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1. INTRODUCTION

This work was first developed towards the end of the
Malicious and Accidental Fault Tolerance (MAFTIA)
project, led by Professor Brian Randell. Brian’s work
influenced our own in many ways. We were fortunate
to have Brian as a tireless participant in the discussions
within the project about the notions underlying the concept
of Intrusion Tolerance, which were very important for
this work. Those discussions also contributed, for
example, to the refinement of the dependability concepts
and terminology in a paper authored by himself and
colleagues [1]. The goal and direction of MAFTIA were
themselves influenced by his vision, from at least two
decades back, that the difficulty of constructing a secure
operating system might be overcome through distribution
[2]. That vision was well ahead of its time, since years
later people were still writing that distributed systems
impoverished security. One legacy of MAFTIA, to which
Brian contributed, explained why this controversy lasted
so long: under the AVI (attack, vulnerability, intrusion)
composite fault model [3], it became clear that distribution
may worsen security by increasing the impact of attacks;
however, this may in turn be largely compensated for by
a reduction of the impact of vulnerabilities brought in by
distribution. As shown in numerous works, distribution is a
powerful enabler of modular fault and intrusion tolerance
mechanisms (actually, the main subject of this paper).
In those early times, Brian had already understood the
importance of concepts like ‘security kernel’ and ‘reference
monitor’ for intrusion prevention, and again contributed to
the conceptual evolution that led to using them for intrusion
tolerance, as we do in this paper. Last but not least, Brian
left an indelible mark with his seminal work in software fault

tolerance and the idea that a program should be structured
in a way that allows it to tolerate faults [4]. This cultural
legacy made us for example be attentive to an aspect often
disregarded: a Byzantine fault tolerant (BFT) system is of
little utility in a security context if its software is not resilient
to purposely made and common-mode faults (the makings of
malicious faults). In fact, we recognize the need for diversity
in this paper, and pursue the matter much further in other
papers [5, 6].

Replication is a well-known technique to obtain fault
tolerance and availability in distributed systems [7, 8,
9]. Currently it is often used in large datacenters
and/or cloud providers in services such as BigTable [10],
Dynamo [11], GFS [12], HDFS [13], MapReduce [14], and
ZooKeeper [15]. A decade ago, a considerable interest
appeared in using replication for intrusion tolerance, i.e., for
ensuring that a service remains operational even if some of
its replicas suffer intrusions and deviate arbitrarily from their
correct behaviour [16, 17, 18]. These intrusion-tolerant or
Byzantine fault-tolerant replication algorithms and systems
have been argued to be useful to protect critical information
infrastructures [19] and cloud services in federations of
clouds [20, 21]. Like the original algorithms that coined the
name [22], they continue to be useful to tolerate accidental
arbitrary faults, such as data corruption in memory and disks
due to hardware faults [23].

State machine replication is a generic solution to obtain
fault- and intrusion-tolerant distributed services [9]. A
service is implemented by a set of server replicas in such a
way that it continues to behave as specified even if a number
of servers is faulty. If the service is designed to tolerate
arbitrary – also called Byzantine – faults, which model
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accidental faults, attacks and intrusions, then the service is
said to be intrusion-tolerant.

This paper describes an algorithm for implementing
Byzantine fault-tolerant (or intrusion-tolerant) state machine
replication (BFT-SMR) in practical distributed systems.
These systems are characterized, among other aspects, by
the uncertainty they show in terms of communication and
processing delays. In such conditions, BFT-SMR requires at
least 3f+1 replicas to tolerate f being faulty [24], e.g., four
replicas to tolerate one being faulty, or seven to tolerate two.

We present BFT-TO, an algorithm for asynchronous BFT-
SMR with only 2f + 1 replicas. The algorithm leverages a
trusted component to cut f on the number of 3f +1 or more
replicas required by many algorithms found in the literature
[23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. When this
algorithm was first published [35], it was the first to bring the
lower bound on replicas for asynchronous BFT-SMR from
3f + 1 to 2f + 1. In the meantime, a few other algorithms
appeared which also achieve that result: A2M-BFT-EA [36],
MinBFT [37], MinZyzzyva [37], and EBAWA [38].

This result has practical as well as theoretical impact. In
fact, SMR tolerating just crash faults needs only 2f + 1
replicas [9], instead of 3f + 1: the additional number of f
replicas is the cost of arbitrary and/or malicious behaviour,
and has a considerable economical impact, since each replica
involves additional hardware, software and management
complexity. It is also worth noting that Byzantine fault
tolerance based on replication is only effective if intrusions
in replicas occur independently, which in practice has to
be enforced using some form of diversity [39, 40, 6].
This involves, for example, using different code or images,
running on distinct operating systems, and thus, the higher
the number of (diverse) replicas, the higher the cost in
terms of management. In the light of this argument, cutting
the needed resources by a percentage between 25%-33%,
depending on the actual number of tolerated faults f , is an
interesting practical result of our work.

In addition to the reduction of the number of replicas, our
algorithm has a second benefit. Amir et al. have shown that
BFT algorithms that rely on a coordinator to order messages
are vulnerable to performance attacks [28]. BFT-TO belongs
to a class of algorithms that avoid this problem by not
relying on a coordinator - instead, ordering is performed in
a distributed fashion.

Architectural hybridization [41] is the key to the reduction
of the number of replicas. The baseline (and untrusted)
system – a set of hosts interconnected by some network,
subject to Byzantine failures – is extended with a simple
component, on which we place a higher amount of trust.
In this paper, this component is distributed and (the only
one) assumed to be tamperproof. The trusted component
(nicknamed wormhole [41]) executes a simple repertoire of
functions, pretty much like a TPM would do [42]. Like
the TPM, a wormhole can be implemented in hardware,
increasing its shielding [43]. Unlike a TPM, the wormhole
participates continuously, albeit at selected instants, in the
execution of the Byzantine fault-tolerant algorithms.

This paper presents a novel wormhole called Trusted

Ordering Wormhole (TO wormhole). This wormhole
provides a low-level ordering service that is the main
building block of the BFT-SMR solution presented in the
paper. The name of the algorithm, BFT-TO, comes from
the fact that our Byzantine fault-tolerant (BFT) replication
service is based on a trusted ordering (TO) service.

The paper provides the following main contributions:

• it presents BFT-TO, the first algorithm to bring the
lower bound on the necessary number of replicas to
perform asynchronous Byzantine fault-tolerant state
machine replication from 3f + 1 to 2f + 1, more
rigorously and in more detail than in the original
publication [35];

• it presents the wormhole algorithm;
• it presents an analytical evaluation of the algorithm and

a comparison with others in the literature;
• it presents correctness proofs of the algorithm.

The paper is organized as follows. Section 2 presents the
system model and the TO wormhole. Section 3 presents the
BFT-TO algorithm. Section 4 evaluates the performance of
the algorithm analytically. Section 5 reviews related work
and Section 6 concludes the paper. Finally, Appendices
A and B present respectively the TO wormhole internal
algorithm and correctness proofs of BFT-TO.

2. SYSTEM MODEL AND WORMHOLE

This section presents the distributed system model. As a pre-
condition for being able to formally state global properties
about the whole system, in our proposal the design and
validation of a system extended with trusted components is
backed by a hybrid distributed systems model [41], which
recognizes useful things like: (i) the baseline system– let
us call it payload– and the trusted component– wormhole–
may have different properties and may rely on different
sets of assumptions (w.r.t. faults, synchronism, etc.); (ii)
there is a well-defined interface between both, where the
properties of the trusted component provably emerge to
the payload system components. The designer of hybrid
distributed systems and their algorithms is thus obliged to
provide evidence that despite the presence of threats (faults
and attacks): the payload system and the trusted component
each provide their services or functions correctly; the trusted
component exchanges information with the payload system
in a way useful to the global system. For example:
synchronous wormhole vs. asynchronous payload; or secure
wormhole vs. untrusted, Byzantine payload.

2.1. System Model

The system is in essence composed of a set of hosts
interconnected by a network that we call payload network
(Figure 1). We model the system components as automata.
An automaton receives input actions and generates output
and internal actions. A system is represented by a
composition of automata.

The BFT-TO algorithm is executed by a set of servers
S = {s1, s2, ..., sn} (modeled as automata with the same
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FIGURE 1. Architecture of the system.

identifiers). The service can be invoked by a set of clients
(automata) C = {c1, c2, ..., cm} (m has to be finite but does
not have to be known). We use the word processes to denote
both servers and clients, so the set of processes is defined as
P = S ∪ C.

This environment is asynchronous, i.e., there are no
assumptions about processing delays or message delivery
delays [44]. The hosts have clocks but there are no
assumptions about either local clock drift rates or the
reliability of the readings they provide. The servers and
clients are interconnected by a fully-connected network,
although their communication can be delayed arbitrarily,
e.g., as a consequence of an attack. Processes may behave in
a Byzantine manner, that is, exhibit arbitrary faults.

2.1.1. TO wormhole
The asynchronous and Byzantine environment is extended
with a partially-synchronous and tamperproof wormhole
called Trusted Ordering Wormhole (TO wormhole), a
distributed component with local parts in some of the hosts
(local TO wormholes) and its own communication channel
(TO wormhole control channel). The design is based on two
assumptions about the TO wormhole:

1. the TO wormhole is tamperproof, in the sense that
the integrity of the service it provides and the
confidentiality of keys stored therein are preserved even
if it is attacked;

2. the TO wormhole has enough synchrony for consensus
to be solvable.

Assumption 1 does not say that the TO wormhole is fault-
free, only that it has to be constructed in such a way that
intrusions are not possible, i.e., that it is tamperproof. Local
TO wormholes can still crash and the control channel can
have periods of unavailability. Assumption 2 means partial-
synchrony, implying that it is possible to circumvent the
FLP impossibility result [44] and solve consensus inside the
TO wormhole. As such, we consider that consensus inside
the TO wormhole is a done deal, and in Appendix A, we
present an internal TO wormhole protocol using a consensus
protocol as building block.

