝑃𝑠𝑡(𝑣) and the sum 

of all path weights in 𝑃𝑠𝑡 , respectively. 

Each gateway should calculate its centrality values, that is, one distinct for each community it connects, and send through the 

virtual links among them the centrality value to all other nodes in its local community. Therefore, each gateway knows all other 

gateways in its community connecting to other communities, also knowing their centrality values.  

5.8 CAOR 

The authors of [31] proposed the community-aware opportunistic routing (CAOR) algorithm for Mobile Social Networks 

(MSNs) [106] using two social metrics, namely community and centrality. A MSN can be seen as a social DTN since it is composed 

of mobile nodes with social characteristics11. Based on this social characteristic, a home-aware community model was proposed in 

which mobile users with a common interest form, by themselves, a community where the frequently visited location is their 

common home. Similarly to [106], the authors assume that each home supports a real or virtual throwbox [107], i.e., a local device 

that can temporarily store and transmit messages. 

The rationale behind CAOR is to turn the routing between lots of mobile nodes to the routing between a few community homes. 

Therefore, message delivery can be turned into the delivery within and between these communities. Two centrality metrics are 

used to measure the importance of nodes during message delivery, specifically: intra-community centrality and inter-community 

betweenness metric. The former consists in measuring the capability of each community member to meet and deliver messages to 

other members, and the node with the largest intra-community centrality in a community has the best capability to deliver messages. 

The latter consists in measuring the ability of a node set to be taken as a communication bridge between communities. Here, the 

delivery delay is used to evaluate the inter-community betweenness of a set of nodes.  

Let an MSN be composed of |𝑉| nodes 𝑉 = {𝑣|𝑣 ∈ 𝑉} moving among |𝐿| locations 𝐿 = {𝑙|𝑙 ∈ 𝐿} such that (|𝐿| ≪ |𝑉|). For 

two overlapped communities 𝐶𝑙 and 𝐶𝑙´ and an arbitrary relay set 𝑆(𝑆 ⊆ 𝐶𝑙 ∩ 𝐶𝑙′), the inter-community betweenness is given by 

 

𝑐𝐵𝑙,𝑙´(𝑆) =
1

∑ 𝜆𝑣,𝑙𝑣∈𝑆
+
∑ 𝜆𝑣,𝑙 𝜆𝑣,𝑙´⁄𝑣∈𝑆

∑ 𝜆𝑣,𝑙𝑠∈𝑆
 

 

where 𝜆𝑣,𝑙 and 𝜆𝑣,𝑙´ are parameters of the exponential distribution followed by the interval of node 𝑣’s visits to homes 𝑙 and 𝑙´, 

respectively. In other words, the inter-community betweenness is the expected delay that it takes for a relay node to cooperatively 

deliver messages by means of an opportunistic routing scheme from one community to another.  

The optimal betweenness, which corresponds to the relay set with the smallest betweenness for the message delivery from the 

community home 𝑙 to 𝑙’, is given by 

 
𝑐�̃�𝑙,𝑙´ = argmin

𝑆⊆𝐶𝑙∩𝐶𝑙´

𝑐𝐵𝑙,𝑙´(𝑆) 

 

The CAOR algorithm consists of an initialization and routing phases. The initialization phase builds |𝐿| community homes from 

a network with |𝑉| nodes, thus simplifying the network. Then, under the home-aware community model, the routing phase delivers 

messages based on the optimal opportunistic routing rule, that is, the message sender always delivers messages to the encountered 

relay that has a smaller minimum expected delay to the destination than itself. 

5.9 Hoten 

In [33], a forwarding metric, known as Hoten (HOTspot ENtropy), which consists of three social metrics, namely betweenness 

centrality, similarity and personality, was proposed to improve the performance of routing in opportunistic networks. The authors 

focused on the integration of social structure into data forwarding algorithms since existing algorithms, such as SimBet, Bubble 

Rap and People Rank [108], did not fully exploit social structures extracted from real world traces (e.g. human walks [109]). 

