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On the Performance of Byzantine Fault-Tolerant
MapReduce

Pedro Costa, Marcelo Pasin, Alysson Bessani, Miguel Correia

Abstract—MapReduce is often used for critical data processing, e.g., in the context of scientific or financial simulation. However, there
is evidence in the literature that there are arbitrary (or Byzantine) faults that may corrupt the results of MapReduce without being
detected. We present a Byzantine fault-tolerant MapReduce framework that can run in two modes: non-speculative and speculative.
We thoroughly evaluate experimentally the performance of these two versions of the framework, showing that they use around twice
more resources than Hadoop MapReduce, instead of the three times more of alternative solutions. We believe this cost is acceptable
for many critical applications.
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1 INTRODUCTION

The MapReduce framework has been developed by
Google for processing large data sets [2]. It is used exten-
sively in its datacenters to support core functions such
as the processing of indexes for its web search engine.
Google’s implementation is not openly available, but
there is an open source version called Hadoop1 [3] that
is used by many cloud computing companies, including
Amazon, EBay, Facebook, IBM, LinkedIn, RackSpace,
Twitter, and Yahoo!.2 Other versions are appearing, e.g.,
Microsoft’s Daytona [4] and the Amazon Elastic MapRe-
duce service [5].

The term MapReduce denominates both a program-
ming model and the corresponding runtime environ-
ment. Programming in MapReduce involves developing
two functions: a map and a reduce. Each input file
of a job is first processed by the map function, then
the outputs of these tasks are processed by the reduce
function. According to Dean and Ghemawat, this model
can express many real world applications [2].

Google’s MapReduce platform was designed to be
fault-tolerant, because at scales of thousands of comput-
ers and other devices (network switches and routers,
power units), component failures are frequent. Dean
has reported that there were thousands of individual
machine, hard drive and memory failures in the first
year of a cluster at a Google data center [6]. Both the
original MapReduce and Hadoop use essentially two
fault tolerance mechanisms: they monitor the execution
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system, which is the main component of Hadoop.

2. http://wiki.apache.org/hadoop/PoweredBy

of map and reduce tasks and reinitialize them if they
stop; they add checksums to files with data, so that file
corruptions can be detected [3], [7].

Although it is crucial to tolerate crashes of tasks and
data corruptions in disk, other faults that can affect the
correctness of results of MapReduce are known to happen
and will probably happen more often in the future [8].
A recent 2.5-year long study of DRAM errors in a large
number of servers in Google datacenters, concluded that
these errors are more prevalent than previously believed,
with more than 8% DIMMs affected by errors yearly,
even if protected by error correcting codes (ECC) [9].
A Microsoft study of 1 million consumer PCs showed
that CPU and core chipset faults are also frequent [10].
MapReduce is designed to work on large clusters and
process large data, so errors will tend to occur.

The fault tolerance mechanisms of the original MapRe-
duce and Hadoop cannot deal with such arbitrary or
Byzantine faults [11], [12], even if considering only acci-
dental faults, not malicious faults, as we do in this paper.
These faults cannot be detected using file checksums,
so they can silently corrupt the output of any map or
reduce task, corrupting the result of the MapReduce
job. This can be problematic for critical applications,
such as scientific or financial simulation. However, it is
possible to mask the effect of such faults by executing
each task more than once, comparing the outputs of these
executions, and disregarding the non-matching outputs.
Sarmenta proposed a similar approach in the context
of volunteer computing to tolerate malicious volunteers
that returned false results of tasks they were supposed to
execute [13]. However, he considered only bag-of-tasks
applications, which are simpler than MapReduce jobs. A
similar but more generic solution consists in using the
state machine replication approach [14]. This approach is
not directly applicable to the replication of MapReduce
tasks, only to replicate the jobs, which is expensive.
A cheaper and simpler solution, which we call result
comparison scheme, would be to execute each job twice
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and re-execute it if the results do not match, but the cost
would be high in case there is a fault.

This paper presents a Byzantine fault-tolerant (BFT)
MapReduce runtime system that tolerates arbitrary
faults by executing each task more than once and com-
paring the outputs. The challenge was to do this effi-
ciently, without the need of running 3f + 1 replicas to
tolerate at most f faulty, which would be the case with
state machine replication (e.g., [15]–[17]). The system
uses several techniques to reduce the overhead. With
f = 1, it manages to run only two copies of each task
when there are no faults plus one replica of a task per
faulty replica, instead of a replica of the whole job as in
the result comparison scheme.

In this paper we are especially interested in the per-
formance of the BFT MapReduce system. Therefore, we
designed it to work in two modes: non-speculative and
speculative. What differentiates them is the moment when
reduce tasks start to run. In non-speculative mode, f +1
replicas of all map tasks have to complete successfully
for reduce tasks to be launched. In speculative execution,
reduce tasks start after one replica of all map tasks finish.
While the reduce tasks are running, it is necessary to
validate the remaining map replicas’ outputs. If at some
point it is detected that the input used in the reduce
tasks was not correct, the tasks will be restarted with
the correct input.

We modeled analytically the performance of our BFT
MapReduce and evaluated the system extensively in the
Grid’5000 testbed3 using Hadoop’s GridMix benchmark
[18]. The main conclusions are that our solution is indeed
more efficient than the alternatives, using only twice as
many resources as the original Hadoop, and that the
speculative mode considerably accelerates the execution
when there are no faults.

In summary, the main contributions of the paper are:
• an algorithm to execute MapReduce jobs that toler-

ates arbitrary faults and than can run in two modes,
speculative and non-speculative;

• an extensive experimental evaluation of the sys-
tem using Hadoop’s GridMix benchmark in the
Grid’5000 testbed.

The paper is organized as follows. Section 2 intro-
duces the MapReduce framework and Hadoop. Section
3 presents the system model in which the algorithm
presented in Section 4 is based. Section 5 presents the ex-
perimental evaluation. Section 6 discusses related work
and Section 7 concludes the paper.

