Blockchain Ecosystem for Verifiable Qualifications

Diogo Serranito, André Vasconcelos, Sérgio Guerreiro, Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
Lisbon, Portugal
{diogo.serranito, andre.vasconcelos, sergio.guerreiro, miguel.p.correia} @tecnico.ulisboa.pt

Abstract—Human resource contracting processes depend on
trustworthy qualifications (diplomas or certificates) that may be
counterfeit or falsified and are hard to verify manually. This
paper leverages blockchain technology and smart contracts, to
enforce a decentralized verification solution for higher education
certificates, e.g., university diplomas. The solution allows Higher-
Education Institutions (HEI) to register the certificates they issue
in the blockchain, and recruiting organizations to check the
authenticity and integrity of these certificates. The solution is
implemented through five major components: i) the consortium
smart contract, ii) the HEI smart contract, iii) the HEI client,
iv) the recruiter app, and v) the consortium app. A prototype
of the implementation is tested in a real blockchain (a testnet)
and the challenges raised with the experiment are identified and
discussed with a main focus on the decentralization mechanism
performance.

Index Terms—Authenticity, Blockchain, Document verification,
Education certificate, Ethereum, Integrity, Smart contract.

I. INTRODUCTION

Recruitment of qualified personnel for an organization can
be a lengthy process, as it may require analyzing a large
number of candidate curricula. Moreover, verifying paper or
digitized certificates can be a very time consuming process,
as it may involve manually contacting the academic institution
that granted them, which is necessarily costly in terms of time
and resources consumed. However, verification is necessary,
as there is a market of counterfeit academic diplomas and
certificates. According to a recent survey, over half of the
curricula and job applications (53%) contain falsifications and
over three quarters (78%) are misleading [1]. Even politicians
and other public figures are often found at the center of
controversies over the qualifications they report.

Most academic certificates today are still issued in paper,
then sometimes digitized to PDF or a similar format. Digital
signatures based on public-key cryptography [2] can be used
to provide the same or more security than the paper-based
solution. However, digital signatures have to be verified with
a public key, that must be bound to an identity and distributed
in a secure way, i.e., its authenticity and integrity must be guar-
anteed. This problem is known and is solved with a Public-Key
Infrastructure (PKI), that must include a set of organizations
designated Certificate Authorities (CAs) [3]. CAs issue digital
certificates (not to be confused with academic certificates) that
contain bindings between a public key and an identity. This

978-1-7281-7091-6/20/$31.00 ©2020 IEEE

is a heavy solution with several difficulties, one of them the
centralized nature of CAs.

A globalized world requires a solution for this problem that
goes beyond ad hoc agreements or national-level structures.
Moreover, the solution has to be decentralized, in the sense
that it should not rely on third parties to support it, as no third
party can be well-accepted in every country. It also needs to
assure certain cybersecurity attributes, specifically authenticity,
integrity and availability of the relevant qualifications data. It
has to be modular to support expansions, and scalable to sup-
port an increasing number of players. Blockchain technology
offers solutions to these challenges by providing decentralized,
immutable (append-only), transparent, and trustworthy storing
of data [4]-[7]. Furthermore, it allows organizations to remove
intermediaries, reducing the time of going through third-
parties, while also lowering the cost of transactions.

We propose such a solution for the qualification verification
problem, i.e., for the verification of digital documents con-
taining qualifications that we simply designate as certificates.
To satisfy all the requirements, more than a system we
need an ecosystem, that is flexible and can grow with the
demand. Therefore, our solution is indeed an ecosystem based
on a permissionless, open, blockchain. The solution allows
Higher-Education Institutions (HEISs) to register the certificates
they issue (e.g., graduation diplomas) in the blockchain (but
not storing the certificates in the blockchain), and recruiting
organizations to check the authenticity and integrity of these
certificates. This ecosystem of HEIs and other organizations
is being developed in the context of project QualiChain, that
will assess it in the context of a set of pilots and add advanced
features that are out of the scope of this article (e.g., career
counselling, intelligent profiling, and competency evaluation)
[8].! In fact, the ongoing digital transformation of the area
creates many challenges [9]. A prototype of our solution is
available online.?

At the current state of the art, and of the practice, the
major software engineering challenge of such an ecosystem is
arguably to ensure decentralization. Despite decentralization
being one of the main selling points of blockchain and
Distributed Ledger Technology, in practice many solutions end
up being centralized, or as good as if they were centralized. In
the paper we discuss two important dimensions of decentral-
ization and show how our solution achieves them: governance

Uhttps://qualichain-project.eu/
Zhttps://github.com/QualiChain/consortium

decentralization and access decentralization. There are others
like geographical and mining decentralization [10].