Every host with a server needs a local TO wormhole, but
not the hosts with clients (see Figure 1). Therefore the TO
wormhole is formed by n local TO wormholes (automata)
T = {t1, t2, ...tn}, where local TO wormhole ti is in the
host of server si.

2.1.2. Failure model in detail
A process (client, server) is said to be correct if it follows
the protocol it is supposed to execute. We assume that any
number of clients can fail, but the number of servers that can
fail is limited to f = ⌊n−1

2 ⌋ (this is a strong assumption
for long running systems, so in these systems mechanisms
like proactive recovery should be used to clean compromised
replicas [24, 45]). Failures may be Byzantine (or arbitrary),
meaning that the processes can for instance simply stop,
omit messages, send incorrect or forged messages, send
several messages with the same identifier, and do so in
an inconsistent manner across recipients. Faulty processes
can pursue their goal of breaking the properties of the
protocol alone or in collusion with other faulty processes. A
process is also considered to be faulty if one of the secret
keys discussed below is disclosed, or if it is not able to
communicate with the local TO wormhole (e.g., because its
local TO wormhole has crashed).

Direct communication between clients and servers, and
among servers, is done exclusively through the payload
network. A message m is sent to a channel when a process
generates an output action send(m) and is said to be
received when there is an input action receive(m) in
a process. Servers may exchange data indirectly via the
wormhole.

We assume that each client-server pair {ci, sj} and
each pair of servers {si, sj} is connected by a reliable
authenticated FIFO channel that authenticates messages
(prevents impersonation of the sender), ensures their
integrity (detects and discards messages that are modified),
and guarantees their eventual delivery in the order they were
sent and without duplicates. In practice, these properties will
be obtained with retransmissions and using cryptography
(unless the channels are physically dedicated and isolated).
Message authentication codes (MACs) are cryptographic
checksums that can serve this purpose [46]. Processes have
to share symmetric keys in order to use MACs. In the paper
we assume these keys are distributed before the protocol is
executed, e.g., using Kerberos. A solution to implement
these channels would be to use TCP over IPsec [47].

Wrapping up, the payload system is asynchronous
Byzantine: there are no bounds on the processing and
communication delays; and the processes can fail arbitrarily.
This system is extended with the TO wormhole, which
forms a minimal part of the global system that is partially-
synchronous and secure, providing a “well-behaved” service
that the processes can use to perform some steps of their
protocols.
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2.1.3. Cryptography
We assume there is a collision-resistant hash function
Hash(x) that maps an input x into a fixed length output
Hash(x) (“the hash of x”), for which it is computationally
infeasible to find two different inputs that hash to the same
output (often called strong collision resistance [46]). An
example hash function currently believed to satisfy that
property is SHA-256 [48]. We also assume the existence of a
MAC function Mac(x, ksicj ), where ksicj is the key shared
between server si and client cj . This function provides
essentially the same properties as the hash function but it
can only be calculated by processes that have access to the
key. Therefore, it can be used to protect the integrity and
ensure the authenticity of x.

2.2. TO Wormhole’s Service

From the point of view of the system executed in the payload
network, the TO wormhole provides runtime support,
similarly to a middleware or a library. The TO wormhole
offers a single service that has the specific purpose of
assisting the execution of the atomic multicast protocol,
which is at the core of the BFT-TO algorithm.

The interaction between a server automaton and a local
TO wormhole automaton is done by actions but, for
simplicity, we say that a server invokes a function in a local
TO wormhole API to mean that it generates an output action
– say TOW register – that corresponds to an input action
with the same name in the local TO wormhole. Likewise,
the TO wormhole must respond with some output action that
corresponds to an input action in the same server. Therefore,
these functions are a way to simplify the description of pairs
of actions that are always executed together.

Before being able to use the TO wormhole’s service,
a server invokes function TOW register to register and
obtain an identifier id from the TO wormhole (Table 1,
line 1). This function can return an error code but we
omit it from the table for simplicity (notice that Table 2
provides some of the error codes for functions TOW sent
and TOW received). By convention, the identifier that
TOW register returns to a server si is designated by si.

The TO wormhole assists the execution of the atomic
multicast protocol by indicating two things for each message
m atomically multicast: (1) when m can be delivered; and
(2) the order in which m has to be delivered. The rationale is
quite straightforward: when a server atomically multicasts a
message or receives a message from the network, it indicates
that event to the TO wormhole (see Figure 2). When
f + 1 servers do that, the TO wormhole can be assured
that at least one correct server has the message, because
at most f servers can be faulty. If one correct server has
it, then the server will send it to all the others. Therefore,
the TO wormhole: (1) indicates that the message can be
delivered and (2) associates an order number to it. Notice
that the TO wormhole service does not implement the atomic
multicast protocol. The messages atomically multicast are
transmitted through the payload network, not through the
TO wormhole control channel. This is worthwhile noting,

to emphasize the asynchronous and Byzantine nature of the
system as a whole, in which the TO wormhole is a mere
trusted component, supplying simple services, provided
through limited processing and communication capacities
when compared to the rest of the system.
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FIGURE 2. Time diagram of an example execution of the atomic
multicast using the TO wormhole service.

When a server multicasts a message, it indicates that event
to the TO wormhole by invoking the function TOW sent
(Table 1, line 2). The parameters of the function have the
following meanings. The first, id, is the identifier of the
server from the point of view of the TO wormhole (the
id returned by function TOW register). members is a
set with the ids of the servers registered to implement the
BFT-TO algorithm (has to be configured when the system
is set up). msg id is a message number that has to be
unique for the server that sends it. msg hash is a hash of
the message. A server invokes TOW received when a
message is received (table, line 3). The parameters are the
same as for TOW sent plus the id of the sender, sender id.

Suppose one server si invoked TOW sent for a message
and f other servers invoked TOW received for the
same message (with the same msg id, msg hash and
sender id= si). When that happens, the TO wormhole
gives the next order number to the message and makes
an output action TOW decide (table, line 4). The
parameters of this action are the identifier of the server
that sent the message (sender id), the message identifier
(msg id), the order number (order n), the hash of the
message (hash) and a set with the ids of the servers that
have the message or, more precisely, that invoked either
TOW sent or TOW received for the message (has msg)1.
TOW decide will give the same order number to all servers
because the TO wormhole is tamperproof.

Notice that the members parameter of functions
TOW sent and TOW received plays the important
role of specifying the set of servers implementing a repli-
cated service using SMR. Although we consider only one
service in the paper, it would be possible to have several,
with different members sets. The members set is also used

1In practice, this set is implemented more efficiently by a mask with
bits set to 1 or 0 depending on whether the corresponding server invoked
TOW sent/TOW received or not.
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Dir. Function
1 in id ← TOW register()
2 in TOW sent(id, members, msg id, msg hash)
3 in TOW received(id, members, msg id, msg hash, sender id)
4 out TOW decide(sender id, msg id, order n, hash, has msg)

TABLE 1. TO wormhole programming interface

Function TOW sent
1 NO RESOURCES the TO wormhole is processing too many multicasts and has no resources for another one
2 NOT IN MEMBERS the sender’s id is not in the members set
3 RECALL the function was already called for the same message
Function TOW received
4 UNKNOWN the local TO wormhole has no information about this message
5 INVALID HASH the hash provided is not the hash of the message or is out of the range of valid hashes
6 RECALL the function was already called for the same message

TABLE 2. TO wormhole error codes

by the TO wormhole to obtain the values of the constants n
and f : n = |members| and f = ⌊n−1

2 ⌋.
Functions TOW sent and TOW received are invoked

in the local TO wormholes, which are interconnected by
the TO wormhole control channel, so the service provided
by the TO wormhole involves the execution of a distributed
protocol. This protocol is presented in Appendix A.

The TO wormhole’s service satisfies the following
properties:

• TO Wormhole Validity. If a correct (i.e., non-
crashed) local TO wormhole generates an
action TOW decide(sender id, msg id, or-
der n, hash, has msg), then there was a call to
TOW sent(sender id, members, msg id, msg hash)
and at least ⌊n−1

2 ⌋ calls to TOW received(*, mem-
bers, msg id, msg hash, sender id) in different correct
local TO wormholes. Moreover, if order n> 1,
then the local TO wormhole has done an action
TOW decide(*, *, order n−1, *, *).

• TO Wormhole Agreement. No two different local TO
wormholes generate two actions TOW decide with
the same order n but different sender id, msg id or
hash.

• TO Wormhole Termination. If there is a call to
TOW sent(sender id, members, msg id, msg hash)
and ⌊n−1

2 ⌋ calls to TOW received(*, members,
msg id, msg hash, sender id) in different correct local
TO wormholes, then eventually every correct local
TO wormhole does an action TOW decide(sender id,
msg id, order n, hash, has msg).

2.3. TO Wormhole Implementation

The approach presented in the paper requires the implemen-
tation of a TO wormhole satisfying assumptions 1 and 2
above. It is out of the scope of this paper to describe in detail
the implementation of a TO wormhole, so we present only
a brief discussion with the objective of helping the reader
grasp how it might be done. There are several possible so-
lutions experimented by us, which were presented and dis-

cussed in another paper, for a different wormhole, the TTCB
[49].

Assumption 1 boils down to preventing intrusions in local
TO wormholes and in the TO wormhole control channel.
The state of the art does not allow 100% security to be
guaranteed in arbitrarily complex systems. However, it is
accepted that reasonably simple, static and small systems are
verifiable in order to obtain a very high degree of assurance.
For example, this is the reasoning behind the TCG Trusted
Platform Module (TPM) [42] or the IBM cryptographic
modules [50]. The TO wormhole is simple enough to fall
within this concept.