2 MAPREDUCE AND HADOOP

The MapReduce programming model is inspired in the
map and reduce functions used in functional program-
ming. In this model, the programmer has to write a
pair of functions with these names: map and reduce.
The framework essentially applies these functions in

3. https://www.grid5000.fr
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Fig. 1: Hadoop architecture.

sequence to an input in the form of a set of files often
called splits. Each split is processed by a task that runs
an instance of the map function and saves its result —
a sequence of key-value pairs — in the local filesystem.
These map task outputs are sorted key-wise, partitioned
and fed to tasks that run instances of the reduce function.
This phase of sorting, partitioning and feeding is often
called shuffle. The reduce tasks store their output in an
output file.

Hadoop MapReduce is an implementation of the
MapReduce programming model, freely available
through the Apache license [3]. It is not only a
framework to implement and run MapReduce
algorithms, but also a handy tool for developing
alternative and improved systems for MapReduce, such
as the one presented in this paper.

Hadoop includes the Hadoop Distributed File System
(HDFS), which is inspired in the Google File System
[7]. HDFS is used to store the input splits and the final
output of the job, but not the intermediate results (map
outputs, reduce inputs) which are saved in local disc.
HDFS is a distributed filesystem tailored for Hadoop. It
breaks files in blocks that it replicates in several nodes for
fault tolerance. By default it replicates files three times:
two in the same rack and one in another rack. Although
it does not implement the POSIX call semantics, its
performance is tuned for data throughput and large
files (blocks in the range of 64 MB) using commodity
hardware. HDFS is implemented using a single name
node, the master node that manages the file name space
operations (open, close, rename) and controls access to
files by clients. In addition, there are a number of data
nodes, usually one per node in the cluster, which manage
storage attached to the nodes that they run on, and serve
block operations (create, read, write, remove, replicate).
Data nodes communicate to move blocks around, for
load balancing and to keep the replication level on
failures.

The Hadoop architecture is presented in Figure 1.
MapReduce jobs are submitted to and managed by a
centralized service called job tracker. This service creates
one map task per input split and a predefined number
of reduce tasks. It assigns a task to a node with the
following priorities (from highest to lowest): to a node
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where the input split it has to process is stored; to a node
in the same rack; to a node in the same cluster; to a node
in the same datacenter. This notion of running the task
in the node that has its input is called locality.

Each node available to run Hadoop tasks runs a soft-
ware service called task tracker that launches the tasks.
Hadoop has mechanisms to tolerate the crash of task
trackers and the tasks they execute. A task tracker sends
heartbeat messages to the job tracker periodically. These
messages indicate that the task tracker has not stopped
and, besides that, they carry updated information about
the task tracker to the job tracker, as the percentage
of the work assigned to the tracker already executed,
list of finished tasks, and any error in a task execution.
Heartbeat messages (or lack of them) allow the job
tracker to figure out that a task tracker or a task stalled
or stopped. Using different nodes, the job tracker runs
speculative tasks for those lagging behind and restarts
the failed ones. Nevertheless, this model only supports
crashes, not arbitrary faults. In this paper we develop
and describe the implementation of a more elaborated
algorithm that provides Byzantine fault tolerance.

3 SYSTEM MODEL

The system is composed by a set of distributed processes:
the clients that request the execution of jobs composed by
map and reduce functions, the job tracker that manages
the execution of a job, and a set of task trackers that
launch map and reduce tasks. We do not consider the
components of HDFS in the model, as the algorithm is
to mostly orthogonal to it (and there is a Byzantine fault-
tolerant HDFS in the literature [16]).

We say that a process is correct if it follows the
algorithm, otherwise we say it is faulty. We also use
these two words to denominate a task (map or reduce)
that, respectively, returns the result that corresponds to
an execution in a correct task tracker (correct) or not
(faulty). We assume that clients are always correct, be-
cause they are not part of the MapReduce execution and
if clients were faulty the job output would be necessarily
incorrect. We also assume that the job tracker is always
correct, which is the same assumption that Hadoop does
[3]. It would be possible to remove this assumption by
replicating the job tracker, but it would complicate the
design considerably and this component does much less
work than the task trackers, so we leave this as future
work. The task trackers can be correct or faulty, so they
can arbitrarily deviate from the algorithm and return
corrupted results of the tasks they execute.

Our algorithm does not rely on assumptions about
bounds on processing and communication delays. On
the contrary, the original Hadoop mechanisms do make
assumptions about such times for termination (e.g., they
assume that heartbeat messages from correct task track-
ers do not take indefinitely to be received). We assume
that the processes are connected by reliable channels, so
no messages are lost, duplicated or corrupted. In practice

this is provided by TCP connections. We assume the
existence of a hash function to produce message digests.
This function is collision-resistant, i.e., it is infeasible to
find two inputs that produce the same output (e.g., SHA-
1 or SHA-3, recently chosen by the NIST).

Our algorithm is configured with a parameter f . In
distributed fault-tolerant algorithms f is usually the
maximum number of faulty replicas [15]–[17], [19]–[21],
but in our case the meaning of f is different: f is the
maximum number of faulty replicas that can return the same
output given the same input. Consider a function F , map or
reduce, and that the algorithm executes several replicas
of the function with the same input I , so all correct repli-
cas return the same output O. Consider also the worst
case in which there are f faulty replicas that execute F
and F1(I) = F2(I) = ... = Ff (I) = O′ 6= O. The rationale
is that f is the maximum number of replicas that can
be faulty and still allow the system to find out that the
correct result is O. If the system selects the correct output
by picking the output returned by f + 1 task replicas, it
will never select O′ because it is returned by at most f
replicas. Similarly to the usual parameter f , our f has
a probabilistic meaning (hard to quantify precisely): it
means that the probability of more than f faulty replicas
of the same task returning the same output is negligible.

4 BFT MAPREDUCE ALGORITHM

4.1 Overview
A simplistic solution to make MapReduce Byzantine
fault-tolerant considering f the maximum number of
faulty replicas is the following. First, the job tracker
starts 2f + 1 replicas of each map task in different nodes
and task trackers. Second, the job tracker starts also
2f + 1 replicas of each reduce task. Each reduce task
fetches the output from all map replicas, picks the most
voted results, processes them and stores the output in
HDFS. In the end, either the client or a special task
must vote the outputs to pick the correct result. An
even simpler solution would be to run a consensus,
or Byzantine agreement between each set of map task
replicas and reduce task replicas. This would involve
even more replicas (typically 3f + 1 [22]) and more
messages exchanged.

