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1. Introduction
MapReduce is a programming model and a runtime envi-

ronment designed by Google for processing large data sets
in its warehouse-scale machines (WSM) with hundreds to
thousands of servers [2, 4]. MapReduce is becoming in-
creasingly popular with the appearance of many WSMs to
provide cloud computing services, and many applications
based on this model. This popularity is also shown by the
appearance of open-source implementations of the model,
like Hadoop that appeared in the Apache project and is now
extensively used by Yahoo and many other companies [7].

At scales of thousands of computers and hundreds of
other devices like network switches, routers and power
units, component failures become frequent, so fault toler-
ance is central in the design of the original MapReduce as
also in Hadoop. The modes of failure tolerated are rea-
sonably benign, like component crashes, and communica-
tion or file corruption. Although the availability of services
based on these mechanisms is high, there is anecdotal evi-
dence that more pernicious faults do happen and that they
can cause service unavailabilities. Examples are the Google
App Engine outage of June 17, 2008 and the Amazon S3
availability event of July 20, 2008.

This combination of the increasing popularity of MapRe-
duce applications with the possibility of fault modes not tol-
erated by current mechanisms suggests the need to use fault
tolerance mechanisms that cover a wider range of faults. A
natural choice is Byzantine fault-tolerant replication, which
is a current hot topic of research but that has already been
shown to be efficient [5, 6]. Furthermore, there are critical
applications that are being implemented using MapReduce,
as financial forecasting or power system dynamics analy-
sis. The results produced by these applications are used to
take critical decisions, so it may be important to increase
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the certainty that they produce correct outputs. Byzantine
fault-tolerant replication would allow MapReduce to pro-
duce correct outputs even if some of the nodes were arbi-
trarily corrupted. The main challenge is doing it at an af-
fordable cost, as BFT replication typically requires more
than triplicating the execution of the computation [5].

This abstract presents ongoing work on the design and
implementation of a Byzantine fault-tolerant (BFT) Hadoop
MapReduce. Hadoop was an obvious choice because it
is both available for modification (it is open source) and
it is being widely used. This work is being developed in
the context of FTH-Grid, a cooperation project between
LASIGE/FCUL and LIP6/CNRS.

2. Hadoop MapReduce
MapReduce is used for processing large data sets by par-

allelizing the processing in a large number of computers.
Data is broken in splits that are processed in different ma-
chines. Processing is done in two phases: map and reduce.
A MapReduce application is implemented in terms of two
functions that correspond to these two phases. A map func-
tion processes input data expressed in terms of key-value
pairs and produces an output also in the form of key-value
pairs. A reduce function picks the outputs of the map func-
tions and produces outputs. Both the initial input and the
final output of a Hadoop MapReduce application are nor-
mally stored in HDFS [7], which is similar to the Google
File System [3]. Dean and Ghemawat show that many ap-
plications can be implemented in a natural way using this
programming model [2].

A MapReduce job is a unit of work that a user wants to
be executed. It consists of the input data, a map function,
a reduce function, and configuration information. Hadoop
breaks the input data in splits. Each split is processed by a
map task, which Hadoop prefers to run in one of the ma-
chines where the split is stored (HDFS replicates the splits
automatically for fault tolerance). Map tasks write their out-



put to local disk, which is not fault-tolerant. However, if the
output is lost, as when the machine crashes, the map task
is simply executed again in another computer. The outputs
of all map tasks are then merged and sorted, an operation
called shuffle. After getting inputs from the shuffle, the re-
duce tasks process them and produce the output of the job.

The four basic components of Hadoop are: the client,
which submits the MapReduce job; the job tracker, which
coordinates the execution of jobs; the task trackers, which
control the execution of map and reduce tasks in the ma-
chines that do the processing; HDFS, which stores files.

3. BFT Hadoop MapReduce
We assume that clients are always correct. The rationale

is that if the client is faulty there is no point in worrying
about the correctness of the job’s output. Currently we also
assume that the job tracker is never faulty, which is the same
assumption done by Hadoop [7]. However, we are consider-
ing removing this restriction in the future by replicating also
the job tracker using BFT replication. In relation to HDFS,
we do not discuss here the problems due to faults that may
happen in some of its components. We assume that there is a
BFT HDFS, which in fact has already been presented else-
where [1]. Task trackers are present in all computers that
process data, so there are hundreds or thousands of them
and we assume that they can be Byzantine, which means
that they can fail in a non-fail-silent way.

The key idea of BFT Hadoop’s task processing algorithm
is to do majority voting for each map and reduce task. Con-
sidering that f is a higher bound on the number of faulty
task trackers, the basic scheme is the following:

1. start 2f +1 replicas of each map task; write the output
of these tasks to HDFS;

2. start 2f + 1 replicas of each reduce task; processing in
a reduce starts when it reads f + 1 copies of the same
data produced by different map replicas for each of
map task; the output of these tasks is written to HDFS.

This basic scheme is straightforward but is also ineffi-
cient because it multiplies the processing done by the sys-
tem. Therefore, we use a set of improvements:
Reduction to f +1 replicas. The job tracker starts only f +1
replicas of the same task and the reduce tasks check if all of
them return the same result. If a timeout elapses or some of
the returned results do not match, more replicas (at most f )
are started, until there are f + 1 matching replies.
Tentative execution. Waiting for f +1 matching map results
before starting a reduce task can put a burden on end-to-
end latency for the job completion. A better way to deal
with the problem is to start executing the reduce tasks just
after receiving the first copies of the required map outputs,
and then, while the reduce is still running, validate the input

used as the map replicas outputs are produced. If at some
point it is detected that the input used is not correct, the
reduce task can be restarted with the correct input.
Digest replies. We need to receive at least f + 1 matching
outputs of maps or reduces to consider them correct. These
outputs tend to be large, so it is useful to fetch the first out-
put from some task replica and get just a digest (hash) from
the others. This way, it is still possible to validate the output
without generating much additional network traffic.
Reducing storage overhead. We can write the output of both
map and reduce tasks to HDFS with a replication factor of
1, instead of 3 (the default value). We are already replicat-
ing the tasks, and their outputs will be written on different
locations, so we do not need to replicate these outputs even
more. In the normal case Byzantine faults do not occur, so
these mechanisms greatly reduce the overhead introduced
by the basic scheme. Specifically, without Byzantine faults,
only f +1 replicas are executed in task trackers, the latency
is similar to the one without replication, the overhead in
terms of communication is small, and the storage overhead
is minimal.

4. Conclusion and Future Work
This abstract briefly presents a solution to make Hadoop

MapReduce tolerant to Byzantine faults. Although most
BFT algorithms in the literature require 3f + 1 replicas of
the processing, our solution needs only f + 1 in the normal
case, in which there are no Byzantine faults.

Currently we are implementing a prototype of the sys-
tem, which we will evaluate it in a realistic system to see if
the actual costs match our expectations.
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