A local TO wormhole prototype can be deployed in a
straightforward and repeatable manner, by implementing it
in a hardware appliance, with its own CPU and memory,
isolated from the rest of the host, and with a secure interface
to it. Several commercial programmable appliances that
could be used with this purpose are currently available,
e.g., we have experimented with devices from the Lantronix
XPort family [51]. An even more straightforward solution
that would not require specific hardware would be to
implement the TO wormhole as a virtual machine, for
example, on top of an hypervisor like Xen [52]. The
payload legacy operating system and applications would run
as other VMs on the machine. Xen would ensure isolation
between the wormhole and the remaining VMs. We also
have prototypes of wormholes based on Xen. In both cases,
the interface between the payload system and the local
TO wormhole also has to be protected against malformed
inputs (e.g., buffer overflows or format string attacks), using
well-known techniques like white-listing valid inputs and
checking input lengths (see, e.g., [53]). Proper concurrency
control is also important to prevent the possibility of race
conditions [53]. For the wormhole control channel, the
integrity of the communication can be enforced using, for
instance, IPsec [47].
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3. THE BFT-TO ALGORITHM

A state machine is characterized by a set of state variables,
which define the state of the machine, and a set of commands
that modify the state variables [9]. Commands have to
be atomic in the sense that they can not interfere with
other commands. The state machine approach consists of
replicating a state machine in n servers si ∈ S. The set of
servers S implements the service. All correct servers follow
the same history of states if four properties are satisfied:

• SM1 Initial state. All correct servers start in the same
state.

• SM2 Agreement. All correct servers execute the same
commands.

• SM3 Total order. All correct servers execute the
commands in the same order.

• SM4 Determinism. The same command executed in
the same initial state in two different correct servers
generates the same final state.

Property SM1 states that each state variable has the same
initial value in all servers, something that is usually simple
to guarantee. Properties SM2 and SM3 demand that the
(correct) servers agree both on the set of commands to
execute and on the order in which to execute them. This
is enforced by sending the commands to the servers using
an atomic multicast protocol. Property SM4 is about the
semantics of the commands at the application level, so in this
paper we simply make the assumption that the commands
are deterministic. In practice determinism can be enforced
using software wrappers [54].

The BFT-TO algorithm works essentially in the following
way: (1) a client sends a command to one of the servers; (2)
the server sends the command to all servers using an atomic
multicast protocol; (3) each server executes the command
and sends a reply to the client; (4) the client waits for f + 1
identical replies from different servers; the result in these
replies is the result of the issued command.

This is a very simplified description of the process, so
let us first delve into the details of the clients, and later we
describe the protocol executed by the servers.

3.1. Clients

A client ci issues a command cmd to the service by sending
a REQUEST message to one of the servers, sj . The message
is sent through the payload network (clients do not have
access to the TO wormhole). The format of the message
is given by a tuple ⟨REQUEST, src, dst, num, cmd, vec⟩,
where REQUEST is the type of the message, src is the
address of the client ci (source), dst is the address of the
server sj (destination), num is the request number, cmd is the
command to be executed (including its parameters) and vec a
vector of MACs (see discussion below). The request number
is returned in the reply so that the client can associate the
reply with the request. The client has to start it with a
sequence number of 1 and increase it for each new request
since this number is used to guarantee that the request is

executed only once2.
If the client and the server are correct, the REQUEST

message is eventually received by sj , due to the properties
of the reliable authenticated FIFO channels used to connect
each client/server pair (Section 2.1). Then, if the server is
correct it atomically multicasts the message to all servers in
S, all correct servers execute the command and send a reply
to the client. The format of the reply message is ⟨REPLY,
src, dst, num, res⟩, where REPLY is the type of the message,
src is the address of the server, dst is the address of the
client, num is the request number, and res is the result of
the executed command.

This simple protocol is vulnerable to some attacks,
therefore some modifications are necessary. First, a server sj
can be malicious and forward the message only to a subset of
S, or discard it altogether. To solve this problem, if ci does
not receive f +1 replies from different servers after Tresend

units of time according to its local clock, it assumes that sj
did not forward the request, so it multicasts the message to
another f servers. If this happens, it sends the message to a
total of f + 1 servers, therefore at least one must be correct,
and the request will be atomically multicast.

A malicious server might attempt a second attack by
modifying the message before multicasting it to the other
servers. To tolerate this attack, the request message takes a
vector of MACs vec. This vector takes a MAC per server,
each obtained with the key shared between the client and
that server (vec[si] has the MAC calculated with the key
shared between the client and server si). Therefore, each
server can test the integrity of the message by checking
if its MAC is valid, and discard the message otherwise.
A malicious client might build a vector of MACs with a
combination of valid and invalid MACs. This attack would
be ineffective: if enough correct servers receive the message
with the correct MAC the command will be executed by all
of them, otherwise it will be discarded.

In general, there will be restrictions on the commands
that each client can execute. For instance, if the commands
are queries on a database, probably not all the clients are
allowed to query all registers in the same way. This involves
implementing an access control mechanism. There are
several schemes available in the literature and this issue is
orthogonal to the problem we are addressing in the paper, so
we do not propose any particular scheme.

We do not present this protocol in a more formal way due
to its simplicity.

3.2. Servers

The protocol The servers execute Algorithm 1. The
protocol is short because its core is the Byzantine fault-
tolerant atomic multicast protocol that is presented later. The
algorithm has an initialization part (lines 1-3) and a set of
tasks either reacting to events (like the message reception in
line 4) or conditions (e.g., like in line 9). State variables are
tagged with a subscript with the number of the server (e.g.,

2If a malicious client uses the same number for several requests, at most
one is executed.
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Lasti, line 2). The operator ‘.’ (dot) extracts a field from a
message, e.g., m.cmd gives the cmd field in message m. A
star ‘*’ in a tuple is a wildcard that means any value (line
19). The state variables are used concurrently in all tasks so
we assume that the three tasks are executed atomically (i.e.,
there is mutual exclusion among them).

The first task simply stores REQUEST messages received
from clients in a set R receivedi (lines 4-8). A message is
only stored if its command has not yet been executed.

The second task essentially does an atomic multicast of
all the requests from a client stored in the set R receivedi

(lines 9-12). To avoid doing an atomic multicast whenever
a request is received (and inserted in R receivedi), the
algorithm uses the vector Waiti to wait for the delivery of
the server’s previous atomic multicast for that client before
doing the next one. This implements a form of batching of
several requests in a single atomic multicast, reducing the
overhead of ordering the requests3.

The third task is executed when a message is delivered by
the atomic multicast protocol (lines 13-26). A correct server
atomically multicasts messages with requests from a single
client but a faulty server can mix requests from different
clients, so the for loop executes requests from each client
c in order. The order of clients has to be deterministic, i.e.,
has to be the same in all servers, since the requests have
to be executed in total order (property SM3). The while
loop executes the requests of each client. It starts with an
attempt to execute the request number Lasti[k]+1; if there
is no such request, it discards any other requests from c
(this cannot happen if the client is correct, thus follows its
protocol). If it does execute that request, then it attempts
to execute Lasti[k]+2, if it succeeds it attempts to execute
Lasti[k]+3, and so on until there are no more requests. If
some request is discarded, the client may have to timeout
and resend the request. This mechanism makes the requests
be executed in the order in which they are issued by the
client, to avoid having to store the numbers of all the requests
already processed. When a request is executed, its result is
sent to the client and any request from that client and with
the same number is removed from R receivedi (lines 17-19).
If the message delivered by the atomic multicast protocol
has been sent by this server, the entry in the vector Waiti
corresponding to the client for which requests were executed
is set to FALSE to indicate that the R receivedi set can now be
multicast, and all requests in A delivered are removed from
R receivedi, so the server will not atomically multicast them
again (lines 22-25).

DoS attacks and buffer management Algorithm 1 stores
the requests received from the clients in the R receivedi

set. A request stored in R receivedi must be removed from
that set, either when that request is executed (line 19) or
when it is atomically multicast and delivered (lines 9-12
and 13/22-25). Nevertheless, the number of requests and

3A server si does not send all requests in R receivedi in an atomic
multicast, but only requests of a single client. This is required by the request
validation mechanism described in Section 3.2.1, which has to discard an
atomically multicast message if one of the MACs is invalid.

the rate at which they are sent is unbounded, so the size of
this set might also need to be unbounded, which can create
difficulties because memory is finite. This is especially a
problem if a client attempts to do a denial of service (DoS)
attack against the SMR service.

If requests are received faster than the atomic multicast
delivers and the server executes the commands then, when
the set is full, the request is simply not removed from the
communication channel and, ultimately, the client will have
to store it temporally in a buffer (if TCP over IPsec is
used, this is done by TCP’s flow control mechanism). This
solution may create a problem of starvation/fairness because
whenever requests are removed from R receivedi, the space
gained may be filled with requests from the same client. To
solve this problem, a simple mechanism, like trying to read
one message from each of the clients before trying to read
another one from the same client, can be used.

There is another problem caused by limited memory: if a
client is malicious or crashed and does not receive its replies,
the buffer(s) of the send primitive that store(s) replies can
become full. The solution is to use a large buffer and to
discard old messages, like in [24].

Read optimization Castro and Liskov propose an optimiza-
tion for commands that only read the state of the service,
which can also be used in our algorithm [24]. The client
sends the request to all servers, which reply immediately
with the value supposed to be read. If the client receives f+1
identical replies it can be sure that one was sent by a correct
server, so it can accept that reply. Otherwise, it reissues the
command using the normal protocol. There is only one case
in which there may not be f + 1 identical replies, which is
when there are concurrent writes modifying the data being
read. Otherwise, all correct servers return the same value.

Recovery from replica failures State machine replication
systems have to consider the possibility of a replica
recovering after a crash. This is important, for instance, for
situations in which many servers in a datacenter are switched
off due to a power failure. BFT-TO deals with such failures
similarly to PBFT and in-memory databases, so we do not
present the mechanism in detail, only briefly sketch it.

Requests have to be stored in a log in secondary storage
before they are executed. Such a log tends to grow a lot so
periodically each server creates a checkpoint that represents
its state. After a checkpoint is taken and stored in secondary
storage, the log up to that point is removed. Recovering
from a crash basically involves retrieving the last checkpoint
saved, exchanging its hash with other replicas to understand
if it is corrupted or not, installing that checkpoint as the
replica state, and executing the operations in the log to
update it. When that operation finishes, the replica can start
executing the algorithm again, possibly starting by asking
other replicas for missed requests. If the checkpoint or
the log are corrupted, a state transfer has to be requested
from the other replicas. One of the other replicas actually
transfers the state and the others send a hash to check that the
transferred state is not corrupted (the sender can be faulty).
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Algorithm 1 SMR protocol (server si).