The first simplistic solution is very expensive because
it replicates everything 2f+1 times: task execution, map
task inputs reading, communication of map task outputs,
and storage of reduce task outputs. Starting from this
solution, we propose a set of techniques to avoid these
costs:
Deferred execution. Crash faults, which happen more
often, are detected using Hadoop standard heartbeats,
while arbitrary faults are dealt using replication and
voting. Given the expected low probability of arbitrary
faults [9], [10], there is no point in always executing
2f + 1 replicas to obtain the same result almost every
time. Therefore, our job tracker starts only f + 1 replicas
of map and reduce tasks. After map tasks finish, the
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Fig. 2: Flowcharts of (a) non-speculative and (b) specu-
lative executions.

reduce tasks check if all f + 1 replicas of every map
tasks produced the same output. If some outputs do not
match, more replicas are started until there are f + 1
matching replies. At the end of execution, the reduce
output is also checked to see if it is necessary to launch
more reduce replicas. This algorithm is represented as a
flowchart in Figure 2(a).
Digest outputs. f+1 map outputs and f+1 reduce outputs
must be matched to be considered correct. These outputs
tend to be large, so it is useful to fetch only one output
from some task replica and compare its digest with
those of the remaining replicas. With this solution, we
avoid transferring the same data several times causing
additional network traffic, and we just transfer data from
one replica and the digests from the rest.
Tight storage replication. We write the output of all reduce
tasks to HDFS with a replication factor of 1, instead of 3
(the default value). We are already replicating the tasks,
and their outputs will be written on different locations,
so we do not need to replicate these outputs even more.
A job starts reading replicated data from HDFS, but from
this point forward, the data that is saved in the HDFS
by each (replicated) task is no longer replicated.
Speculative execution. Waiting for f + 1 matching map

results before starting a reduce task can worsen the time
for the job completion. A way to deal with the problem
is for the job tracker to start executing the reduce tasks
immediately after receiving the first copy of every map
output (see Figure 2(b)). Whenever f + 1 replicas of a
map task finish, if the results do not match, another
replica is executed. If f + 1 replicas of a map finish with
matching results but these results do not match the result
of the first copy of the task, then the reduces are stopped
and launched again with the correct inputs. For a job to
complete, f + 1 matching map and reduce results must
be found for all tasks, and the reduces must have been
executed with matching map outputs.

The difference between the non-speculative and spec-
ulative modes of operation (Figure 2) is that the latter
uses these four techniques, whereas the former excludes
speculative execution.

4.2 The Algorithm in detail

The algorithm is based on the operation of Hadoop
MapReduce and follows its terminology. Recall that a
client submits a job to the job tracker that distributes
the work to the several task trackers. Therefore, the
algorithm is divided in the part executed by the job
tracker (Algorithms 1 and 2) and the part executed by the
task tracker (Algorithm 3). The work itself is performed
by the map and reduce tasks, whose code is part of the
job specification.

The presentation of the algorithm follows a number of
conventions. Function names are capitalized and vari-
able names are in lowercase letters (separated by ‘ ’
if composed of multiple words). Comments are inside
{...}. The operator |...| returns the number of elements
in a set. There are a number of configuration constants
and variables. The algorithm is a set of event handlers
executed in different conditions.

The idea of the algorithm consists essentially in the job
tracker inserting tasks in two queues – q maps, q reduces
– and the task trackers executing these tasks. Several
auxiliary functions are used to manipulate these queues:
• Enqueue(queue, tuple) – inserts the tuple describing a

task in queue;
• Dequeue(queue, tuple) – removes a task described by

tuple from queue;
• FinishedReplicas(queue, task id) – searches in queue for

replicas of a task identified by task id and returns
the number of these replicas that have finished;

• MatchingReplicas(queue, task id) – searches in queue
for finished replicas of a task identified by task id
and returns the maximum number of these replicas
that have matching outputs;

• MaxReplicaId(queue, task id) – searches in queue for
replicas of a task identified by task id and returns
the highest replica id among them;

• ReplicaOutput(queue, task id, replica id) – searches in
queue for a finished task replica identified by task id
and replica id and returns its output;
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Algorithm 1: Job tracker — common part and non-speculative mode.
1 constants:
2 mode {non-speculative or speculative}
3 f {maximum number of faulty replicas that return the same output}
4 nr_reduces {number of reduce tasks used}
5 splits {split locations}
6

7 variables:
8 q_maps {queue of map tasks pending to be executed or being executed; initially empty}
9 q_reduces {queue of reduce tasks pending to be executed or being executed; initially empty}

10 reduce_inputs {identifiers of map replicas that gave inputs to the reduces; initially empty}
11 reduces_started {indicates if reduces already started; initialized with false (speculative mode)}
12

13 {start execution}
14 upon job execution being requested do
15 for replica_id := 1 to f + 1 (
16 for map_id := 1 to |splits|
17 Enqueue(q_maps, (map_id, replica_id, splits[i], not_running));
18 )
19

20 {restart a stopped task}
21 upon task (queue, task_id, replica_id) stopping do
22 task := Dequeue(queue, (task_id, replica_id));
23 task.running := not_running;
24 Enqueue(queue, task);
25

26 {non-speculative mode: start extra map task replica, start reduce tasks}
27 upon map task (map_id, replica_id, splits) finishing and mode = non-speculative do
28 if (FinishedReplicas(q_maps, map_id)≥ f + 1 and MatchingReplicas(q_maps, map_id)< f + 1) (
29 new_replica_id := maximum replica_id+1;
30 Enqueue(q_maps, (map_id, new_replica_id, splits, not_running));
31 ) else (
32 if (∀map_id : MatchingReplicas(q_maps, map_id)≥ f + 1) (
33 reduce_inputs := {(map_id, urls) tuples with the f+1 matching output urls for each map_id}
34 for replica_id := 1 to f + 1 (
35 for reduce_id := 1 to nr_reduces
36 Enqueue(q_reduces, (reduce_id, replica_id, reduce_inputs, not_running));
37 )
38 for all map_id, replica_id
39 Dequeue(q_maps, (map_id, replica_id));
40 )
41 )
42