The document is organized as follow. Section II discusses
related work. Section III presents the background concepts,
and the main solutions for qualifications. Section IV describes
the ecosystem of the problem to be solved, and details the
proposed implementation. Section V evaluates the obtained
results. Section VI identifies the challenges that are posed to
the software engineering field. Finally, Section VII concludes
the paper.

II. RELATED WORK

To the best of our knowledge no similar ecosystem is
available today. There are a few preliminary proposals of
systems for storing certificate data in a blockchain, but they
are focused on a limited environment, not in providing a
decentralized, scalable ecosystem that supports a consortium
of HEIs.

Two recent projects addressing the problem of reliability of
qualifications are Open Badges and Blockcerts.

Open Badges [11] are verifiable, portable, digital badges
with embedded metadata about skills and achievements. Open
Badges, from version 1.1 upwards, are Linked Data objects
represented in JSON-LD format, defined under the relevant
JSON-LD context (currently, Open Badges v2.0). They can
be incorporated in digital images in PNG or SVG format
that represent the certificate in a visual way, e.g., with the
information of the certificate holder and a signature and a
stamp of the issuer (called badge baking), or be used as a
stand-alone data packet. Open Badges can be stored online
(preferable in data storage with Linked Data support) or offline
as files, in which form they can also be easily transferred.

Blockcerts [12] consists of open-source libraries, tools,
and mobile apps enabling a decentralised, standards-based,
recipient-centric ecosystem, enabling trustless verification
through Blockchain technology. The initial design was based
on prototypes developed at the MIT Media Lab and by
Learning Machine Technologies. An application example for
MIT graduates: students receive their diploma through an
app called Blockcerts Wallet; this tamper-proof diploma can
then be verified by any employer or school [13]. Blockcerts
uses Open Badges as certificates and Blockchain addresses as
recipient identification. For simplicity of usage and security,
the Blockcerts Wallet generates its own key pair, sending the
respective public key to MIT, which stores it in a digital
record. The student’s certificate is generated as an Open
Badge and the digital hash of the badge is stored on a public
Blockchain (at the moment Bitcoin or Ethereum) and added
to the badge, together with the id of the transaction that
contains the hash on the selected Blockchain. This way, it
is possible to verify the issuing date of each badge by looking
at the date of the Blockchain block that contains the badge
hash. Then, an employer can efficiently verify if a digital
diploma is legitimate, through a portal where the diploma can
be uploaded, and its hash compared with the one stored in the
Blockchain.

There is other related work. Mikroyannidis et al. have
studied the problem with a focus on the learning process [14].
The European Union under the guidance of CEF Digital is
implementing the European Blockchain Services Infrastructure
(EBSI), currently in version 1 [15]. One of the EBSI’s initial
use cases aims to support digital diplomas, but this is still in
development.

Our ecosystem may be considered a Decentralized Au-
tonomous Organization (DAO), but unlike most DAOs we do
not aim to provide or use a cryptocurrency [16], [17]; on
the contrary, our DAO is an ecosystem of HEIs that provides
services to recruiters and alumni.

Despite all these examples, no ecosystem for granting
diplomas is available today.

III. BLOCKCHAIN AND SMART CONTRACTS

In simple terms, a blockchain is a decentralized computing
system and a replicated trustworthy data store that maintains
an immutable (i.e., append-only) data structure composed of
a sequence of blocks [5], [6]. Originally, the term blockchain
designated a component of the Bitcoin system [4], but today
the term is used generically. Blockchains can be permissionless
(anyone can join) or permissioned (permission to join is
granted by an organization or a consortium of organizations).
From this explanation, it becomes clear that permissioned
blockchains suffer from governance centralization, so we opted
for a permissionless blockchain.

Ethereum, the blockchain technology we target in the pro-
totype, is one of the most popular blockchains. Ethereum
is an open-source, public, distributed platform [18]3 As a
permissionless blockchain, it allows organizations to easily
verify data stored there, e.g., certificates. Similarly to Bitcoin,
Ethereum implements a cryptocurrency, denominated ether.
However, it also supports the execution of smart contracts
[18], [19] in the nodes, i.e., it is programmable. Essentially
thousands of nodes contain and execute the same smart
contracts. A smart contract can be considered to be an object
in the object-oriented paradigm, as it has state stored in a
set of local variables/attributes, a set of functions that allow
changing that state, and the ability to invoke functions in
other smart contracts. A client or a smart contract calls a
function in a smart contract by issuing a transaction, that
is executed by every node when the block that contains that
transaction is appended to the blockchain. All transactions are
authenticated by their issuer with a digital signature obtained
using its private cryptographic key, which can be verified using
the corresponding public key.