1: R receivedi←∅ {set with requests received}
2: ∀c ∈ C, Lasti[c]←0 {vector with the number of the last request of each client that was executed}
3: ∀c ∈ C, Waiti[c]←FALSE {is there an atomic multicast of requests from client c not yet delivered?}

4: when receive(mreq =⟨REQUEST, c, si, num, cmd, vec⟩) do
5: if (num > Lasti[c]) then
6: R receivedi←R receivedi ∪ {mreq}
7: end if
8: end when

9: when (∃mreq ∈ R receivedi : Waiti[mreq .src] = FALSE) do
10: Waiti[mreq .src]←TRUE

11: atomic mcast({mreq’ ∈ R receivedi : mreq’.src = mreq .src})
12: end when

13: when atomic dlv(A delivered) from s do
14: for all c ∈ {mreq .src : mreq ∈ A delivered} do
15: while ∃mreq ∈ A delivered : mreq .num = Lasti[mreq .src]+1 do
16: Lasti[mreq .src]←Lasti[mreq .src]+1
17: resi ←execute(mreq .cmd)
18: send ⟨REPLY, si, mreq .src, mreq .num, resi⟩ to mreq .src
19: R receivedi←R receivedi\ {⟨REQUEST, mreq .src, *, mreq .num, *, *⟩}
20: end while
21: end for
22: if (si = s) then
23: Waiti[mreq .src] = FALSE

24: R receivedi←R receivedi\ A delivered
25: end if
26: end when

3.2.1. Atomic multicast protocol
The core of the algorithm executed by the servers is the
atomic multicast protocol, which guarantees two properties:
all correct servers deliver the same messages in the same
order; if the sender is correct, all servers deliver the
message that was sent. A server is said to (atomically)
multicast a message m if it invokes atomic mcast(m),
and it is said to (atomically) deliver a message m if action
atomic dlv(m) is done in the server. The protocol is
more formally defined in terms of four properties:

• AM1 Validity. If a correct server multicasts a valid
message m, then some correct server eventually
delivers m.

• AM2 Agreement. If a correct server delivers a message
m, then all correct servers eventually deliver m.

• AM3 Integrity. For any identifier ID, every correct
server delivers at most one message m with identifier
ID, and if sender(m) is correct then m was previously
multicast by sender(m) 4.

• AM4 Total order. If two correct servers deliver two
messages m1 and m2 then both servers deliver the two
messages in the same order.

This definition is similar to other definitions found in
the literature [55]. However, property AM1 is modified
in such a way that it does not guarantee that the message
m is delivered if m is not valid. This notion takes into

4The term sender(m) gives the sender field of the header of m.

account that the proposed atomic multicast protocol is used
in the context of the state machine replication protocol to
multicast messages that are sets with requests transmitted by
clients. A message m = Sreq is said to be valid iff each
request message in Sreq contains a vector filled with valid
MACs, i.e., with MACs properly obtained using the key
shared between the client and each of the servers. Albeit the
objective is to deal with malicious servers, if the client itself
is malicious and sends a message with some not properly
calculated MACs, the message may also not be delivered by
the atomic multicast protocol.

The protocol The atomic multicast protocol is Algo-
rithm 2. This protocol uses the service provided by the
TO wormhole, so understanding it involves a mental jump:
there are n servers that execute Algorithm 2, f = ⌊n−1

2 ⌋ of
which can fail in a Byzantine way (i.e., arbitrarily); however,
the service provided by the TO wormhole is always correct,
since we assume that it cannot be tampered with. The algo-
rithm is presented as multicasting and delivering a set Sreq

instead of a message m to emphasize that it is used in the
state machine replication algorithm to atomically multicast
sets of requests (lines 7 and 46). This option was made for
clarity at cost of generality (just in terms of presentation).

The algorithm has an initialization part (lines 1-6) and a
set of tasks, following the same conventions as Algorithm
1. It uses only one type of message: ⟨ACAST, src, dst,
Sreq , msg id⟩, where ACAST is the message type, src the
address of the sender server, dst the set of addresses of
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the destination servers, Sreq the set of request messages
atomically broadcast, and msg id a message number unique
for the sender server that has atomically multicast the
message.

Lines 1-6 initialize several state variables, including three
sets used to store messages in different stages of processing:
A receivedi, A wait decidei and A deliveri.

The first task is executed when atomic mcast(Sreq)
is invoked (line 7). The server starts by testing if the
MAC that corresponds to itself (si) in the vector of MACs
is valid (line 8). If it is not, the server simply discards
the message. If the MAC is valid, the request set Sreq is
enveloped in an ACAST message and multicast to all servers
except the sender (line 9). Then, the server informs the TO
wormhole about this message by invoking TOW sent (line
10) and puts the message in the set A wait decidei, waiting
until enough servers invoke TOW received and the TO
wormhole does an action TOW decide (line 33).

The second task is executed when an ACAST message is
received by a server (lines 15-21). It simply tests if the MAC
corresponding to itself in the vector of MACs is valid, and in
the affirmative case, it stores the message in A receivedi. If
the MAC is not valid the message may still be decided so it
is stored in A wait decidei.

The third task takes the messages that the second task
puts in A receivedi and invokes TOW received (lines 22-
32). This task is a loop executed every Tsleep because
whenever a server si invokes TOW received and the local
TO wormhole still does not know that TOW sent was
invoked for this message in the sender, say sj , it returns
UNKNOWN, so the si has to invoke TOW received again
later. If the local TO wormhole knows about the message
but the hash is invalid (INVALID HASH), then the message
is corrupted, so it is discarded. Otherwise, the message is
stored in A wait decidei.

The fourth task is executed when the TO wormhole does
an action TOW decide for a message (lines 33-35). The
information given by the TO wormhole is simply stored in
T decidedi.

The fifth task (lines 36-48) is executed when a message
was both sent or received and inserted in the A wait decidei
set (lines 12, 19 or 28) and there was a TOW decided
action for that message (lines 33-35), meaning that
the message can be delivered. This tasks does some
housekeeping and inserts the message to be delivered in
A deliveri (lines 37-39). Then, if the server is not the
message sender, it resends the message to the servers that
did not ‘contribute’ to the threshold, i.e., to the servers not
in has msg (lines 40-42). The rationale for resending the
message is that a malicious sender can send the message
only to a subset of the servers (or send it with valid MACs
only to a subset of servers); therefore, these servers may not
have the message. The set A deliveri keeps messages that
already have an order number assigned by the TO wormhole,
therefore they can be delivered. These messages are handled
in lines 43-47. The algorithm keeps a number with the next
message to be delivered, next delivi. If the next message to
be delivered is stored in A deliveri, then the task delivers it

(lines 41-45). Otherwise, the message has to wait for its turn.
Notice that a message is delivered even if it was initially
received with an invalid MAC, otherwise the client could
violate the agreement property by sending invalid MACs to
some of the servers.

DoS attacks and buffer management The problem of
DoS attacks generated by clients of the SMR service is
solved by the BFT-TO algorithm, which does not let the
R receivedi set overflow (see Section 3.2). The problem
in the atomic multicast problem is DoS attacks carried out
by the malicious servers. Such a server –say sj– can try to
overflow the TO wormhole with requests, but this issue is
left for Appendix A. It can also send messages to one or
more servers without calling TOW sent (lines 9-10), thus
causing the insertion of messages in the A receivedi of those
servers that will never be removed, since the TO wormhole
will always return UNKNOWN when TOW received is
called (lines 24-25). Such an attack might eventually
fill A receivedi with messages from sj , preventing correct
servers from sending it messages. The solution is simply to
have a quota of messages that can be stored in A receivedi

per server. In such a way, a malicious server can only fill its
quota of space in A receivedi, not the full set, allowing the
correct servers to work normally. A similar reasoning and
solution can be applied to set A wait decidei.

FLP impossibility result The consensus problem has been
proven to be impossible to solve deterministically in
asynchronous systems if a process is allowed to fail, even
if only by crashing [44]. This FLP impossibility result
also applies to the atomic multicast problem because it
is equivalent to consensus in several system models [55,
56, 57], thus also to state machine replication. In our
case, the system is not fully asynchronous: the payload
is asynchronous but the TO wormhole contains enough
synchrony to solve consensus, which is needed to implement
the TO wormhole service (see Appendix A). Therefore, the
impossibility result does not apply.

4. BFT-TO PERFORMANCE

The main advantage of the BFT-TO algorithm is its lower
number of replicas, which was a novelty when the algorithm
first appeared. A second advantage is the lack of a leader
and the consequent prevention of certain attacks against
performance. This section presents an argument that BFT-
TO’s performance is similar to that of other BFT-SMR
algorithms in the literature, both in terms of latency (the
delay of processing a request) and throughput (the number
of requests that can be processed per unit of time). We
compare our BFT-TO algorithm with a set of SMR services
in the literature in terms of: number of communication steps,
where a step involves the process/server sending a message
to the others and waiting to receive messages from n− f of
them; number of messages sent; and number of signatures
and signature verifications.

All these parameters have an impact in terms of
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Algorithm 2 Atomic multicast protocol (server si).