43 {non-speculative mode: start extra reduce task replica, finish job}
44 upon reduce task (reduce_id, replica_id, reduce_inputs) finishing and mode = non-speculative do
45 if (FinishedReplicas(q_reduces, reduce_id)≥ f + 1 and MatchingReplicas(q_reduces, reduce_id)< f + 1) (
46 new_replica_id := maximum replica_id+1;
47 Enqueue(q_reduces, (reduce_id, new_replica_id, reduce_inputs, not_running));
48 ) else (
49 if (∀reduce_id : MatchingReplicas(q_reduces, reduce_id)≥ f + 1) (
50 for all reduce_id, replica_id
51 Dequeue(q_reduces, (reduce_id, replica_id));
52 )
53 )
54

55 {send task to task tracker}
56 upon receiving a TASK_REQUEST (task_type, splits_stored_node) message from task tracker do
57 queue = undefined;
58 if (task_type = map and ∃(map_id, replica_id, split, not_running) ∈ q_maps) (
59 queue := q_maps;
60 funct := map;
61 replica_id_ := replica_id;
62 inputs := split;
63 if (∃(map_id, replica_id, split, not_running) ∈ q_maps : split ∈ splits_stored_node) (
64 task_id := map_id;
65 ) else (
66 task_id := map_id : (map_id, replica_id, split, not_running) ∈ q_maps;
67 )
68 ) else if (task_type = reduce and ∃(reduce_id, replica_id, split, not_running) ∈ q_reduces) (
69 queue := q_reduces;
70 funct := reduce;
71 task_id := reduce_id;
72 replica_id_ := replica_id;
73 inputs := reduce_inputs;
74 )
75 if (queue = q_maps or queue = q_reduces) (
76 task := Dequeue(queue, (task_id, replica_id_));
77 task.running := running;
78 Enqueue(queue, task);
79 Send EXECUTE_TASK (funct, inputs, task_id, replica_id_) message to the task tracker;
80 ) else (
81 Send NO_TASK_AVAILABLE message to the task tracker;
82 )
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Algorithm 2: Job tracker — speculative mode.
1 {speculative mode: start extra map task replica, start/restart reduce tasks}
2 upon map task (map_id, replica_id, splits) finishing and mode = speculative do
3 if (FinishedReplicas(q_maps, map_id)≥ f + 1) (
4 if (MatchingReplicas(q_maps, map_id)< f + 1) (
5 new_replica_id := MaxReplicaId(q_maps, map_id)+1;
6 Enqueue(q_maps, (map_id, new_replica_id, splits, not_running));
7 ) else (
8 if (∃(map_id, replica_id_, url_) ∈ reduce_inputs :
9 ReplicaOutput(q_maps, map_id, replica_id_) 6= MatchingReplicasOutput(q_maps, map_id)) (

10 for all reduce_id, replica_id
11 Dequeue(q_reduces, (reduce_id, replica_id));
12 reduce_inputs := {(map_id, replica_id, url) tuples with the output url of replica_id of a map_id
13 matching f outputs from other different replicas}
14 for replica_id := 1 to f + 1 (
15 for reduce_id := 1 to nr_reduces
16 Enqueue(q_reduces, (reduce_id, replica_id, reduce_inputs, not_running));
17 )
18 )
19 for all map_id, replica_id
20 Dequeue(q_maps, (map_id, replica_id));
21 )
22 ) else (
23 if (not reduces_started and ∀map_id : FinishedReplicas(q_maps, map_id)≥ 1) (
24 reduces_started := true;
25 reduce_inputs := {(map_id, replica_id, url) tuples with the output url of replica_id of map_id}
26 for replica_id := 1 to f + 1 (
27 for reduce_id := 1 to nr_reduces
28 Enqueue(q_reduces, (reduce_id, replica_id, reduce_inputs, not_running));
29 )
30 )
31 )
32

33 {speculative mode: start extra reduce task replica}
34 upon reduce task (reduce_id, replica_id, reduce_inputs) finishing and mode = speculative do
35 if (FinishedReplicas(q_reduces, reduce_id)≥ f + 1 and MatchingReplicas(q_reduces, reduce_id)< f + 1) (
36 new_replica_id := MaxReplicaId(q_reduces, reduce_id)+1;
37 Enqueue(q_reduces, (reduce_id, new_replica_id, reduce_inputs, not_running));
38 )
39

40 {speculative mode: finish job}
41 upon ∀map_id : MatchingReplicas(q_maps, map_id)≥ f + 1 and
42 ∀reduce_id : MatchingReplicas(q_reduces, reduce_id)≥ f + 1 and
43 ∀(map_id, replica_id, url) ∈ reduce_inputs :
44 ReplicaOutput(q_maps, map_id, replica_id) = MatchingReplicasOutput(q_maps, map_id) and
45 mode = speculative do
46 for all reduce_id, replica_id
47 Dequeue(q_reduces, (reduce_id, replica_id));

Algorithm 3: Task tracker.
1 constant:
2 task_type {type of task this task tracker executes, map or reduce}
3

4 variables:
5 splits_stored_node {splits currently stored in this node}
6 executing_task {indicates if a task is being executed; initialized with false (not executing)}
7

8 {every T units of time request a task for execution or send heartbeat}
9 upon timer expiring do

10 if (executing_task = false) (
11 Send TASK_REQUEST (task_type, splits_stored_node) message to the job tracker;
12 ) else (
13 Send HEARTBEAT message to the job tracker;
14 )
15 launch timer;
16

17 {execute a task}
18 upon receiving EXECUTE_TASK (funct, inputs, task_id, replica_id) message from the job tracker do
19 if (executing_task = false) (
20 executing_task := true;
21 execute funct(inputs); {funct may be a map or a reduce}
22 Send TASK_FINISHED (task_id, replica_id) message to the job tracker;
23 executing_task := false;
24 ) else (
25 Send ANOTHER_TASK_EXECUTING message to the job tracker;
26 )
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• MatchingReplicasOutput(queue, task id) – searches in
queue for finished replicas of a task identified by
task id and returns the output of the maximum
number of replicas that have matching outputs;

Let us first present the algorithm executed by the job
tracker in non-speculative mode (Algorithm 1), then the
changes to this algorithm when executed in speculative
mode (Algorithm 2), and finally the algorithm executed
by every task tracker (Algorithm 3).
Non-speculative job tracker. When the execution of a job is
requested, the job tracker inserts f + 1 replicas of every
map task in the q maps queue, which is the minimum
number of replicas executed of every task (lines 13-18).
Each map task is in charge of processing one input split
(line 16). If any task (map or reduce) stops or stalls, it is
dequeued and enqueued again to be re-executed (lines
21-24).