Similarly to [110], the authors confirmed the existence of two known phenomena by analyzing GPS traces of human walks, i.e., 

on the one hand, people always move around a set of well-known locations, called public hotspots (instead of purely random 

walks), and, on the other hand, each people shows preference for some particular locations, called personal hotspots. They also 

assumed hotspots were more stable than the social structure of existing algorithms, as for example, public hotspots were formed 

by overlaying personal hotspots together and personal habits were stable over time and across situations [111]. 

Information theory [112] is used to compute the nodes’ social metrics since the entropy represents the degree of disorder or 

randomness in a system, i.e., the bigger the entropy value is, the more disordered the system is. To compute betweenness centrality, 

the authors used the relative entropy12 [113] (also called Kullback-Leibler divergence) between the public hotspots and the personal 

 
11 For instance, in many real MSNs, mobile users with common interests tend to visit some location (real or virtual) that is related to this interest.  
12 Relative entropy can be used to differentiate the divergence between two random variables [33]. 



hotspots. Similarity between two nodes was computed by exploiting the inverse symmetrized entropy of the personal hotspots 

between the nodes. The entropy of personal hotspots of a node is used to estimate its personality. 

Let 𝐾 denote the total number of hotspots in the network and let 𝑛𝑖 denote the number of stay points in hotspot 𝑖. The weight of 

the hotspot 𝑖 is given by 𝜔𝑖 = 𝑛𝑖 ∑ 𝑛𝑖
𝐾
𝑖=1⁄ . In the same way, let 𝑛𝔭𝑖

𝑗
 denote the number of 𝑖th person’s stay points in 𝑗th hotspot. The 

weight of 𝑗th hotspot influenced by the 𝑖th person is given by 𝜔𝔭𝑖
𝑗
= 𝑛𝔭𝑖

𝑗 ∑ 𝑛𝔭𝑖
𝑗𝐾

𝑖=1⁄ .  

Let 𝑋𝑖 be a random variable denoting the distribution of personal hotspots of node 𝑖, and let 𝑌 be a random variable denoting 

the distribution of public hotspots. So, Y = 𝜔1, 𝜔2, … , 𝜔𝑘 and 𝑋𝑖 = 𝜔𝔭𝑖
1 , 𝜔𝔭𝑖

2 , … , 𝜔𝔭𝑖
𝑘 . The betweenness centrality of node 𝑣 is given 

by 

 

𝑐𝐵(𝑣) = [∑𝜔𝔭𝑣
𝑗 log(

𝜔𝔭𝑣
𝑗

𝜔𝑗
)

𝑘

𝑗=1

]

−1

 (11) 

 

If equation (11) is compared with equations (1) and (3), one can conclude that it has low time complexity 𝒪(𝑘) since it (i) is 

only related to the top 𝑘 hotspots and (ii) is independent of the number of nodes in the network. 

The Hoten routing algorithm works as follows: when a node meets with another node, the node delivers to the other node any 

message it carries destined to the other node, and removes the message from its messages’ queue. If a message is not destined to 

the other node, both nodes swap their Hoten forwarding metrics (also known as Hoten utility) for that message. If the node’s Hoten 

utility is smaller than that of the other node for the given message, the node delivers the message to the other node and removes 

the message from its message queue, thus taking a single copy approach. 

 

Table 5 presents a summary and comparison of DTN Routing protocols using betweenness centrality based on the social metrics 

used, the type of graph used, the main idea of the routing protocol, the type of standard betweenness centrality algorithm, 

optimizations, the performance evaluation and DTN scenarios and/or applications. Note that the performance evaluation presented, 

when available, is limited to the surveyed social routing protocols. 