1: next acasti←1 {number of next ACAST message to send}
2: next delivi←1 {number of next request to atomically deliver}
3: A receivedi←∅ {set with received ACASTs}
4: A wait decidei←∅ {set with ACASTs waiting for other servers to call TOW received}
5: A deliveri←∅ {set with requests waiting for delivery}
6: T decidedi←∅ {set with info about TOW decide events}

7: when atomic mcast(Sreq) is invoked do {sender}
8: if (∀mreq =⟨REQUEST, c, si, num, cmd, vec⟩ ∈ Sreq , Mac(⟨REQUEST, c, si, num, cmd⟩, ksic) = vec[si]) then
9: ∀s ∈ S\{si}, sendmacast = ⟨ACAST, si, S, Sreq , next acasti⟩ to s

10: TOW sent(si, S, next acasti, Hash(Sreq))
11: next acasti←next acasti + 1
12: A wait decidei←A wait decidei ∪ {macast}
13: end if
14: end when

15: when receive(macast) do {recipient}
16: if (∀mreq = ⟨REQUEST, c, si, num, cmd, vec⟩ ∈macast.Sreq , Mac(⟨REQUEST, c, si, num, cmd⟩, ksic) = vec[si])) then
17: A receivedi←A receivedi ∪ {macast}
18: else
19: A wait decidei←A wait decidei ∪ {macast}
20: end if
21: end when

22: when Tsleep elapses do
23: for all macast ∈ A receivedi do
24: err←TOW received(si, S, macast.msg id, Hash(macast.Sreq), macast.src)
25: if err ̸= UNKNOWN then
26: A receivedi←A receivedi \ {macast}
27: if err ̸= INVALID HASH then
28: A wait decidei←A wait decidei ∪ {macast}
29: end if
30: end if
31: end for
32: end when

33: when TOW decide(sender id, msg id, order n, hash, has msg) do {sender and recipient}
34: T decidedi←T decidedi ∪ {⟨sender id, msg id, order n, hash, has msg⟩}
35: end when

36: when ∃macast ∈ A wait decidei, ∃tdec ∈ T decidedi : macast.src = tdec.sender id ∧ macast.msg id = tdec.msg id ∧
Hash(macast.Sreq)=tdec.hash do

37: A wait decidei←A wait decidei \ {macast}
38: T decidedi←T decidedi \ {tdec}
39: A deliveri←A deliveri ∪ {⟨macast.Sreq , tdec.order n⟩}
40: if macast.src ̸= si then {if si is not the sender of the message}
41: ∀s ∈ S\{si}\ tdec.has msg, sendmacast to s

42: end if
43: while ∃ ⟨Sreq , order n⟩ ∈ A deliveri : order n = next delivi do {messages waiting to be delivered}
44: A deliveri←A deliveri \ {⟨Sreq , order n⟩}
45: next delivi←next delivi + 1
46: atomic dlv(Sreq)
47: end while
48: end when

performance. The latency is mostly affected by the number
of communication steps and the number of signatures and
verifications in the critical path of the run, i.e., between

the moment the client sends the request and gets the reply.
The parameter that has most impact depends on the system:
typically signatures and verifications are slower than the
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communication in LANs (without acceleration hardware),
and the contrary is true on WANs. The throughput is
mostly affected by the number of messages sent and the total
number of signatures and verifications in the run.

The comparison with other algorithms is done in two
cases: in nice runs in which there are no faulty processes
and no leader suspicions (for algorithms in which there
is a leader); and bad runs with faulty processes or leader
suspicions due to long communication delays. We start
with an evaluation of the performance of the TO wormhole
service, which is necessary for assessing the performance of
the BFT-TO algorithm.

4.1. Wormhole Performance

The performance of the TO wormhole obviously depends on
its implementation, an aspect that we purposely leave open
in the paper. However, in Appendix A we present a possible
instantiation of the internal protocol of the wormhole, which
we use to assess its performance in terms of the metrics
above. Notice that this is only a possible instantiation of
the internal algorithm of the TO wormhole, not necessarily
the most efficient.

The TO wormhole algorithm in Appendix A uses two
primitives: reliable multicast and multi-valued consensus.
These primitives only have to tolerate crash faults because
they are executed inside a tamperproof wormhole. There are
several possible instantiations. A simple reliable multicast
protocol works the following way [55]: when a local TO
wormhole wants to multicast a message, it sends it to
all other local TO wormholes; these local TO wormholes
deliver the message and send it to all other local TO
wormholes. This protocol delivers the message in one
communication step without faults (although it runs in two
steps), sends n2 − n messages, and uses no signatures.

For multi-valued consensus, we consider an efficient
protocol based on a failure detector, Schiper’s early
consensus [58]. The protocol uses a rotating coordinator,
which sends its estimate to all others. If the coordinator
is not suspected, when a local TO wormhole receives the
coordinator’s estimate, it sends it to all others. If a local TO
wormhole gets estimates from more than a half of the local
TO wormholes, it sends a special DECIDE message to all.
Therefore, in a fault-free run in which the first coordinator
is not suspected, the protocol decides in 2 communication
steps, sends 2(n2 − n) messages, and uses no signatures.
If the coordinator is suspected, there are extra rounds of
message exchange.

The TO wormhole algorithm in Appendix A works
basically as follows. When a process calls TOW sent or
TOW received, the information passed in the call is sent
to all other local TO wormholes using the reliable multicast
primitive. When there has been a call to TOW sent and
f calls to TOW received, the TO wormhole executes a
consensus to decide on the message(s) to be delivered with
the next order number(s). The consensus is needed since two
or more messages may be being ordered concurrently by the
TO wormhole. Consensus is always executed sequentially,

never concurrently. If there is a consensus running and the
servers request the ordering of other messages, the local TO
wormholes wait for the termination of the consensus and
then run a new one, not with the information about one of the
pending messages but with information about all pending
messages. This provides a form of batching that greatly
reduces the number of executed consensuses when there
are many requests to the SMR service (similarly to what
was observed in [59] with an atomic multicast protocol).
Therefore, with a “low” number of requests, the algorithm of
the TO wormhole runs in 3 steps, and exchanges n3+n2−2n
messages (without suspicions of the coordinator). If there is
a high number of calls to the TO wormhole, the factor related
to the execution of consensus is divided by all messages, so
the number of messages sent inside the TO wormhole per
payload message is lower. Furthermore, the messages do not
take the full requests but only their hashes (see Algorithm 2).

4.2. Performance in Nice Runs

This section compares the performance of BFT-TO with
other BFT-SMR algorithms in the literature: Rampart [25,
60], PBFT [24], HQ [27], Zyzzyva [23], BFT2F [61],
A2M-BFT-EA [36], MinBFT [37], MinZyzzyva [37], and
EBAWA [38]. This list includes some of the best known
algorithms and all that require only 2f + 1 replicas. We
did not try to be exhaustive due to the long list of protocols
available. We excluded upfront algorithms that have
very different characteristics (e.g., Q/U [62] and quorum
algorithms [63] that provide weaker consistency) and those
for which an actual SMR algorithm is not provided (although
being usable as part of an SMR algorithm).

The algorithms are evaluated in nice runs, in which there
are no faulty clients/servers and the leader is not suspected.
In the case of HQ we also do not consider write contention,
which might require using PBFT instead of the light quorum
based protocols for which the performance is provided.
Finally, we do not consider read optimizations, which are
possible with all algorithms [24, 27]. They typically involve
2 steps, 2n messages and no signatures.

The comparison is presented in Table 3. The metrics
are divided between those that have more impact in the
latency – communication steps (ComSteps), signatures in
the critical path (SignCP) and verifications in the critical
path (VerifCP) – and those that have more impact on the
throughput – total number of messages sent (MesgTot),
total numbers of signatures (SignTot), and total number of
signature verifications (VerifTot).

In the case of the metrics related to the throughput (right
hand side of the table), some values of Rampart, PBFT and
BFT2F are presented as a sum (⊕) of two terms. The first
term is constant per request, while the second can be shared
by several requests, so it has a low impact in the performance
when there are many concurrent requests.

The table shows that in nice runs, if the TO wormhole is
not a bottleneck, then BFT-TO has a performance similar
to PBFT. The only parameter that is worse than PBFT is
MesgTot inside the wormhole, but: (1) the messages inside
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LATENCY THROUGHPUT
Algorithm ComSteps SignCP VerifCP MesgTot SignTot VerifTot

1 Rampart 8 3 2(n− f) + n 4n⊕ 3(n− 1) n⊕ (n− 1) (n− f)n⊕ (n− f)(n− 1)
2 PBFT 5 0 0 2n⊕ (n− 1)(2n− 1) 0 0
3 HQ 4 0 0 4n 0 0
4 Zyzzyva 3 0 0 2n 0 0
5 Spinning 5 0 0 2n⊕ (n− 1)(2n− 1) 0 0
6 BFT2F 5 2 2f 2n⊕ (n− 1)(2n− 1) (n+ 1) n(2f + 1)
7 A2M-BFT-EA 5 0 0 n+ 1⊕ (2n− 1)n 0 0
8 MinBFT 4 0 0 2n⊕ (n− 1)n− 1 0 0
9 MinZyzzyva 3 0 0 3n− 1 0 0
10 EBAWA 4 0 0 2n⊕ (n− 1)n− 1 0 0
11 BFT-TO 5 0 0 2n [+(n3 + n2 − n)] 0 0

TABLE 3. Comparison of BFT-SMR algorithms in nice runs

the wormhole do not take the whole request but only a hash
(with, e.g., 32 bytes if obtained with SHA-256), so they
tend to be smaller; and (2) the number of messages sent
can trivially be reduced using piggybacking. Rampart is the
oldest algorithm, so it is no wonder that it has the worse
performance in most metrics. HQ and BFT2F can be quite
efficient with cryptographic acceleration or if the network
delays are high enough to compensate for the use of public-
key cryptography [61]. Zyzzyva and MinZyzzyva are very
efficient in nice runs, but are very sensitive to network delay
variations and client misbehaviour.

4.3. Performance with Faults or Suspicions

The previous section compared the algorithms in nice runs,
i.e., in runs in which there were no faulty servers and the
delays were bounded, which prevented leader suspicions
from occurring. For HQ we also considered that there was no
contention. Here we remove these restrictions and analyze
how the algorithms cope with faulty servers and leader
suspicions, plus contention for HQ. A textual assessment
of the effect of these conditions is shown in Table 4. The
table only includes attacks against the protocol, not generic
attacks like a malicious server flooding the network with
messages to delay the service. We also do not assess the
performance impact of malicious clients.

Most algorithms are affected by network delays or a
faulty leader, which can cause one or more view changes
and consequent delays. Zyzzyva and MinZyzzyva run two
additional communication steps even if a single message
exchanged between client and server is delayed (what they
call a non-gracious execution). Our algorithm, in the
payload, is immune to this effect as there is no leader. If
there are long delays in the TO wormhole control channel,
then consensus can also be delayed, but this effect is
expected to be rare if this channel is a different network (like
in the TTCB wormhole prototype).