In the non-speculative mode, two things may happen
when a map task finishes (lines 26-41). If f + 1 or more
replicas of a task have finished but there are no f + 1
matching outputs, then a Byzantine fault happened and
another replica is enqueued for execution (lines 28-30).
If there are already f + 1 matching outputs for every
map task, then the map phase ends and the reduces are
enqueued to be executed (lines 32-40). To be consistent
with Hadoop’s nomenclature, we use urls to indicate the
locations of the map outputs passed to the reduces.

When a reduce task finishes in non-speculative mode,
two things can happen (lines 43-53). Similarly to the map
tasks, if f + 1 or more replicas of a task have finished
but there are no f + 1 matching outputs, then there was
a Byzantine fault and another replica is enqueued (lines
45-47). Otherwise, if there are already f + 1 matching
outputs for every reduce task, then the job execution
finishes (lines 49-52).

The last event handler processes a request for a task
coming from a task tracker (lines 55-82). If a map task
is being requested, the job tracker gives priority to map
tasks for which the input split exists in the node that
requested the task. Otherwise, it assigns to the task
tracker the next non-running map task in the queue. If
a reduce is requested, the job tracker returns the next
reduce task in the queue.
Speculative job tracker. Algorithm 2 contains the functions
that change in the job tracker when the algorithm is
executed in speculative mode. Similarly to what happens
in non-speculative mode, if f + 1 or more replicas of a
map task have finished but there are no f + 1 matching
outputs, another replica is enqueued (lines 4-6). On the
contrary to the other mode, only one replica of each map
task must have finished for the reduces to be enqueued
for execution (lines 23-30). Finally, in speculative mode
there is an extra case: if there are f+1 matching outputs
of a task but they differ from the one that was used to
start executing the reduces, all the reduces have to be
aborted and restarted (lines 8-21).

When a reduce task finishes in speculative mode, if
there are f + 1 outputs for that task but not f + 1 with

matching outputs, a new replica is enqueued (lines 33-
38).

The event handler in lines 40-47 checks if the job can
finish in speculative mode. It tests if there are enough
matching map and reduce outputs (lines 41-42) and if
the reduces were executed with correct input (line 43-
44). If that is the case, the job finishes. This handler
is exceptional in the sense that it is activated by the
termination of both map and reduce tasks; its code might
be part of the two previous handlers but we made it
separate for clarity.
Task tracker. The presentation of the task tracker algorithm
(Algorithm 3) was simplified by considering that a task
tracker does not execute tasks in parallel and that it only
executes maps or reduces (defined by the constant in line
2). In practice what happens are essentially N parallel
executions of the algorithm, some for map tasks, others
for reduce tasks (the number of each is configurable, see
Section 5). Periodically every task tracker either requests
a task to the job tracker when it is not executing one, or
sends a heartbeat message reporting the status of the
execution (lines 9-15). If it receives a task from the job
tracker, it executes the task and signals termination to the
job tracker (lines 18-26). The algorithm does not show the
details about inputs/outputs but the idea is: the input
(split) for a map task is read from HDFS; the inputs for
a reduce task are obtained from the nodes that executed
the map tasks; the outputs of a reduce task are stored in
HDFS.
Discussion. Algorithms 1-3 show the implementation of
only two of the four mechanisms used to improve the
efficiency of the basic algorithm: deferred execution and
speculative execution. The digest outputs mechanism is
hidden in functions MatchingReplicas and MatchingRepli-
casOutput. The tight storage replication is implemented
by modifying HDFS.

In the normal case, Byzantine faults do not occur, so
the mechanisms used in the algorithm greatly reduce the
overhead introduced by the basic scheme. Specifically,
without Byzantine faults, only f+1 replicas of each task
are executed and the storage overhead is minimal. Notice
also that our algorithm tolerates any number of arbitrary
faults during the execution of a job, as long as there are
no more than f faulty replicas of a task that return the
same (incorrect) output.

4.3 The Prototype

The prototype of the BFT MapReduce runtime was
implemented by modifying the original Hadoop 0.20.0
source code. Hadoop is written in Java so we describe
the modifications made in key classes. HDFS was almost
not modified for two reasons. First, it is used only
before the execution of map tasks and after the execu-
tion of reduces, therefore it barely interferes with the
performance of MapReduce. Second, there is a Byzantine
fault-tolerant HDFS in the literature [16] so we did not
investigate this issue. The single modification was the
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setting of the replication factor to 1 to implement the
tight storage replication mechanism (Section 4).

Most modifications were made in the JobTracker
class in order to implement Algorithms 1-2. The con-
stants of the algorithm (lines 1-5) are read from an XML
file. The format of the identifier of tasks (maps and
reduces) was modified to include a replica number, so
that they can be differentiated. A map task takes as input
the path to a split of the input file. The job tracker gives
each map replica a path to a different replica of the split,
stored in a different data node, whenever possible (i.e., as
much as there are enough replicas of the split available).
It tries to instantiate map tasks in the same server where
the data node of the split is, so this usage of different
split replicas forces the replicas of a map to be executed
in different task trackers (TaskTracker class), which
improves fault tolerance.

The JobTracker class stores information of a run-
ning job in an object of the JobInProgress class. The
TaskTracker class sends heartbeat messages to job
tracker periodically. We modified this process to include
a digest (SHA-1) of the result in the heartbeat that
signals the conclusion of a task (map or reduce). The
digest is saved in a JobInProgress instance, more
precisely in an object of the VotingSystem class. The
Heartbeat class, used to represent a heartbeat message,
was modified to include the digest and task replica
identifier.

5 EVALUATION

We did an extensive evaluation of our BFT MapReduce.
Our purpose was mainly to answer the following ques-
tions: Is it possible to run BFT MapReduce without an
excessive cost in comparison to the original Hadoop? Is
there a considerable benefit in comparison to the use of
common fault tolerance techniques such as state machine
replication? Is there a considerable benefit in using the
speculative mode in scenarios with and without faults?
Is it possible to still achieve a high degree of locality in
comparison to the original Hadoop?