IV. THE (ECO)SYSTEM

An ecosystem is composed of one or more consortiums.
Each consortium includes a set of HEIs. For instance, project
QualiChain is bootstrapping a consortium with a few HEIs,

3Notice that our ecosystem is not limited to run in the Ethereum public
network as there are several blockchains and technologies that are compatible
with Ethereum smart contracts. However, we mention the blockchain as
Ethereum in the paper for simplicity.

but eventually more HEIs will join and other independent
consortiums may appear.

An ecosystem with a single consortium and three HEIs is
represented in Figure 1. Data about the consortium is stored
in the blockchain in a consortium smart contract. This smart
contract contains data about the HEIs that are part of the
consortium and the rules of the consortium (e.g., how a HEI
can join). Each HEI is itself represented by a HEI smart
contract that contains data about the certificates it has issued.
All these smart contracts exist in a blockchain, e.g., Ethereum.
HEIs run a HEI client, an application, that registers certificates
in the HEI smart contract. The smart contract does not store
the files of the certificates (PDF files), so they may be stored
by the HEIs and the alumni, or in a decentralized file storage
system like IPFS [20], Ethereum SWARM [21] or Metadisk
[22]. Finally, recruiters run a recruiter app that allows them
to verify if a certificate file was indeed emitted by a certain
HEL

The architecture in the figure starts illuminating what we
mean by governance decentralization: there can be several
consortiums and each one is managed by its HEIs. It also
shows what we mean by access decentralization: there are no
access intermediaries, as the blockchain is replicated in many
nodes and all components are managed by their owners, who
may even have several instances of them (e.g., a HEI can have
several HEI clients).

All entities that compose the ecosystem interact with the
Ethereum blockchain through a JavaScript application. Three
different modules were developed and adapted to the needs of
each class of entities:

e HEI Client: this module offers the possibility for regis-
tration and revocation of education certificates (Section
IV-C).

e Recruiting App: this module allows recruiters to easily
verify a candidate’s education certificate (Section IV-D).

o Consortium App: this module allows new HEIs to join
the platform through a consortium-based voting system
(Section IV-E).

Next we present in more detail the different components of

the ecosystem, starting with the two smart contracts:

o Consortium Smart Contract: accessed by the HEIs to
manage the membership of the consortium and by the
recruiters to get the address of the HEI’s smart contracts
(Section IV-A).

e HEI Smart Contract: accessed by all entities to store or
get certificate hashes (Section IV-B).

A. Consortium Smart Contract

The consortium level is mainly the consortium smart con-
tract. Without compromising decentralization, in our solution
we consider that there is an entity that jumpstarts a consortium
by deploying that contract into the blockchain. In our case,
contracts were written in Solidity [23], the most adopted
language for Ethereum. Before deployment, Solidity code has
to be compiled to Ethereum virtual machine (EVM) code,
which is the language actually executed by Ethereum nodes.

The consortium smart contract defines a mapping (a key-
value data structure) named contracts that associates the
identifier of every registered HEI to its smart contract address.
For HEI identification we use Decentralized Identifiers (DIDs),
as defined by the W3C [24]. These identifiers are designed
to allow the entity identified by the DID, e.g., a HEI in our
case, to prove control over the DID, and to be implemented
independently of a centralized registry, identity provider, or
certificate authority (CA). DIDs are essentially URLs that
relate a subject to means for trustable interactions with that
subject.

The basic functionality of the smart contract is provided by
three functions/operations:

o registerHEI(id, address): register the address of the HEI
smart contract of a new HEI joining the consortium
(recall that all function calls are authenticated using a
signature, in this case the HEI’s);

o removeHEI(id): delete a HEI’S smart contract to cancel
its registration in the consortium;

o getHEI(id): return the HEID’s contract address correspond-
ing to the received identifier.