Table 4 presents only a description of what is a bad
run and its consequences. Table 5 instead, quantifies the
additional cost in terms of latency of such a run in relation
to a nice run. The column on the right indicates what is the
cost being accounted in the columns on the left.

Most algorithms can run an arbitrary number of view
changes, if the network experiences long delays, so it is

not possible to assess what is the worst case, only the cost
of each additional view change. If the network does not
experience long delays but there are faulty servers, then the
worst case is the execution of f new view changes (in case
the leader is faulty and the following f − 1 leaders are also
faulty). The exception is our algorithm. We do not provide
the metrics related to throughput because we expect the
messages and signature operations done for view change to
be not so relevant when compared with those of processing
requests.

5. RELATED WORK

State machine replication The state machine approach was
first introduced by Lamport for systems in which there
are no faults [64]. Schneider evolved the idea for fault
tolerance [9]. In the 1990s the first Byzantine-resilient state
machine replication (BFT-SMR) libraries appeared. Reiter
and colleagues introduced Rampart [25, 60] and later Castro
and Liskov presented PBFT [24]. In both cases and in
several systems that followed, 3f + 1 replicas are needed.

The reason for this bound is grounded in distributed
computing theory. In practical distributed systems, like
those that rely on the Internet for communication, there is
a considerable uncertainty in terms of time, so they are
often modeled as being asynchronous. This is the same
as saying that these systems make no assumptions about
bounds on communication and processing delays. State
machine replication requires solving atomic broadcast (or
total order broadcast), which is equivalent to consensus
in several variations of the asynchronous model [55, 56,
57]. Byzantine fault-tolerant consensus has been shown
to require 3f + 1 processes for being solved in several
variations of these models [65, 66]. Therefore, it is natural
to require 3f + 1 servers to solve BFT-SMR.

Rampart is an intrusion-tolerant group communication
system. It provides a set of communication primitives and a
membership service, which handles the joining and leaving
of group members [25]. Replication is implemented by a
set of servers that form a group. Clients send their requests
to a server of their choice, similarly to our algorithm. The
output of the service has to be voted so that the results
provided by correct servers prevail over those returned by
malicious servers. Two solutions were implemented: one
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Algorithm Bad run Consequence
1 Rampart Long communication delays or faulty leader One or more view changes
2 PBFT Same as Rampart Same as Rampart
3 HQ Same as Rampart/PBFT if there is contention Change to PBFT and run PBFT
4 Zyzzyva Single longer delay or faulty server More 2 comm. steps, view change
5 Spinning Same as Rampart/PBFT One or more merge operations
6 BFT2F Same as Rampart/PBFT Same as Rampart/PBFT
7 A2M-BFT-EA Same as Rampart/PBFT Same as Rampart/PBFT
8 MinBFT Same as Rampart/PBFT Same as Rampart/PBFT
9 MinZyzzyva Same as Zyzzyva Same as Zyzzyva
10 EBAWA Same as Spinning Same as Spinning
11 BFT-TO Nothing (outside the wormhole) Not affected (outside the wormhole)

TABLE 4. Comparison of what are bad runs and what are their consequences for the SMR services

Algorithm ComSteps SignCP VerifCP Costs of
1 Rampart 6 2 2(n− f) 1 view change
2 PBFT 3 0 0 1 view change
3 HQ 3 to 5 0 0 1 change to PBFT + PBFT execution
4 Zyzzyva 3 0 0 non-gracious exec. and 1 view change
5 Spinning 2 0 0 1 merge operation
6 BFT2F 2 2 2f + 2 1 view change
7 A2M-BFT-EA 3 0 0 1 view change
8 MinBFT 3 0 0 1 view change
9 MinZyzzyva 3 0 0 non-gracious exec. and 1 view change
10 EBAWA 2 0 0 1 merge operation
11 BFT-TO — — —

TABLE 5. Additional costs of bad runs

very similar to ours, and another one based on a (k, n)-
threshold signature scheme, which has poorer performance.

Two additional intrusion-tolerant group communication
systems are SecureRing [67] and SecureGroup [68]. They
also require 3f + 1 servers but there is no discussion
about their use for state machine replication. SecureRing
is based on ring protocols, which are very efficient in local
networks. SecureGroup is based on a family of randomized
atomic multicast protocols. We presented a fourth group
communication system called Worm-IT [69]. That system
is based on an earlier wormhole, the Trusted Timely
Computing Base (TTCB) that provides several services,
instead of the single service of the TO wormhole. The TTCB
services do not allow to solve BFT-SMR with only 2f + 1
replicas, so Worm-IT requires at least 3f + 1 servers.

PBFT is a highly influential BFT-SMR library [24]. It
was designed with performance in mind, so it minimizes
the number of messages sent by having a leader that defines
the sequence of execution of the requests and avoids using
public-key cryptography. Experiments with PBFT have
shown very good performance, leading many researchers to
start to consider BFT-SMR practical for the first time. PBFT
requires 3f + 1 servers and it is not a group communication
system, as the group of servers is fixed.

SINTRA provides a number of group communication
primitives (reliable, causal, atomic multicast) that can be
used to support SMR [26]. These primitives are based on
a randomized Byzantine agreement protocol, therefore they
are fully decentralized and strictly asynchronous. They also

require 3f + 1 processes.
HQ is an evolution of PBFT that uses quorum-based

algorithms when there is no contention, but switches to
PBFT when there is, thus ensuring liveness [27]. Another
algorithm, Q/U, uses lighter, quorum-based algorithms, but
does not ensure the termination of the requests in case there
is contention [62].

Zyzzyva adds speculation to PBFT [23]. It executes
client’s requests before the backups actually agree with the
execution order defined by the primary. If the server is faulty,
something that is supposedly very rare, the service has to
rollback these executions, which makes the programming
model challenging. Zyzzyva achieves excellent performance
in gracious executions, i.e., when there are neither faulty
servers nor delays in the communication. Scrooge shows
that BFT-SMR can perform even better with a few additional
replicas [34]. Zzyzx also evolves Zyzzyva and extends it
with locks, achieving near-linear throughput scaling [70].
UpRight is another BFT-SMR library, but it aims to be easy
to adopt, instead of achieving better performance [30].

PBFT and other algorithms based on a leader may be
vulnerable to attacks that delay the leader in order to make it
suspicious and cause view changes [71]. The PABC atomic
broadcast protocol forces the system to make progress by
running a randomized agreement protocol that delivers any
pending requests before changing the leader [71].

Lamport’s Paxos algorithm trivially solves state machine
replication if there are only crash faults [72]. With Byzantine
faults, transforming Paxos in state machine replication
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is not so simple. Zielinski and Martin et al. proposed
Byzantine Paxos algorithms that terminate in a low number
of communication steps in synchronous and fault-free
executions [73, 74]. To implement SMR, these algorithms
would have to be extended.

Amir et al. designed an hierarchical BFT-SMR system for
WANs [75]. Servers in sites can be replicated, so they use
a Byzantine Link protocol to connect sites and minimize the
number of messages exchanged. The same authors presented
Steward, which also does replication on WANs connecting
possibly replicated servers in sites, but without providing
BFT-SMR [76]. RAM is a BFT-SMR algorithm for WANs
that uses a rotating leader and exploits the A2M abstraction
also used in A2M-BFT-EA [77].

All these algorithms have in common that they require at
least 3f + 1 replicas.

BFT-SMR with less than 3f + 1 replicas The need for
3f + 1 servers to tolerate only f faulty is a well-known
problem of BFT-SMR algorithms, so several works tried to
break this lower bound.

Quorum systems are a way to reason about subsets of
servers (quorums) from a group. Asynchronous quorums
protocols can be used to implement read/write registers but
not to make any service fault-tolerant like SMR. These
registers can be implemented with only 2f + 1 servers if
the data is self-verifying, e.g., if it data objects are signed
with a private key for which the corresponding public key is
available to the readers [63].

Yin et al. presented a state machine replication scheme
that separates agreement about the order in which the
requests are to be run from the execution of the requests [78].
Agreement is carried out by a set of servers, and execution
by another (not necessarily disjunct) set. The benefit is that
agreement has to be done by 3f + 1 servers, while request
execution – the service itself – needs only 2f + 1 servers.
Nevertheless, the total number of servers is still at least
3f + 1.

SPARE and ZZ go one step further by putting some
execution replicas on hold until they are needed [79, 80].
This approach, which is especially useful for datacenters
with many servers but where processing time should be
spared, manages to use 3f + 1 replicas for agreement and
only f + 1 for execution when there are no faults. Distler
and Kapitza use a similar idea to improve the performance
of the BFT service [81].

Li and Mazieres proposed BFT2F, an algorithm that
improves the resilience of PBFT in a different sense [61].
They consider 3f +1 and give the same guarantees as PBFT
if f or less replicas are faulty. However, if more than f
but at most 2f replicas are faulty, the system still behaves
correctly, albeit sacrificing either liveness or providing only
weaker consistency guarantees.

FS-NewTOP is a BFT-SMR system based on the notion
of fail-signal (FS) processes, i.e., processes that announce
when they fail [82]. Each FS process is implemented by
two nodes connected by a synchronous channel. Each node
monitors its peer. When one node detects that its peer

has misbehaved in some way, it signals the failure to all
processes and stops the FS process. The system needs 2f+1
pairs of nodes to tolerate f faulty nodes in different pairs.
However, it does not tolerate two faulty nodes if they are
from the same pair.

The first algorithm that managed to implement BFT-
SMR with only 2f + 1 replicas was an earlier version of
BFT-TO itself, first published in 2004 [35]. The second
algorithm to do the same was A2M-BFT-EA [36]. This
algorithm is based on tamperproof components that are local
to each server, unlike the TO wormhole that is distributed
(includes a control channel). These components provide an
abstraction called Attested Append-Only Memory (A2M)
that essentially implements a log in which all replicas agree.
The abstraction provides functions to append, lookup and
truncate values in the log, but no functions to replace values.
This abstraction provides a means to avoid duplicity, i.e., the
possibility of a faulty server sending inconsistent messages
to different servers. The TO wormhole is more complicated
as it actually assigns sequence numbers to hashes of requests
(or batches of requests).