Our experimental evaluation was based on a bench-
mark provided by Hadoop called GridMix [18]. More
specifically, we used GridMix2, which is composed by
the following jobs: monsterquery, webdatascan, web-
datasort, combiner, streamingsort and javasort. The ex-
periments were executed in the Grid’5000 environment,
a French geographically distributed infrastructure used
to study large-scale parallel and distributed systems,
during several months.

5.1 Analytical Evaluation
This section models analytically the performance of the
BFT MapReduce, the original MapReduce, and hypothet-
ical BFT MapReduce systems based on state machine
replication and the result comparison scheme. This per-
formance is analyzed in terms of a single metric: the total
execution time or makespan. Our objective is twofold: to do

a comparison with systems that do not exist, so cannot be
evaluated experimentally; to provide an expression that
helps understanding the experimental results presented
in the following sections.

The execution of a job is composed by serial and paral-
lel phases. The job initialization, the shuffle (sending the
map task outputs to the reduce tasks), and the finishing
phase belong to the serial phase. We model these times
as a single value Ts. The two parallel phases are the
execution of map and reduce tasks. The time to execute
the map (resp. reduce) tasks depends on maximum the
number of map (resp. reduce) tasks that can be executed
in parallel.

The total execution time of a job (makespan) without
faults is obtained using Equation 1 for all considered
versions of MapReduce. The versions are differentiated
by the value of α, that corresponds to the number of
replicas of map and reduce tasks executed (without
faults). For the original MapReduce α = 1 and for the
BFT MapReduce α = f + 1. In the two hypothetical
schemes, the client issues the job to a set of replicas that
process the job in parallel and return the results, which
are compared by the client. Byzantine fault-tolerant state
machine replication typically requires 3f+1 replicas, but
Yin et al. [23] have shown that only 2f+1 have to execute
the service code, therefore, for this version α = 2f + 1.
The result comparison scheme consists in executing the
whole job f + 1 times; if all executions return the same
result, that is the correct result, otherwise the job has to
be re-executed one or more times until there are f + 1
matching results. Therefore, for this scheme α = f + 1.

Tj = Ts+α ·
⌈

Nm

Pm ·N

⌉
·Tm+α ·

⌈
Nr

Pr ·N

⌉
·Tr−Ω (1)

In relation to the rest of the parameters, Nm and
Nr are the number of map and reduce tasks executed.
Pm and Pr are the number of tasks that can be exe-
cuted in parallel per task tracker (in Hadoop by default
Pm = Pr = 2) and N is the number of nodes (or task
trackers). Tj is the time of a job execution, Tm is the
average time that it takes to execute a map task, and
Tr is the same for a reduce task. These values change
from job to job and have to be obtained experimentally.
Ω expresses an overlap that may exist in the execution
of map and reduce tasks. For the original Hadoop we
observed that Ω is essentially 0 because reduce tasks
start by default after 95% of map tasks finish. So we use
this value for the state machine replication and result
comparison versions. For the BFT MapReduce we have
two cases. In non-speculative mode, again Ω = 0. In
speculative mode, the reduces start processing data after
the first replica of every map is executed, so there is an
overlap and Ω > 0.

To assist in the comparison among MapReduce sys-
tems, we introduce a parameter called the non-replicated
task processing time, Tn. This parameter measures the
time to process map and reduce tasks without replica-
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tion, i.e., in the original Hadoop. It is obtained from
Equation 1 by setting Ts = 0 (it considers only task
processing time), α = 1 (no replication), and Ω = 0 (no
overlap). The Tn parameter is defined in Equation 2.

Tn =

⌈
Nm

Pm ·N

⌉
· Tm+

⌈
Nr

Pr ·N

⌉
· Tr (2)

Table 1 compares the MapReduce systems when there
are no faults: the original Hadoop, our BFT MapReduce
in non-speculative (BFT-MR-ns) and speculative (BFT-
MR-s) modes, the hypothetical BFT MapReduce based
on state machine replication (BFT-MR-smr) and the BFT
MapReduce based on the result comparison scheme
(BFT-MR-cmp). The comparison is made in terms of
Tj/Tn and assumes Ts � Tn, Nm � Pm · N and
Nr � Pr · N (consider the contrary: if there are much
more resources than tasks, executing some extra tasks
does not impact the total execution time). It is shown
in terms of a formula and by instantiating it with the
first values of f . This table shows the benefit of our BFT
MapReduce opposed to the state machine replication
version and to the comparison scheme version.

System Tj/Tn f = 1 f = 2 f = 3
Hadoop 1 1 1 1
BFT-MR-ns f + 1 2 3 4
BFT-MR-s f + 1− Ω

Tn
2− Ω

Tn
3− Ω

Tn
4− Ω

Tn
BFT-MR-smr 2f + 1 3 5 7
BFT-MR-cmp f + 1 2 3 4

TABLE 1: Analytical comparison between MapReduce
systems without faults.

Table 2 shows the impact of a map task affected by a
Byzantine fault in the makespan of a job. The impact
would be similar with a faulty reduce task, but Pm
would be substituted by Pr. The table shows that the
impact in our BFT MapReduce is quite small, whereas
for the result comparison scheme the makespan doubles.

System Extra time if there is a faulty map task
Hadoop cannot tolerate
BFT-MR-ns Tm/(Pm ·N) on average
BFT-MR-s Tm/(Pm ·N) on average
BFT-MR-smr 0
BFT-MR-cmp Tj

TABLE 2: Effect of a single faulty map task in the
makespan for all MapReduce systems.

Clearly the answer to one of the questions — if there
was a clear benefit in using our scheme instead of state
machine replication or the result comparison scheme —
is positive.