Here governance decentralization comes again into play: it
is up to the consortium to decide if the HEI is allowed to join
or leave, similarly to what happens in many organizations,
such as private associations. When a HEI wants to join the
developed platform, it deploys its smart contract (see next
section) and makes a request to join the current consortium by
calling registerHEI(id, address). This call is a manifestation of
interest in joining that does not grant that effect automatically.
In fact, other members of the consortium have to show their
agreement. There are other options, but we designed a simple
voting scheme. Other HEIs vote on that HEI joining by calling:

o voteRegisterHEI(myld, id), whereas myld is the DID of
the voter, which must be a member of the consortium,
and id the DID of the HEI willing to join.

The registration of the HEI takes effect when the number
of votes reaches a certain threshold 7, that is also stored in
a variable of the consortium smart contract.

A similar scheme is used for a HEI to leave the consortium
by calling removeHEI(id). Others also vote for removal with
voteRemoveHEI(id). A difference is that, optionally, a number
of T, HEIs may call voteRemoveHEI(myld, id) and force a HEI
to be removed even if it does not call voteRemoveHEI(myld,
id), e.g., due to some kind of misconduct.

The threshold value can be adjusted according to the con-
sortium needs. Again this involves a voting scheme and two
functions:

o changeThreshold(id, newT,): starts the process of chang-

ing T,;

o voteChangeThreshold(myld, starterld, newT,): votes on
the change, where starterld is the id of the party that
called changeThreshold. If the previous threshold value
of votes is reached, the stored variable is changed to the
new value.

Consortium members can also read 7, by calling:

/

Blockchain

HEI smart
contract 1

consortium
smart
contract

HEI smart
contract 2

HEI smart
contract 3

/

recruiter
app |

Fig. 1. Data flow diagram representation of an ecosystem with a single consortium of three HEIs. Each HEI may also run a Consortium App to manage the

membership of the consortium (not represented).

o getThreshold(): returns current value of 7.

This voting scheme is another vector of governance de-
centralization, as it is up to the members of a consortium
to manage different aspects such as who can join and how
many votes are needed to take decisions. On the contrary,
there is no centralized entity to manage and supervise the
actions being performed. The voting scheme can be made more
complicated and may mimic governance mechanisms used in
private associations.

B. HEI Smart Contract

Similarly to what happens with the smart contract of the
previous section, the HEI smart contract can have different
versions depending on different design options, but we devel-
oped a single one, that we now present.

The HEI smart contract holds a mapping, certificates, that
associates a job seeker id with the cryptographic hash of his
certificate. There are many options for this job seeker id, e.g., it
may be the civil id, the student id he had in the HEI, a DID,
etc. Cryptographic hash functions, e.g., SHA-2 and SHA-3,
have two important properties [25]:

e one-way: it is not possible to obtain the input from the
output (the hash);

e strong collision resistance: it is computationally infeasi-
ble to find two different inputs that have the same hash.

In our case these properties mean that it is not possible
to retrieve a certificate from its hash (one-way) and it is
not possible to falsify certificates by finding two different
certificates with the same hash (strong collision resistance).

The contract provides the following functions:

o registerCertificate(id, hash): register a certificate on the
blockchain by storing the job seeker id and a cryp-
tographic hash of the certificate file; notice that the
certificate itself is not stored in the blockchain, only its
hash that has the property of being one-way;

o revokeCertificate(id): revoke a certificate (this should
be rarely used but may be necessary as mistakes can
happen);

o verifyCertificate(id): allows verifying if a specific certifi-
cate is registered and not revoked, by returning the hash
or an exception.

The first two functions check if they were called by the HEI
that owns the contract, and return an exception otherwise. The
third can be called by anyone. This solution supports a single
certificate per student per HEI but can be trivially extended to
support more, e.g., by including a type of certificate in the id.

We present the Solidity code of the HEI smart contract
in Figure 2. The security of smart contracts is an important
concern today [26], [27], but this smart contract is small
enough for us to argue it has no vulnerabilities, at the current
state of knowledge about Solidity / Ethereum security. The
consortium smart contract is larger, approximately 240 lines of
code, but still very small when compared with common source
code. Specifically, these sizes are small when be compared
for example with PHP web applications that can have tens
or thousands of lines of code [28], or with databases like
MariaDB and PostgreSQL that have around 2 million each.*
The number of vulnerabilities and bugs in general is known
to depend strongly on the number of lines of code [29].

“https://github.com/AlDanial/cloc

pragma solidity >=0.4.22 <0.6.0;
contract HEI {
address owner;
mapping(uint => bytes32) certificates;

constructor() public{
owner = msg.sender;

modifier isOwner() {
require(owner == msg.sender);

L=
function registerCertificate(uint id, bytes32 hash) isOwner public{
certificates[id] = hash;
}
function revokeCertificate(uint id) isOwner public{
certificates[id] = 0;
¥
function verifyCertificate(uint id) public view returns (bytes32 hash) {
if(certificates[id] != @) {
return certificates[idl;
}

}
}

Fig. 2. HEIs smart contract Solidity code.