An even simpler wormhole is the Unique Sequential
Identifier Generator (USIG) of Veronese et al. [38, 37]. It
simply returns a signature of the concatenation of a counter
and a message hash. It provides operations only to increment
the counter and to verify if counter values are correctly
signed. Three algorithms based on the USIG for BFT-
SMR with 2f + 1 replicas have been presented: MinBFT
that is related to PBFT but with less replicas and one less
communication step [37], MinZyzzyva that is inspired in
Zyzzyva but with less replicas and one less communication
step [37], and EBAWA that has improvements for WANs
like rotating the primary (similarly to RAM and Spinning,
which we discuss below) [38]. A good example of
the independence between concept and implementation
of wormholes, is that the USIG wormhole described in
the paper can be implemented either from scratch or in
hardware by the Trusted Platform Module (TPM) chip [42],
wrapped in a thin layer of software that calls the appropriate
TPM functions and provides the wormhole interface to the
payload system. The main services of the TPM used are
a counter, the signature function, and sessions. Abraham
et al. presented a randomized consensus algorithm that also
requires only 2f + 1 processes by resorting to a different
feature of the TPM, the platform configuration registers [83].
The USIG service is similar to TRINC [84].

Performance attacks Amir et al. have shown that PBFT is
vulnerable to two attacks that do not compromise its safety,
but that can seriously impair its performance [28]. In a
pre-prepare delay attack, a faulty server delays the ordering
of most requests. This not only delays those requests
but also greatly reduces the throughput of the service. In
PBFT the backups monitor the behaviour of the leader to
prevent it from stopping to order requests. The backups
do this by imposing a maximum delay for the execution of
requests. However, it is difficult to monitor the time of all
requests so they only monitor the first request of a queue
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of pending requests (similarly to what happens in go-back-n
protocols for reliable communication). This allows a faulty
primary to process one request at a time, strongly delaying
most requests. A timeout manipulation attack consists in
faulty servers increasing the timeouts used in PBFT, again
seriously degrading the performance of the system. These
attacks not only affect PBFT but also others that follow the
same leader-based pattern, e.g., Zyzzyva, UpRight, A2M-
PBFT-EA, MinBFT, and MinZyzzyva.

Prime is the algorithm presented by Amir et al. to prevent
these attacks [28]. It adds a pre-ordering phase of three
communication steps to PBFT. This phase forces the leader
to follow a certain pace in the request ordering process.

Clement et al. also presented a system that aims to
deal with these and similar attacks, Aardvark [29]. It is
also a modification of PBFT that tolerates these attacks by
monitoring the performance of the primary and changing the
view in case it seems to be performing slowly.

Spinning deals with these attacks in a different fash-
ion [32]. It is leader-based like PBFT, but it rotates the leader
whenever a request (or a batch of requests) is ordered. A
faulty leader can only delay requests in its turn, but if such
a delay is detected, that replica is put in a blacklist and is no
longer used as one of the rotating leaders. EBAWA rotates
the leader similarly to Spinning, although it also uses the
USIG and other mechanisms to achieve good performance
in WANs [38].

As already mentioned, BFT-TO is not vulnerable to such
attacks because it is symmetric, not leader-based. When a
faulty server receives a request from a client it can delay
it, but this does not impact the overall performance of the
system. It is up to the client to detect that the server is slow
and to choose another one to contact.

Other works Pedone et al. used weak ordering oracles to
solve crash-tolerant agreement problems in asynchronous
systems [85]. The oracle gives a hint about the order of
the messages, which may be right or wrong. The hint
is simply the order in which the messages are received
from the network, which is often the same in all servers
in a LAN. Our TO wormhole might be considered to be a
perfect ordering oracle that can be used to solve Byzantine
agreement problems.

6. CONCLUSION

State machine replication is a well-known generic technique
for implementing fault- and intrusion-tolerant distributed
services. This paper proposes a novel state machine
replication algorithm, BFT-TO. The algorithm is executed
in an asynchronous and Byzantine environment, with the
assistance of an ordering service executed in a simple
component, the Trusted Ordering Wormhole.

The BFT-TO algorithm, originally published in [35],
introduced a new lower bound on the necessary number of
replicas to perform asynchronous Byzantine fault-tolerant
state machine replication. In essence, we managed to design
an atomic multicast protocol that requires only 2f + 1

servers, instead of the usual 3f + 1 or more. The BFT-TO
algorithm circumvents the FLP impossibility result without
any synchrony assumptions on the payload part of the
system; the partial synchrony necessary to circumvent FLP
is in the wormhole. Interestingly, the Trusted Ordering
service is modular, and since its design is presented and a
correctness proof given, it is re-usable by future works based
on hybrid distributed system models.

From a practical viewpoint, this theoretical result also
allows an important reduction in the complexity and cost of
fault and intrusion tolerant services based on state machine
replication, by 25%-33%. Moreover, a comparison with
similar replicated services in the literature shows that BFT-
TO improves on other BFT-SMR protocols in terms of
several metrics, by exhibiting better performance in the
presence of attacks and faults, whilst maintaining similar
performance in nice runs. Also, BFT-TO is not sensitive
to attacks known to hamper the performance of some of the
best known BFT-SMR algorithms, which are leader-based.
The fact that BFT-TO follows a symmetric structure is key
to this stable behaviour.

In conclusion, it is worthwhile observing that the use
of architectural hybridization has been gaining increasing
acceptance over the past few years. Reputed authors have
published very interesting results relying on the use of
hybrid architectures and/or trusted components of various
grades, with special evidence to some works nearer our
approach [36, 86] but also [77, 87, 88]. We have
published further advances on BFT [37, 38], for example
featuring even simpler wormholes and/or more performant
algorithms.

It is perhaps important to note that these hybrid
architectures are best designed and validated under a hybrid
model, since a homogeneous model cannot formally exploit
the powerful fact of the existence of components following
different assumptions. In other words, we argue that
it may not be enough, for example, to just use trusted
or synchronous components in the midst of untrusted or
asynchronous systems; one should also use an adequate
model to compute with the resulting architecture. A
hybrid distributed system model does not necessarily change
the system, it changes the way in which we look at the
system [41]. It provides a formal reasoning framework for
systems and algorithms where components exist that follow
different assumptions or exhibit different properties from the
remainder of the system (e.g., failure detectors; privileged
synchronous channels; watchdogs or timers; secure logging,
storage, signing or attestation). Such systems, if looked
upon under a homogeneous model (i.e., the classical model),
appear to work, but may very well conceal unexpected
behaviours or unsubstantiated assumptions [89], which may
end-up being a cause of system incorrectness and/or failure.

APPENDIX A. TO WORMHOLE ALGORITHM

This section presents the algorithm that implements the
TO wormhole service, thus giving more details about
the implementation of the TO wormhole (see Section
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2.3). This section presents the algorithm executed when a
process (server) invokes TOW sent and TOW received,
and the TO wormhole generates the action TOW decide.
Remember that each correct server calls TOW sent
whenever it multicasts an ACAST message with one or
more requests, and TOW received whenever it receives
an ACAST message. When the TO wormhole reaches a
decision that an ACAST message can be delivered with
a certain ordering, each local TO wormhole generates an
action TOW decide.

This section requires the reader to make a mental leap:
the algorithm presented here is executed inside a secure
environment, so it only has to tolerate crash faults, no longer
Byzantine faults.

Appendix A.1. TO wormhole’s System Model Revisited

Recall that the distributed TO wormhole is formed by n
local TO wormholes: T = {t1, t2, ...tn}. At most f =
⌊n−1

2 ⌋ local TO wormholes can fail, only by crashing. The
TO wormhole control channel fully connects all local TO
wormholes. Disconnections can happen but communication
will eventually be possible.

We do not make additional statements about the
communication and time models of the TO wormhole5

because the algorithm is presented in terms of two primitives
that we assume are available inside the TO wormhole:
a reliable broadcast primitive and a consensus primitive.
These primitives can be implemented using channels that
may or not be reliable. The implementation of a crash-
failure consensus primitive is straightforward, so it is outside
the scope of this paper. It suffices to say that the TO
wormhole environment has the minimal properties needed
to implement it, namely the partial synchrony assumption
to circumvent the FLP impossibility result (randomization
would also do, in alternative).

The broadcast and consensus primitives are defined
in the usual way. If a message m is sent using the
reliable broadcast primitive (m broadcast(m)), then it
is delivered to all correct (i.e., not crashed) local TO
wormholes (m deliver(m)), including the sender. The
consensus primitive ensures agreement on a single value
v (c decide(v)) among those proposed by the local
TO wormholes (by invoking c propose(v)). Formal
definitions of these primitives can be found, e.g., in [55].

Appendix A.2. The Algorithm

The internal algorithm of the TO wormhole (TOW) is
relatively simple (Algorithm 3). This simplicity is important
in the case of an assurance process for the secure TO
wormhole implementation, whose cost and degree of
confidence would depend strongly on the complexity of the
component.

The protocol is composed of a set of routines. When
TOW sent or TOW received are called, some tests are

5Our first wormhole, the TTCB, was synchronous, i.e., it relied on
known bounds for the communication and processing times [49]. This is
no longer true for the TO wormhole.

performed and the information is broadcast to all local TO
wormholes in SENT and RCVD messages, including the
local TO wormhole where the function was called (lines 4-8
and 9-13). Then, when one of these SENT/RCVD messages
is delivered to the TOW (m deliver), it is simply stored
in a set (lines 14-16).