5.2 Experimental Evaluation
5.2.1 Makespan vs. Number of Input Splits
Figure 3 shows the makespan of the six GridMix2
benchmark applications for the original Hadoop and our
BFT MapReduce in the non-speculative and speculative
modes. We consider only the case of f = 1. We recall

that the meaning of f in our system is not the usual one
and that the probability of the corresponding assumption
being violated is even lower than in other BFT replica-
tion algorithms. The values we present are averages of
around 100 executions of each experiment. The average
does not include outliers, which represent less than 1% of
the executions. The standard deviation is low, showing
that most of the results are close to the average, and for
that reason we do not include this information in any of
the following graphs. Each job processed from 50 to 1000
input splits of 64 MB stored in HDFS data nodes. We use
the default data-block size of 64 MB to minimize the cost
of seeks [3]. To allow results to be comparable, we used
a standard configuration for all tests. The times reported
were obtained from the logs produced by GridMix. We
choose to run the experiments with the original Hadoop
in 100 cores and those with the BFT MapReduce in 200
cores, as our framework uses twice as many resources
as the first with f = 1 and no faults, which is the case
we are considering. This allows a fair apples-to-apples
comparison. We presented results for setups with the
same number of cores in the preliminary version of this
work [1].

Overall, the original Hadoop and the BFT MapReduce
in non-speculative mode had similar makespan in all ex-
periments (see Figure 3). This may seem counterintuitive
but recall that we provided the BFT MapReduce with
twice the number of cores of Hadoop. This similarity of
makespans shows something interesting: the additional
communication contention in the network and in the
nodes (caused by the comparisons of all map replica’s
outputs) did not impact significantly the performance of
the BFT MapReduce (twice as much computation was
done using twice as many resources in the same time).

The objective of the speculative mode is to improve
the makespan by starting reduces earlier, when there
are results from at least one replica of each map. The
speculative mode improved the makespan in three of
the benchmarks — webdatascan, combiner, and mon-
sterquery. We can observe that the improvement gets
larger as there are more splits to process, reaching an
improvement of 30-40%, which is to be expected as
more splits mean more map tasks to process them.
Interestingly, the speculative mode had almost no impact
in the other three benchmarks with up to 1000 splits.
An analysis of the logs of these experiments has shown
that the reduce tasks were launched when around three
quarters of the maps finished, instead of one half as
would be expectable with f + 1 = 2. This late start of
the reduce tasks led to a very small benefit in using the
speculative execution.

In summary, there is a cost associated to running BFT
MapReduce in comparison to the original Hadoop, as
approximately twice as many resources are used (α = 2
in Equation 1). Given twice the number of cores, the
time to run BFT MapReduce is essentially the same as
Hadoop’s, somewhat better if the speculative mode is
used. With the same number of cores the makespan is
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(a) Webdatascan.
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(b) Webdatasort.
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(c) Combiner.
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(d) Javasort.
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(e) Streaming.
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(f) Monsterquery.

Fig. 3: Makespan of total execution time of the six GridMix2 benchmark applications varying the number of splits.

approximately the double [1].

5.2.2 Locality

The Hadoop MapReduce default scheduler tries to run
each map task in the location where its input split is
stored. This objective is called locality and a map task
for which this is achieved is called a data-local task.
When this is not possible, the task will be preferably
processed in a node in the rack where the input split
resides — rack-local tasks. If not even that is possible, the
task is executed in a node in a different rack. Locality is
an important property in MapReduce as moving large
amounts of data (splits of 64 MB in our experiments) for
a different node takes time and occupies resources, with
a negative impact in the makespan and the load in the
systems where MapReduce is executed.

Figure 4 shows the percentage of data local tasks in
the webdatasort, javasort, and streaming benchmarks in
the same experiments that were reported in the previous
section. The results of the others are similar so we do not
show them in the interest of space. The first conclusion is
that the locality of the BFT MapReduce in both modes is
around 90% and similar to the one achieved in the origi-
nal Hadoop with half of the nodes. A second conclusion
is that although the absolute number of non-data-local
tasks increases considerably, the percentage of non-data-
local tasks stays reasonably stable when the number of
tasks increases.

5.2.3 Data Volume
This section compares the quantity of data processed in
the original and in the BFT Hadoop. Figure 5 shows
the total size of the data produced by the maps and
reduces in each experiment, i.e., the sum of the size of
the outputs of all maps and the sum of the size of the
outputs of all reduces. Recall that each input split has 64
MB. For the webdatasort application, the output of each
map task had approximately the same size of its input
(64 MB), whereas for streaming the output of a map had
an average of 17 MB. The main conclusion is that the
total output data of the BFT MapReduce with f = 1 and
two replicas executed without faults is twice the value
for Hadoop, which is the expected result.

5.2.4 Makespan with Faults
The experiments of the previous sections were executed
in a scenario without faults. We created a simple fault
injector that tampers outputs and digests of outputs of
map and reduce tasks. The component injects random
bits leading the job tracker to detect differences in the
outputs of replicas, forcing the system to run additional
tasks. The percentage of tasks affected by faults is con-
figurable.

We set the percentage of faults to 10%. Figure 6(a)
shows the makespan of webdatasort with different num-
bers of splits. The graph shows two lines with a slope
similar to those in Figure 3. To better compare the
makespan with and without faults Figure 6(b) shows
the ratio between them. We can see that the makespan
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Fig. 4: Percentage of data-local tasks in three of the GridMix2 benchmarks varying the number of splits.

 0

 50

 100

 150

 200

 250

 0  200  400  600  800  1000

T
o
ta

l 
o
u
tp

u
t 
p
ro

d
u
c
e
d
 b

y
 t
a
s
k
s
 [
M

b
]

Number of splits

Map(orig.)
Reduce(orig.)

Map(BFT)
Reduce(BFT)

(a) Webdatasort.

 0

 20

 40

 60

 80

 100

 120

 140

 0  200  400  600  800  1000

T
o
ta

l 
o
u
tp

u
t 
p
ro

d
u
c
e
d
 b

y
 t
a
s
k
s
 [
M

b
]

Number of splits

Map(orig.)
Reduce(orig.)

Map(BFT)
Reduce(BFT)

(b) Streaming.

Fig. 5: Total size of map and reduce outputs in two of the GridMix2 applications with different number of splits.

was roughly 10% longer, which is to be expected after
executing 10% more tasks (see Equation 1 and consider
that Ts and Ω are negligible in comparison to the time
taken to execute the tasks).

5.2.5 Makespan vs. Parallelism
In the tests presented so far we used a fixed number
of nodes. That configuration allowed running the ex-
periments as quickly as possible, within the resource
constraints imposed by Grid’5000. This section presents
experiments in which we fixed the input data size and
varied the number of nodes (without faults). As we
increase the number of nodes, we allow more tasks to
run in parallel.