Moreover, this code can be checked using a code verification
tool [30].

C. HEI Client

HEIs typically run an Academic Management System
(AMS) such as Moodle, Blackboard or FenixEdu. When a
student graduates, HEI staff interacts with the AMS to issue
the student’s certificate. The AMS will then generate the
certificate and make it available for the staff, that typically
prints it.

We designed a HEI client that automatically registers the
certificate in the blockchain instead of printing it. We de-
signed an interface with FenixEdu® (but it works identically
with others) that monitors a folder, that we designate reg-
istered_certificates, where certificates are temporarily stored
in PDF format. Whenever a new education certificate is
stored in the registered_certificates folder, a watcher throws
an event that leads to a call to the registerCertificate(id, hash)
function of the HEI smart contract, where id is the job seeker
id (taken from the filename or file metadata) and hash is
the cryptographic hash of the PDF file. For that purpose,
an Ethereum transaction is created. After the transaction is
confirmed, the file is stored in a decentralized file system. In
our prototype we store the file in IPFS by contacting an IPFS
node [20]. IPFS returns a multihash (a self-describing hash)
that can be used by anyone connected to the IPFS network to
retrieve this file.

When there is the need to revoke a certificate registered
on the blockchain, the HEI interacts with its AMS, that
adds the certificate to be revoked to a shared folder named
revoked_certificates. The HEI client has a second watcher that
monitors that folder, leading to a call to function revokeCer-
tificate(id) of the smart contract.

Shttps://fenixedu.org/

D. Recruiter App

When a recruiting organization opens a job position, there
is the need to make a selection of the most appropriate
candidates. Before or during this selection, certificates of the
candidates need to be verified. For employers to receive a
candidate’s certificate, two approaches are possible: receive the
certificate file from the candidate; receive the IPFS multihash
corresponding and retrieve the certificate file from IPFS.

After acquiring the file with the certificate, the recruiter
can use the recruiter app to verify the certificate authentic-
ity/integrity. The recruiter app requests the job seeker id, the
DID of the HEI, and the certificate file. Then the app calls
the getHEI() function on the consortium smart contract and
receives a hash that is compares with the hash of the certificate
file. If they are identical, the file is authentic, otherwise it is
not.

E. Consortium App

The process of accepting/dismissing HEIs from a consor-
tium needs to be dynamic and reliable. This system was
developed for members to have complete trust in it, there-
fore, transparency is another major property that needs to be
assured. Blockchain technology provides this property, being
one of the main benefits of adopting such a disruptive system.
The Consortium smart contract is the core component of the
voting system, where all polls and the respective votes are
registered. Therefore, there is a complete transparency of the
voting process, since the votes of all HEIs are openly available
on the blockchain.

An interface was also developed to support the Consortium
App, that will facilitate the interaction of members with the
consortium contract. This interface provides three forms and
lists of ongoing polls, one for each of the contract’s main
voting operations.

1) Register HEI: As stated previously, whenever a HEI
decides to join the platform, it deploys its own HEI smart
contract on the Ethereum blockchain and communicates its
intents to the consortium by invoking the registerHEI() func-
tion.

When a consortium member runs its own Consortium App,
it will start by querying the consortium contract for currently
ongoing polls. This is accomplished by calling the getPolling-
Info() function, that will return four different elements stored
in the contract:

o registerldArray: array containing the identifiers associ-
ated with the HEIs currently being voted to join the
consortium.

o registerContractArray: array containing the HEI contract
addresses associated with the HEIs currently being voted
to join the consortium.

o cancelldArray: array containing the identifiers associated
with the HEIs currently being voted to leave the consor-
tium.

o thresholdVotingValue: new value currently being voted to
replace the current threshold.

The Consortium App interface will then be updated with the
received information, that consortium members can interact
with to vote in any of the currently available polls.

After receiving this information, consortium members can
vote on this poll by interacting with the Register HEI form
in the Consortium App interface. The Consortium App will
then create a new transaction and sign it with the private key
of the HEI that is using the application. This transaction will
invoke the voteRegisterHEI() function in the Consortium smart
contract, with the respective values as arguments.

