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1 Introduction

The tuple space coordination model, originally introduced in the Linda program-
ming language [2], uses a shared memory object called a tuple space to support
coordination that is decoupled both in time – processes do not have to be active
at the same time – and space – processes do not need to know each others’
addresses. The tuple space can be considered to be a kind of storage that stores
tuples, i.e. finite sequences of values. The operations supported are essentially
three: inserting a tuple in the space, reading a tuple from the space and removing
a tuple from the space.

In this paper we propose an efficient Byzantine fault-tolerant implementa-
tion of a tuple space called LBTS (Linearizable Byzantine Tuple Space). LBTS
is implemented by a set of distributed servers and behaves according to its spec-
ification if up to a number of these servers fail in a Byzantine way. Moreover,
LBTS also tolerates accidental and malicious faults in an unbounded number of
the clients that use its services and satisfies two important properties: lineariz-
ability and wait-freedom (with respect to client failures). In LBTS, most opera-
tions on the tuple space are implemented by pure Byzantine quorum protocols
[3,4]. However, since a tuple space is a shared memory object with consensus
number 2, it cannot be implemented using only quorum protocols. In this paper
we identify the tuple space operations that require stronger protocols, and show
how to implement them using a modified Byzantine Paxos consensus protocol
[1]. The philosophy behind our design is that simple operations are implemented
by “cheap” quorum-based protocols, while stronger operations are implemented
by more expensive protocols based on consensus.

2 LBTS Protocols

We assume an eventually synchronous system model composed by an infinite set
of clients and n ≥ 4f + 1 servers. An unbounded number of clients and at most
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f servers can fail in a Byzantine way. The tuple space is implemented by the
servers organized as a f-masking Byzantine quorum system, where each quorum
contains q = dn+2f+1

2 e servers, ensuring an intersection of 2f +1 servers between
every two quorums of the system [3]. An important assumption of our protocols is
that each tuple is unique. This assumption can be enforced in practice appending
a nonce to each tuple.

In this paper we briefly describe the protocols that implement the three
(non-blocking) operations of LBTS: out , for tuple insertion in the space; rdp,
for tuple reading from the space; and inp, for tuple removal from the space. A
fundamental property of the inp operation is that no two clients can remove the
same tuple from the space.
Tuple Insertion (out). The tuple insertion protocol comprises a single access to
a quorum giving the tuple being inserted. Each server that receives the tuple
stores it in its local copy of the space if the tuple is not already stored and was
not removed before. Notice that we are implementing a multi-writer storage but
are not using timestamps. The protocol requires only two communication steps
and has linear message complexity.
Tuple Reading (rdp). This operation is implemented by a protocol that executes
in two phases. At first, the reading client accesses the servers requesting the
tuples that match a given template. A server sends a response to the client
together with the number of tuple removals it previously executed. The client is
registered in a listener set and receives an update message every time a tuple that
matches the given template is inserted in the server or some removal is executed.
The client keeps collecting information from the servers until it receives matching
tuples from a quorum of servers that removed the same number of tuples. If
there is a tuple t that appears in at least f + 1 of these responses, t is the
read tuple. If this tuple appears in less than q servers, the client has to write
it back to the system to ensure that it will be read in subsequent reads and
satisfy linearizability. Notice that the listener communication pattern is used for
a different purpose than in [4]: the reader wants to “take a photo” of the system
between removals in order to define the result of the read operation. This protocol
requires 2 and 4 (when write-back is needed) communication steps and has linear
message complexity. Its correctness relies on the fact that all removals (inp) are
executed in all correct servers in the same total order.
Tuple Destructive Reading (inp). The approach to implement the semantics of
this operation (no two clients can remove the same tuple) is to execute all inp
operations in the same order in all servers. This can be implemented using a total
order multicast protocol based on the Byzantine Paxos algorithm, e.g. BFT [1].
BFT works briefly as follows. When a client wants to multicast a message m, it
sends m to all servers. When the leader server s receives m, it gives it the next
sequence number i and sends it to all the other servers. If server s′ receives 〈m, i〉
from the leader, it has previously received m from the client, and it accepted
no previous message with sequence number i, then s′ accepts m. When this
happens, s′ engages in two rounds of message exchange with the other servers to
do agreement on the association 〈m, i〉. When agreement is reached, m is defined



as the i-th message to be delivered by correct servers. If some servers detect that
the leader is faulty (e.g. because it leaves gaps in the sequence numbers), they
elect another leader. LBTS’ inp protocol is a modified version of BFT. It differs
from BFT in three aspects: (1) when the leader s receives a inp(t) request, it
sends to the other servers not only the sequence number for this message but also
a tuple tt from its local tuple space that matches t; (2) each server s′ accepts to
remove the tuple tt received from the leader if the BFT conditions for acceptance
are met, s′ did not previously accepted the removal of tt, the tuple tt matches
the given template t, and tt is not forged (s′ has tt in its local tuple space or s′

received f + 1 signed messages from different servers ensuring that they have tt
in their local tuple spaces); (3) when a new leader l′ is elected, each server sends
it its protocol state and a signed set with the tuples in its local tuple space that
match t. This information is used by l′ to build a proof for a proposal with a
tuple t (in case it gets that tuple from f + 1 servers) or ⊥ (in case it does not).
This modified version of BFT ensures total order in all inp executions and that
the result of a inp is the same in all correct servers.

3 Discussion

This paper presents the first quorum-based construction for a shared memory
object strictly stronger than a register. This construction is based on a com-
bination of common quorum techniques plus three novel ones: (i.) instead of
using timestamps, it uses a novel technique suited for collection objects, i.e., ob-
jects that store collections of elements, where the elements space is partitioned
between all clients, and every element is unique; (ii.) it uses the listener com-
munication pattern to capture the state of the system between executions of
the read-write operations, and then apply the usual quorum-based reasoning to
define the result for a read operation; and (iii.) it uses a modified Byzantine
Paxos algorithm to do total order multicast and reach agreement about the re-
sult of an operation in a single execution. LBTS is more efficient in terms of
message complexity and communication steps than a similar object would be if
implemented directly on top of a BFT.

As future work, we expect to generalize the techniques used to design LBTS
to define a replication algorithm that can be used to implement any shared
object with consensus number greater than 1.
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