6 Discussion 

In self-organizing networks, such as DTNs, network’s dynamics poses a challenging task to routing protocols and as a result of 

that end-to-end connectivity between any pairs of nodes might never exist. However, by using a store-carry-and-forward approach, 

DTN nodes can carry messages with them while moving until an appropriate node is found. In this approach, messages are relayed 

from one node into another until they reach their destination, or they are discarded. In order to find the most suitable forwarding 

node, static and dynamic network information is used. Among the available network information, static network information has 

been adopted by a considerable number of social routing protocols due to its stability tendency over time, hence leveraging the use 

of social metrics. Still, despite the advantages of using social metrics, single-property social routing protocols may experience 

difficulties finding the destination node. If, for example, centrality-based metrics are being used, the node carrying a message may 

not select, as the next message carrier intermediate nodes having lower centrality than the current carrier. But, depending on the 

network topology, intermediate nodes with low centrality may also have high odds of encountering the destination node. This led 

most of the surveyed DTN routing protocols to be hybrid, although some properties might be non-social. 

In this work, a survey of betweenness centrality concepts, variants and standard algorithms is presented. Additionally, a survey 

of DTN routing protocols that use betweenness centrality, and a discussion on how the metric, its algorithms are used by the 

protocols is also provided. Previous work has shown that centrality metrics, which are used to point out the (relative) importance 

of vertices and edges in networks, are of considerable relevance for DTN routing protocols. Since mathematically these metrics 

are simple to grasp, their actual calculation is by far much more elaborate, due to the network’s size and dynamics. Because of that 

approximate algorithms are more common means of calculation as an alternative to the exact computation. 

The surveyed protocols can be organized in three groups based on the type of algorithms, namely: (i) approximate algorithms, 

(ii) exact algorithms, and (iii) alternative heuristics. 

Ego networks, which fit in the first group, are used to reduce the complexity associated with the computation of betweenness 

centrality using partial network knowledge. Since ego network analysis is performed locally by each individual node, egocentric 

betweenness centrality can be seen as a local technique similar to the one described in [87]. In [28], the authors used an expanded 

ego network, i.e., an ego network where the second degree neighbors of a given node are also considered. In [22], betweenness 

centrality is only updated upon hello message reception from new nodes.  



The two betweenness centrality metrics (egocentric flow betweenness and directed betweenness) proposed in [23] were 

envisaged for highly dynamic social networks, as instead of the number of shortest paths, their calculation takes into account all 

possible paths in a network. The difference between them is that in the latter only paths containing the destination are considered. 

Also, since both metrics consider nodes in the neighborhood of a given node, these algorithms are based on a local technique. A 

Table 5  

A summary and comparison of DTN Routing protocols using betweenness centrality. 

Publication Social metrics Graph Type Main idea 
Type of 

algorithm 
Optimizations Performance evaluation 

Scenarios/ 

Applications 

SimBet [22] 

Egocentric 

betweenness 

and Similarity 

Unweighted 

graph 

The message is 

forwarded to a node 

structurally more 

central. 

Local 

Technique 
NA 

Delivery performance 

close to Epidemic [120], 

but without the 

overhead.  

Disconnected 

Delay-Tolerant 

MANETs 

SimBetAge 

[23] 

Egocentric 

flow 

betweenness 

and Similarity  

Aged Graph 

It is an extension of 

SimBet that takes into 

account the progression 

of the social network 

over time. 

Local 

Technique 
NA 

It outperforms SimBet 

in terms of delivery rate. 
PSNs 

Bubble Rap 

[24] 

Betweenness 

centrality 

(degree  

centrality per 

unit time)  and 

Community  

Weighted 

Temporal 

Graph 

Nodes bubble up 

messages first using 

global centrality and 

then using local 

centrality. 

NA 

Controlled message 

replication. Original 

carrier deletes the 

message once the 

destination 

community is 

identified. 

Delivery ratio close to 

SimBet, but much lower 

resource utilization. 

PSNs 

PQBCF 

[25] 

Betweenness 

centrality 
NA 

A query node sends an 

inquiry message 

throughout the network 

searching for a node 

with the response 

message using 

betweenness centrality 

as the metric for relay’s 

selection. 

NA 

The number of 

inquiry messages is a 

tradeoff between the 

query delay and 

overhead. 

Inquiry success ratio 

and delay better than 

flooding for high 

message generation 

frequency. No social 

routing protocol was 

considered. 

SONs 

GrAnt [18] 
Betweenness 

utility 
NA 

The next node is chosen 

using pheromone 

concentration if 

available, or local 

information captured 

from DTN nodes. 