2) Remove HEI: Even though a HEI leaving the consortium
will be a rare occurrence, this may happen due to a variety of
reasons. It can be the HEI itself that decides to leave or the
other members agreeing on its exclusion. If this is the case,
one of the members (including the HEI itself) can start a new
poll by interacting with the Remove HEI form available on the
Consortium App interface.

The respective poll will then be displayed in the interface
by calling the getPollinglnfo() on startup. When submitted, a
transaction is created and signed with the HEI’s private key,
and sent to the blockchain network. This transaction invokes
the voteRemoveHEI() function in the consortium contract, with
the HEI identifier as an argument.

3) Change Threshold: For a poll to be successful/rejected,
the number of positive/negative votes needs to reach the
threshold value defined in the consortium contract. However,
this value needs to be dynamic to match the fluctuation in the
number of consortium members. Therefore, the Consortium
App interface provides the Change Threshold form, which
receives the new value to be proposed and starts a new poll
to replace the threshold.

After having filled and submitted the New value field, the
application will create a new transaction signed with the
private key of the HEI utilizing the interface. This transaction
is sent to the blockchain network and will be processed by
executing the changeThreshold() function of the consortium
contract. The function receives the new threshold.

Other members of the consortium can then vote if they
accept or reject the alteration on the threshold value by
initializing the Consortium App. On startup, the interface
will be updated through the getPollingInfo(), providing the
possibility to vote by interacting with the respective poll.

4) Contract Address: The Consortium App also provides
an auxiliary functionality in addition to the main voting
operations. The form HEI Contract Address available on
the interface, allows any consortium member to retrieve the
contract address associated with a given HEI identifier. A
member inserts the DID linked with a HEI and presses the
Submit button, which will trigger a call from the application
to the consortium contract. This request will call the getHEI()
function from the contract, that receives a HEI identifier as an
argument and returns the respective HEI contract address.

If the entered DID corresponds to a HEI that is part of
the consortium and, therefore, registered in the consortium
contract, the respective HEI contract address is displayed on
the interface. Otherwise, it will present an error message

indicating that the HEI is not a member of the consortium.
This functionality is useful for members to check if a specific
HEI is registered on the contract.

V. EVALUATION

The solution is being evaluated in the context of our
university (a HEI) and a public institute that often contracts our
students. At this stage, we made performance measurements
that we summarize below.

Ethereum is a permissioneless blockchain so anyone can
join and use the infrastructure. To avoid abuse, Ethereum
charges ether for the execution of smart contracts, which
makes it inconvenient to use when the purpose is to evaluate
applications. For that purpose there are a set of Ethereum
test networks or festnets that emulate Ethereum’s behavior
and do not require payment (ether is obtained for free in a
“faucet”). Ropsten was the testnet chosen since it is the one
that most resembles the main network. Blocks are introduced
at an average of 20 seconds on average, similarly to Ethereum.

We assess three performance metrics: throughput, opera-
tions executed per unit of time; latency, average time to com-
plete operations; cost of executing the operation in Ethereum.
The first two were measured using executions in Ropsten
(repetitions of 100 operations, certificates of approximately
100 KB) and the third obtained in the Etherscan Ethereum
Blockchain Explorer (that shows data about transactions and
blocks in Ethereum and related systems). The first two in-
volved running a modified version of the HEI client and the
recruiter app. A more detailed explanation of these testing
procedures is written below.

e Register Certificate: this operation was tested by using
the HEI Client to register 100 education certificates to
calculate the system’s throughput. The measured latency
expresses the interval of time between storing a certificate
and the respective transaction being correctly sent to the
blockchain network and added to a new block. After the
transaction is confirmed, the transaction fee represents the
amount paid to the miner for processing the transaction.
The cost information can be obtained from a blockchain
explorer such as Etherscan.

e Revoke Certificate: for this operation, 100 education cer-
tificates were generated to assess the system’s throughput
by utilizing the HEI Client. The latency metric indicates
the interval of time between the request to revoke a
certificate and the respective transaction being correctly
sent to the blockchain network and added to a new block.
The corresponding transaction fee represents the amount
paid to the miner for processing the transaction. The cost
information can be obtained from a blockchain explorer
such as Etherscan.

o Verify Certificate: this operation was tested by generating
and verifying 100 education certificates simultaneously
through the Recruiting App. The latency presented rep-
resents the interval of time between the request for a
certificate verification and the result of this verification
(successful/failed).