The experimental results are presented in Figure 7. We
also plotted values from the original Hadoop estimated
using Equation 1 (with Ω = 0 and values of Ts, Tm
and Tr obtained experimentally). The horizontal axis is
the number of map/reduce tasks that can be executed in
parallel (i.e., Pm ·N = Pr ·N ) and the vertical axis is the
makespan. Interestingly, the equation provides a good
approximation of the curves (also for the BFT versions,
although we do not plot those curves).

The graphs show an exponential drop as the number
of map/reduce tasks executed in parallel increases. From
the equation it becomes clear that the curves converge
asymptotically to Ts− Ω.

6 RELATED WORK

MapReduce has been the topic of much recent research.
Work has been done in adapting MapReduce to per-
form well in several environments and distinct appli-
cations, such as multi-core and multiprocessor systems
(Phoenix) [24], heterogeneous environments as Amazon
EC2 [25], dynamic peer-to-peer environments [26], high-
latency eventual consistency environments as Windows
Azure (Microsoft’s Daytona) [27], iterative applications
(Twister) [28], and memory and CPU intensive applica-
tions (LEMO-MR) [29]. Another important trend is using
MapReduce for scientific computing, e.g., for running
high energy physics data analysis and Kmeans clus-
tering [30], and for the generation of digital elevation
models [31]. Other systems are similar to MapReduce
in the sense that they provide a programming model
for processing large data sets, allowing more complex
interactions and/or provide a higher level of abstraction:
Dryad and DryadLINQ [32], [33], Pig Latin [34], and
Nephele [35]. All these works show the importance
of the MapReduce programming model, but none of
them improves the original MapReduce in terms of fault
tolerance.

Tolerance to arbitrary faults is a long trend in fault
tolerance. Voting mechanisms for masking Byzantine
faults in distributed systems were introduced in the early
1980s [11]. State machine replication is a generic solution
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Fig. 6: Makespan of the webdatasort benchmark with fault injector enabled.
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Fig. 7: Makespan varying the parallelism without faults.

to make a service crash or Byzantine fault-tolerant [14].
It has been shown to be practical to implement efficient
Byzantine fault-tolerant systems [15] and a long line of
work appeared, including libraries such as PBFT [15],
UpRight [16], and BFT-SMaRt [36]. As already pointed
out, state machine replication is not adequate to make
MapReduce Byzantine fault-tolerant. It would be possi-
ble to replicate the whole execution of MapReduce in
several nodes, but the cost would be high.

Byzantine quorum systems have been used to im-
plement data stores with several concurrency semantics
[19], [20], even in the cloud [21]. Although the voting
techniques they use have something in common with
what we do in our framework, these solutions cannot
be used to implement BFT MapReduce because it is not
a storage service, but a system that does computation.

For volunteer computing and bag-of-tasks applica-
tions, Sarmenta proposed a voting mechanism for
sabotage-tolerance [13]. Most of that work focus on
scheduling the workers in a way that no more than
a number of false results are obtained. Albeit we also
use a voting mechanism, we do not consider malicious
behavior of workers, only accidental faults, so there is no
point in complicating the scheduling except for avoiding
running the same task in the same node twice. Further-
more, much of the novelty of our work is on exploiting

the two processing steps (map and reduce) and the
(typical) large data size to improve the performance. This
is completely different from Sarmenta’s work. Another
work studies the same problem and presents optimal
scheduling algorithms [37]. Fernandez et al. also study
the same problem, but focus on defining lower bounds
on the work done based on a probabilistic analysis of
the problem [38]. Again, our problem is different and
this kind of analysis is not the goal in this paper.

Very recently, a similar work on volunteer computing
focusing MapReduce applications appeared [39]. Simi-
larly to our work, the solution is based on voting. The
main differences are that the work focus on a differ-
ent environment (volunteer computing) and does not
attempt to reduce the cost or improve the performance,
so it does not introduce any of the optimizations that are
the core of our work. That paper also presents a proba-
bilistic model of the algorithm that allows assessing the
probability of getting a wrong result, something that we
do not present here.

The problem of tolerating faults in parallel programs
running in unreliable parallel machines was studied by
Kedem et al. long ago [40]. However they proposed
a solution based on auditing intermediate steps of the
computation to detect faults. We assume that it is not
feasible to create a detector that monitors arbitrary
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programs to detect arbitrary failures. On the contrary,
we compare results of different executions of the same
program/task with the same inputs to detect the effects
of arbitrary faults.

Our BFT MapReduce replicates unmodified map and
reduce functions. SWIFT is a compiler that makes pro-
grams Byzantine fault-tolerant by replicating every bi-
nary instruction [41]. PASC is a library that transparently
hardens processes against Byzantine faults [42]. On the
contrary to our scheme, both solutions require modifying
the programs. They are also unrelated to MapReduce.

7 CONCLUSION AND DISCUSSION

The paper presents a Byzantine fault-tolerant MapRe-
duce algorithm and its experimental evaluation. The
fault tolerance mechanisms of the original MapReduce
cannot deal with Byzantine faults. These faults in general
cannot be detected, so they can silently corrupt the
output of any map or reduce task. Our algorithm masks
these faults by executing each task more than once, com-
paring the outputs of these executions, and disregarding
non-matching outputs. This simple but powerful idea
allows our BFT MapReduce to tolerate any number of
faulty task executions at the cost of one re-execution per
faulty task.

The experimental evaluation confirmed what might be
intuited from the algorithm: with f = 1 the resources
used and the makespan essentially double. Although
this is a considerable cost, we have shown that it is
much better than alternative solutions: state machine
replication and result comparison scheme. This cost may
be acceptable for a large number of applications that
handle critical data. We also believe that setting f to 1 is
a reasonable option as this parameter is the maximum
number of faulty replicas that return the same output.
We have shown experimentally that the impact of faults
in the total execution time is low even in a harsh fault
scenario.

As future work, we plan to study the possibility of
running MapReduce in several datacenters in order to
tolerate faults that severely impact a subset of them.
Furthermore, we aim to study to what extent similar
schemes can be applied to generalizations of MapReduce
like Dryad or Pig Latin.
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