NA NA 

Achieves higher 

successfully message 

delivery and lower 

overhead than Epidemic 

in community-based 

movement model. No 

social routing protocol 

was considered.  

DTNs 

LocalCom 

[26] 

Community, 

similarity and 

betweenness 

centrality 

Neighboring 

Graph 

The intra-community 

forwarding mechanism 

is first used to forward 

the packet to the current 

communities’ bridges, 

and then, the bridges 

forward the packet to 

other communities they 

are connected to. 

Exact 

Computation 

Community level 

broadcast if the 

source and 

destination are in 

different 

communities. 

Being simple flooding 

the upper bound in 

terms of the delivery 

ratio, LocalCom 

outperforms other 

protocols, (Bubble Rap 

included). But in terms 

of number of forwards 

(overhead), Bubble Rap 

represents the lower 

bound for all the 

scenarios considered.  

DTNs 

Kim et al. 

[28] 

Expanded ego 

betweenness 

centrality 

Weighted 

Contact 

Graph 

Each node first uses 

DNI to choose a proper 

relay node. Then, SNI is 

used to enhance routing 

efficiency. 

Local 

Technique 

Message delivery 

cost is reduced by 

deleting messages 

forwarded to nodes 

with the highest edge 

weight. 

More delivery efficient 

routing in comparison to 

Epidemic. 

DTNs 

COAR [31] 

Betweenness 

centrality and 

community 

Contact 

Graph 

Build home-aware 

communities and use 

optimal opportunistic 

routing rule to route 

messages among these 

communities. 

NA 

Each home only 

forwards its messages 

to the node in its 

optimal relay set. 

It outperforms Bubble 

Rap and SimBet in 

terms of delivery rate 

and average delay. 

MSNs 

Hoten [33] 

Betweenness 

centrality, 

similarity and 

personality 

NA 

Each node only 

forwards a message if 

the Hoten utility for a 

given destination is 

smaller. 

NA Single-copy approach 

It outperforms SimBet 

and PeopleRank in 

terms of delivery rate.  

DTNs 

 



Socially-Aware Multi-Phase Opportunistic (SAMPhO) [32] routing protocol was proposed, in which ego betweenness is used 

according to the conditions of the social environment in the centrality-based forwarding phase. The authors of [34] proposed two 

distributed EBC protocols (EBC broadcast and gossip) for distributed SONs. EBC broadcast and gossip differ from each other in 

the update phase of the adjacency matrix. In the former, the adjacency matrix is kept updated by each node, by doing 

communications with all nodes in its ego network. In the latter, the adjacency matrix is kept updated through specific gossip 

techniques [114]. A bridging centrality metric [115] that is calculated by multiplying betweenness centrality by a bridging 

coefficient [115] is used in [35]. But, instead of using the shortest-path version that requires global network knowledge, ego 

betweenness centrality was used. 

The routing proposed in [26] is the only one using an exact algorithm (hence, belonging to the second group) for the betweenness 

centrality computation on a weighted graph. This routing protocol uses three social metrics, namely similarity, community, and 

betweenness centrality. Similarity, which is based on closeness and irregularity metrics, is used to build the neighboring graph. 

With the graph, a distributed scheme is used to identify communities which are used during the intra-community forwarding. If 

the source and destination nodes are in different communities, flooding is used for intra-community forwarding and betweenness 

centrality for inter-community through bridges. 

Some of the routing protocols proposed use alternative heuristics to compute betweenness centrality. In [25], betweenness 

centrality is computed using the number of successfully delivered messages. No global network knowledge is necessary as when 

nodes meet, they synchronize their reserved ratios of successful message delivery values and update their betweenness centrality 

values to a given destination. In [18] and [30] a metric called betweenness utility was proposed to measure the importance of a 

given node in delivering messages to a certain destination node. Differently from [3], no shortest path verification is required by 

the betweenness utility, nor a list of all previous encounters is exchanged, in contrast to [22]. The hybrid protocol proposed in [30] 

infers the most suitable next node to forward messages by means of opportunistic social information. It also determines the best 