TABLE I
ECOYSTEM EVALUATION RESULTS.
Operation Throughput (cert/s) | Cost (ether) | Latency (s)
Register certificate 42.98 0.00023792 27
Revoke certificate 119.78 0.00013708 25
Verify certificate 74.27 0.00000000 1.285

The results are shown in Table I. Several interesting con-
clusions can be taken from the table. First, throughputs are
reasonably low, but this was expectable as the experiments
were done in a testnet and with a single client. Second, the
latency for registration and revoking is apparently bad, 25s
and more, but transactions are only executed after a block is
inserted in the blockchain, something that happens on average
every 20s. Third, the cost of verification is O and the latency
is much lower than the others, because we are running a
local version of verification that runs in the local node (this is
possible because this operation does not modify the state of
the smart contract).

40
~ 35
o)
]
3 - ®
2 30 I3
>
% 3
5 25 -
— 1 1
20
400 600 800 1,000
File size (kB)

Fig. 3. Register Certificate latency for different file sizes.

In Figure 3 it is possible to observe that the certificate’s
size has little to no influence in the latency, since mining the
respective transaction and adding it to a new block occupies
the largest percentage of the processing time. The standard
deviations correspond mostly to network delays, queue sizes
and the Ether amount offered to the miners for processing a
transaction.

From the obtained results, it is evident the benefits the
adoption of this project can bring to any recruiting organi-
zation. Besides making recruitment processes more efficient,
less time-consuming and cost free, it also gives employers
the assurance of legitimacy and integrity in all education
certificates received from their candidates.

VI. SOFTWARE ENGINEERING CHALLENGES

As already mentioned, the major software engineering
challenge we face is architectural: ensuring decentralization.
A permissionless blockchain like Ethereum provides a high
degree of decentralization by running in a large number of
nodes without any central control (except for new software
versions that, however, can be installed by the participants in
their nodes). However our design shows that there are many

traps — often observed in practice — that may impair that
property:

e smart contracts may centralize governance, by being
managed by a single organization (typically the entity
that deployed it);

« web frontends may centralize access, by forcing requests
to pass through a single web server (or a set of web
servers under the same administration), in some cases
even including a centralized backend database;

« file storage may be centralized in the cloud, network
attacked storage, behind a web frontend, etc.

Solving these challenges involves keeping the need for
decentralization in mind and scrutinizing the design looking
for centralization, as this is the usual form of designing
systems today. Decentralization is hard because it is not natural
for today’s system architects and programmers.

Our design suggests other challenges. A first example is
testing, that has to be done locally before deployment, plus
also later in runtime as the blockchain environment is complex.
An intermediate scenario is running the system in a testnet, as
we did in the evaluation.

A second example of challenge is version management.
Smart contracts cannot be substituted by new versions, so
version management functionality has to be implemented on
the smart contract, e.g., by supporting an exception newVer-
sionAvailable that returns the address of a new version of the
contract. Again, governance decentralization is an issue: who
decides about the new version?

VII. CONCLUSION

We presented the first ecosystem for certificate verifica-
tion at a large, potentially world-wide scale. The ecosystem
leverages blockchain for decentralization, as centralization is
undesirable in such an heterogeneous context.

The ecosystem is based on a permissionless blockchain,
currently Ethereum, that runs two types of smart contracts:
Consortium Smart Contract and HEI Smart Contract. More-
over, three applications were developed, two for Higher Educa-
tion Institutions and the other for recruiting organizations. The
HEI Client allows an AMS to automatically register a freshly
generated education certificate on the blockchain, while being
relieved from the burden of such operations. The Recruiting
App is able to verify a candidate’s certificate authenticity by
requesting registered information from the respective HEI’s
smart contract available on the blockchain. The Consortium
App allows consortium members to interact with the voting
system implemented on the consortium contract.

We concluded by discussing the software engineering chal-
lenges involved, mainly those related to decentralization.

The presented solution was developed and deployed in a real
use case of Recruitment in the Public Sector Pilot, integrating
a public school of engineering and technology, and also a
public institute in the fields of administrative modernization,
simplification and digital administration. This work is expected
to be a baseline, from where other education institutions and
employing organizations can adhere and build upon.

ACKNOWLEDGMENT

This work was supported by the European Commission program
H2020 under the grant agreement 822404 (project QualiChain) and
by national funds through Fundac@o para a Ciéncia e a Tecnologia
(FCT) with reference UIDB/50021/2020 (INESC-ID).

[9]

[10]

[11]
(12]

[13]

[14]

[15]

[16]

(17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

REFERENCES

StatisticBrain, “Resume Falsification Statistics,”
statisticbrain.com/resume-falsification-statistics.