Recall that ACAST messages are the messages used by
the atomic multicast protocol (Section 3.2.1). When there
are RCVD messages from at least half plus one of the local
TOW about the same ACAST message (one at each server),
a consensus decision is performed (lines 17-21). Function
#t(Set) counts the number of occurrences of tuple t in
set Set. Since the messages are reliably broadcast, each
local TO wormhole delivers the same set of messages and
they all engage in the same decision process. Each local
TO wormhole proposes the information about the ACAST
messages for which it has half plus one RCVD messages
(lines 19-20). Consensuses are executed in sequence,
never concurrently (variable agreeingi enforces this). This
generates batching: while a consensus is running, the local
TO wormholes are being called with information about other
ACASTs, this information is stored and when the consensus
ends a new one is started that does agreement about several
ACASTs, instead of only one. Therefore, a single consensus
can reach agreement about many ACASTs, reducing the
overhead of doing consensus.

When a consensus ends, TOW decide actions with
sequential numbers are generated for each ACAST for
which agreement was reached (lines 22-31). The payload
system and the wormhole network do not ensure timeliness
or ordering of messages, so it is theoretically possible
for the consensus to end without a local TO wormhole
having received the SENT and RCVD messages for one
of the messages agreed upon. In that (improbable) case,
line 24 blocks the task of lines 22-31 until a SENT or
RCVD message is received. Notice that the has msg set
of TOW decide is set in line 26 taking into account
the SENT/RCVD messages received, so different local
wormholes can return different has msg sets. This does
not violate the TO Wormhole Agreement property, which
does not state that these sets are identical. Furthermore, the
correctness of the atomic multicast protocol does not depend
on this set, which is used simply to indicate processes to
which the message does not need to be sent (Algorithm 2,
line 41).

A malicious server can attempt a denial of service attack
against the TO wormhole by repeatedly calling TOW sent
or TOW received. The latter is clearly ineffective since a
call to TOW received with information about an ACAST
message that is unknown or for which the call has already
been made returns error codes UNKNOWN and RECALL,
respectively (see Table 2). The former is prevented by
returning error code NO RESOURCES. For returning this
error code, there has to be a notion of how many calls
are too many for the TO wormhole to handle. This limit
can be defined in terms of the maximum number of calls
per unit of time, or a call can be rejected simply when set
M receivedi has a certain number of messages. To return
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RECALL the wormhole has to store data about previous calls
to TOW sent or TOW received that did not return error.
This can be done efficiently by storing only the sender and
message identifiers. In an asynchronous system this would
require infinite buffers, but in practice message identifiers
can be reused periodically, so this data can be stored in a
circular buffer in each local TO wormhole.

Appendix A.3. Correctness

The algorithm has to satisfy the three properties in Section
2.2. Recall that the system model requires that local TO
wormholes either follow the algorithm or crash, and that at
most ⌊n−1

2 ⌋ can crash.

TO Wormhole Validity. If a correct (i.e., non-
crashed) local TO wormhole generates an action
TOW decide(sender id, msg id, order n, hash, has msg),
then there was a call to TOW sent(sender id, mem-
bers, msg id, msg hash) and at least ⌊n−1

2 ⌋ calls
to TOW received(*, members, msg id, msg hash,
sender id) in different correct local TO wormholes. More-
over, if order n> 1, then the local TO wormhole has done
an action TOW decide(*, *, order n−1, *, *).

First part. An inspection of the algorithm shows that
there is a TOW decide action for an ACAST message if
it is decided by a consensus (lines 22-31). Furthermore, an
ACAST message is proposed for consensus only if there was
a call to TOW sent and ⌊n−1

2 ⌋ calls to TOW received
corresponding to that message (lines 17-21). Second part.
Trivial from lines 2 and 22-31.

TO Wormhole Agreement. No two different local TO
wormholes generate two actions TOW decide with the
same order n but different sender id, msg id, hash or
has msg.

All local TO wormholes generate all TOW decide
actions by applying the same deterministic algorithm to the
values returned by the same sequence of consensuses (lines
22-31), therefore all generate the same sequence of actions.

TO Wormhole Termination. If there is a call to
TOW sent(sender id, members, msg id, msg hash) and
⌊n−1

2 ⌋ calls to TOW received(*, members, msg id,
msg hash, sender id) in different correct local TO worm-
holes, then eventually every correct local TO wormhole does
an action TOW decide(sender id, msg id, order n, hash,
has msg).

An inspection of the algorithm shows that this property is
always satisfied.

APPENDIX B. PROTOCOL CORRECTNESS

This section makes an argument about the correctness of the
atomic multicast and the state machine replication protocols.

Appendix B.1. Atomic Multicast

Algorithm 2 implements an atomic multicast protocol if
it satisfies properties AM1-AM4 in Section 3.2.1, for

messages m = Sreq (see lines 7 and 46), assuming no more
than f = ⌊n−1

2 ⌋ servers are faulty.

AM1 Validity. If a correct server multicasts a valid message
m, then some correct server eventually delivers m.

A correct server multicasts a message m = Sreq by
calling atomic mcast(m) (line 7). As m is valid, it is sent
in an ACAST message to all other servers and TOW sent is
called (lines 8-10).

The properties of the channels guarantee that the ACAST
message is eventually received by all the correct servers
except the sender (line 15). Let us call these servers
“receivers”. As the message is valid, it is inserted in
the set A receivedj in all correct receivers (lines 16-17).
As the sender called TOW sent, eventually the call to
TOW received in the correct receivers does not return an
error, and the message is inserted in A wait decidei (lines
23-32).

As there is one correct sender and at least ⌊n−1
2 ⌋

receivers, the properties of the TO wormhole guarantee
that it eventually does an action TOW decide (line 33)
giving an order number to that message (TO Wormhole
Termination), that that number is the same to all servers
(TO Wormhole Agreement) and that the previous numbers
are also given to other ACAST messages (TO Wormhole
Validity). The order number is inserted in T decidedi in all
correct servers (line 34).

As the message and the order number are inserted
respectively in A wait decidei and T decidedi in all correct
servers, and the same happens with all previous messages,
the message is eventually delivered in the loop in lines 36-
48.

AM2 Agreement. If a correct server delivers a message m,
then all correct servers eventually deliver m.

This property is intuitive. All servers must deliver the
same message for the following reasons:

• the servers deliver the messages for which they get a
TOW decide action, and all local TO wormholes gen-
erate the same actions in all correct servers (properties
TO Wormhole Agreement and TO Wormhole Termina-
tion);

• the servers use the hash of the message in
TOW decide to know if they have the message
and we assume this function is collision-resistant, so
the message delivered must be the same;

• a server must receive the message it has to deliver,
either sent by its original sender (in line 9) or, if that
sender is faulty, by some other correct server (line 41).

AM3 Integrity. For any identifier ID, every correct server
delivers at most one message m with identifier ID, and if
sender(m) is correct then m was previously multicast by
sender(m).

The ID of a message is what makes it unique, which in
this case is the hash of the set Sreq (for a certain sender
and group of servers S). The property has two parts. The
proof of the first part is simple: correct servers only deliver
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Algorithm 3 TO wormhole algorithm (local TOW ti).

1: M receivedi←∅ {set with messages received from the other TO wormholes}
2: orderi←1 {order of the next message}
3: agreeingi←FALSE {indicates if ti is running a consensus}

4: when TOW sent(id, members, msg id, msg hash) is called do
5: {do tests and return error code in case of error (see Table 2)}
6: m broadcast(⟨SENT, id, members, msg id, msg hash⟩)
7: return OK

8: end when

9: when TOW received(id, members, msg id, msg hash, sender id) is called do
10: {do tests and return error code in case of error (see Table 2)}
11: m broadcast(⟨RCVD, id, members, msg id, msg hash, sender id⟩)
12: return OK

13: end when

14: when m deliver(m) do
15: M receivedi←M receivedi ∪ {m}
16: end when

17: when (∃members, ∃msg id, ∃sender id : #⟨RCV D,∗,members,msg id,∗,sender id⟩(M receivedi) ≥ ⌊n−1
2
⌋+1) ∧ (agreeingi = FALSE)

do
18: agreeingi←TRUE

19: Si←{⟨SENT, id, members, msg id, msg hash⟩ ∈M receivedi: #⟨RCV D,∗,members,msg id,∗,sender id⟩(M receivedi)≥ ⌊n−1
2
⌋+1}

20: c propose(Si)
21: end when

22: when c decide(S) do
23: for all m ∈ S do {in deterministic order}
24: wait until ∃m′ ∈M receivedi : m′.sender id = m.id ∧m′.members = m.members ∧m′.msg id = m.msg id
25: S′

i ←{m′ ∈M receivedi : m′.sender id = m.id ∧m′.members = m.members ∧m′.msg id = m.msg id}
26: TOW decide(m.sender id, m.msg id, orderi, m.msg hash, {m′.id : m′ ∈ S′

i})
27: orderi←orderi + 1
28: M receivedi←M receivedi \S′

i

29: end for
30: agreeingi←FALSE

31: end when

messages for which they get an action TOW decide, and
the TO wormhole is trustworthy so it does not do two such
actions for messages with the same hash.

The second part is trivial since a correct server gives the
TO wormhole not only the hash of the message but also its
own id (si in line 10), the TO wormhole is trustworthy, and
the servers only deliver a message when they get an action
TOW decide with the id of the sender and the hash.

AM4 Total order. If two correct servers deliver two
messages m1 and m2 then both servers deliver the two
messages in the same order.

Correct servers deliver the messages in the order defined
by the TO wormhole and given in the actions TOW decide
and the TO wormhole is trustworthy, so this is always true.

Appendix B.2. State Machine Replication

As discussed in Section 3, property SM1 (Initial state) is an
issue of the initial system configuration and property SM4
(Determinism) is not enforced by the algorithm. Therefore,
the properties we have to prove here are SM2 and SM3:

SM2 Agreement. All correct servers execute the same
commands.

All servers execute commands in line 17 (Algorithm
1), picking these commands from the messages delivered
by the atomic multicast protocol (lines 13-20), which
delivers the same messages to all correct servers (property
AM2 Agreement), therefore all servers execute the same
commands.

SM3 Total order. All correct servers execute the commands
in the same order.

The proof is similar to the proof of property SM2
but taking into account that the atomic multicast protocol
delivers the messages in the same order to all correct servers
and that the commands in the messages are executed in a
deterministic order.
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