path to forward each message while limiting message byte redundancy. In [24], the authors approximate centrality using the degree 

per unit-time, as the two metrics are highly correlated. In [29], a centrality metric was proposed that uses the expected number of 

packets which can be transmitted from a given node to others within the time constraint, as the centrality metric in [24] only 

considers the frequency of contacts and disregards their duration. Equally, in  [27] a generalized model of the centrality metric was 

proposed that allows the calculation of the expected delivery performance metrics (delivery latency or delivery cost) of a given 

message. In [31], the expected delivery delay is used evaluate the inter-community betweenness of a set of nodes, and in [33] 

relative entropy, from information theory, is used to compute betweenness centrality. 

Previously, six definitions of betweenness centrality were presented. They can be used in static or dynamic networks, and use 

partial or global network information. The most appropriate centrality metrics for DTNs are flow, random-walks, ego and temporal 

betweenness centrality, since they do not require global knowledge of the network (see Table 2). Among them, flow and ego 

betweenness have been implemented in DTN routing protocols, as shown in Table 5. Please note that SimBetAge uses an egocentric 

version of flow betweenness centrality, thus not requiring global network knowledge. Most of the works analyzed compare their 

approach with Epidemic routing, a non-social routing approach, as it can be seen as the upper bound in terms of delivery ratio. 

While designing routing protocols, there is always a tradeoff between delivery ratio and overhead. For example, on the one hand, 

there is LocalCom that outperforms Bubble Rap in terms of delivery ratio by using flooding to increase its probability of successful 

packet delivery, and the schemes considered could only achieve a delivery ratio of 30% to 40% when the expiration TTL was set 

to three days in the Reality scenario (MIT Reality Mining [116]) [26]. CAOR significantly outperforms SimBet  and Bubble Rap 

in another scenario (MSN trace from the WiFi campus of Dartmouth College [117]) in terms of delivery ratio and average delay 

(which was not considered as evaluation metric in [26]). Specifically, when compared with SimBet and Bubble Rap, CAOR 

increases the delivery ratio by about 89.5% and 35.8%, and reduces the delivery delay by about 49.6% and 22.7%, respectively 

[31]. On the other hand, there is Bubble Rap that because of using a more conservative replication strategy presents a lower 

overhead in comparison to LocalCom [26]. But both use betweenness centrality during forwarding as means to reach the 

destination. Still, the message delivery efficiency, used by Kim et al. [28], incorporates both message delivery ratio and overhead, 

and because of that can be seen as a good indicator of a protocol overall performance. 

In addition, another important aspect that was taken into account in SimBetAge was the fact that social relations and the roles 

of individual nodes change over time. Likewise, some relations are stronger than others resulting from, for example, a higher 

contact frequency. 

Despite the efforts of innumerous researchers, the use of social metrics by DTN routing in still under research. An interesting 

point of research is for DTN routing protocols to consider in addition to the shortest paths, the fastest ones in terms of end-to-end 

duration. This concept is similar to the one defined in the temporal betweenness centrality. 

As previously mentioned, betweenness centrality has shown its relevance to problems such as identifying important nodes that 

control flows of information between separate parts of a network and identifying casual nodes to influence other entities behavior. 

It has been also used to analyze social and protein networks, to identify and analyze behavior of key bloggers in dynamic networks 

of blog posts, to identify significant nodes in wireless ad hoc networks, to study online expertise sharing communities, to study the 

importance and activity of nodes in mobile phone call networks and interaction patterns of players on massively multiplayer online 

games and to measure network traffic in communication networks. In relation to DTNs, many social routing protocols that use 



betweenness centrality have been proposed to enhance routing in PSNs, SONs, MSNs, Disconnected Delay-Tolerant MANETs 

and so on. With the exception of GrAnt and cGrAnt [30], the remaining surveyed routing protocols exploit social characteristics 

of mobile nodes in those networks. Additionally, betweenness centrality in DTNs has shown its relevance to problems such as the 

construction of a mobile backbone, the offloading of data in wireless social mobile networks, and information dissemination and 

content placement in opportunistic networks. 
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