R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of the
ACM, vol. 21, no. 2, pp. 120-126, 1978.

ITU-T, “International Telecommunication Union. ITU-T Recommenda-
tion X.509: The Directory: Public-Key and Attribute Certificate Frame-
works,” 2000.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
S. Underwood, “Blockchain beyond Bitcoin,” Communications of the
ACM, vol. 59, no. 11, pp. 15-17, 2016.

M. E. Peck, “Blockchains: How they work and why they’ll change the
world,” IEEE Spectrum, vol. 54, no. 10, pp. 26-35, 2017.

M. Correia, “From Byzantine consensus to blockchain consensus,” in
Essentials of Blockchain Technology. CRC Press, 2019, ch. 3.

C. Kontzinos, O. Markaki, P. Kokkinakos, V. Karakolis, S. Skalidakis,
and J. Psarras, “University process optimisation through smart curricu-
lum design and blockchain-based student accreditation,” in Proceedings
of 18th International Conference on WWW/Internet, 2019.

I. R. Keck, M.-E. Vidal, and L. Heller, “Digital transformation of
education credential processes and life cycles: A structured overview
on main challenges and research questions,” in [2th International
Conference on Mobile, Hybrid, and On-line Learning (eLmL 2020),
2020.

A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer,
“Decentralization in Bitcoin and Ethereum networks,” in International
Conference on Financial Cryptography and Data Security. Springer,
2018, pp. 439-457.

IMS Global, “OpenBadges v2.0,” https://openbadgespec.org/, 2020.
Blockcerts consortium, “Blockcerts,” https://www.blockcerts.org/guide/,
2016-2019.

E. Durant and A. Trachy, “Digital diploma debuts at MIT,”
http://news.mit.edu/2017/mit-debuts- secure-digital-diploma-using-
bitcoin-blockchain-technology-1017, 2017.

A. Mikroyannidis, A. Third, and J. Domingue, “Decentralising online
education using blockchain technology,” in The Online, Open and
Flexible Higher Education Conference: Blended and online education
within European university networks, Oct. 2019.

CEF Digital, “European Blockchain Services Infrastructure (EBSI),”
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EBSI, 2020.
A. Norta, “Creation of smart-contracting collaborations for decentralized
autonomous organizations,” in International Conference on Business
Informatics Research. Springer, 2015, pp. 3-17.

C. Jentzsch, “Decentralized autonomous organization to automate gov-
ernance,” White paper, Nov. 2016.

Ethereum team, “Ethereum: A next-generation smart contract and de-
centralized application platform,” 2014, White Paper.

N. Szabo, “The idea of smart contracts,” http://szabo.best.vwh.net/smart_
contracts_idea.html, 1997.

J. Benet, “IPFS: Content addressed, versioned, P2P file system,” arXiv
preprint arXiv:1407.3561, 2014.

Swarm, “SWARM: Storage and communication for a sovereign digital
society,” https://ethersphere.github.io/swarm-home/, 2019.

S. Wilkinson, J. Lowry, and T. Boshevski, “Metadisk a blockchain-based
decentralized file storage application,” Tech. Rep., 2014.

Ethereum, “Solidity,” https://solidity.readthedocs.io/en/latest/index.html,
2016-2019.

W3C, “Decentralized Identifiers (DIDs) v1.0,” https://www.w3.org/TR/
did-core/.

G. Tsudik, “Message authentication with one-way hash functions,” ACM
Computer Communications Review, vol. 22, no. 5, pp. 29-38, Oct. 1992.
L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 254-269.

https://www.

(27]

[28]

[29]

(30]

A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “VeriSolid:
Correct-by-design smart contracts for Ethereum,” in International Con-
ference on Financial Cryptography and Data Security. Springer, 2019,
pp. 446-465.

1. Medeiros, N. F. Neves, and M. Correia, “Automatic detection and
correction of web application vulnerabilities using data mining to predict
false positives,” in Proceedings of the International World Wide Web
Conference, Apr. 2014, pp. 63-74.

T. Llanso and M. McNeil, “Estimating software vulnerability counts in
the context of cyber risk assessments,” in Proceedings of the 51st Hawaii
International Conference on System Sciences, 2018.

T. Durieux, J. F. Ferreira, R. Abreu, and A. P. C. Monteiro, “Empirical
review of automated analysis tools on 47,587 Ethereum smart contracts,”
in 42nd International Conference on Software Engineering (ICSE 2020),
Dec. 2019.

