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Abstract—MapReduce is a framework for processing large
data sets much used in the context of cloud computing. MapRe-
duce implementations like Hadoop can tolerate crashes and
file corruptions, but not arbitrary faults. Unfortunately, there
is evidence that arbitrary faults do occur and can affect the
correctness of MapReduce job executions. Furthermore, many
outages of major cloud offerings have been reported, raising
concerns about the dependence on a single cloud.

In this paper we propose a novel execution system that allows
to scale out MapReduce computations to a cloud-of-clouds and
tolerate arbitrary faults, malicious faults, and cloud outages. Our
system, Chrysaor, is based on a fine-grained replication scheme
that tolerates faults at the task level. Our solution has three
important properties: it tolerates the above-mentioned classes of
faults at reasonable cost; it requires minimal modifications to
the users’ applications; and it does not involve changes to the
Hadoop source code. We performed an extensive evaluation of our
system in Amazon EC2, showing that our fine-grained solution is
efficient in terms of computation by recovering only faulty tasks.
This is achieved without incurring a significant penalty for the
baseline case (i.e., without faults) in most workloads.

I. INTRODUCTION

Since MapReduce was proposed in 2004 [1], it has been
widely adopted in practice. The original implementation cre-
ated by Google was proprietary, but a few open versions have
been developed, among which the popular Hadoop MapRe-
duce [2].

MapReduce is a paradigm that combines distributed and
parallel computation with distributed data storage and retrieval.
This programming model allows a user to analyze data that
resides in a distributed file system using two types of func-
tions: map and reduce. MapReduce offers means to handle
data partitioning, task scheduling, distributed computation, and
fault tolerance in a cluster of commodity servers, such as
those available in common cloud computing services. Since
its origin, it has been used for a variety of tasks, from page
ranking [3] to climate research [4], genome analysis [5], [6],
astrophysical problems [7], and high-energy physics simula-
tion [8].

The last years have witnessed the requirements for data- and
compute-intensive analysis to grow significantly, increasing
the need to scale out computation across clouds. However,
Hadoop MapReduce supports only execution in a single cloud
(or datacenter). Using multiple clouds to store and compute
data can bring many benefits. First, it increases resilience by
avoiding single points of failure. A user can be made immune

to any single cloud datacenter outage by spreading its applica-
tions across providers. Second, it can improve performance –
for example by taking advantage of data locality (bringing the
data to a cloud closer to the user), or by leveraging from the
computing and network diversity of multiple infrastructures.
Third, it can improve security, for instance by exploring
the interaction between public and private clouds. A tenant
that needs to comply with privacy legislation may demand
certain data to be stored in a specific location (e.g., in a
private facility). Finally, it may help in reducing costs, by
taking advantage of dynamic pricing plans from multiple cloud
providers [9].

In this work we provide a solution for doing MapReduce
computation on such multi-cloud – or cloud-of-clouds – en-
vironment, for fault tolerance. Indeed, at scales of thousands
of computers, switches, routers, power units and other com-
ponents, failures are frequent. Therefore, both Google’s and
Hadoop MapReduce use two mechanisms to tolerate crash
faults: they monitor the execution of tasks and reinitialize
them in case they stop (thus tolerating crash faults); and they
add checksums to files that contain data to detect file corrup-
tions [2], [10]. However, these MapReduce implementations
neither handle arbitrary or malicious (Byzantine) faults, nor
cloud outages.

Unfortunately, accidental arbitrary faults that may affect
the correctness of the results have been known to happen,
corrupting the processing and leading to wrong values. A
study on Google datacenters concluded that DRAM errors
are more prevalent than previously believed, with more than
8% DIMMs affected by errors yearly, even if protected by
error correcting codes (ECC) [11]. Also, a Microsoft study of
1 million consumer PCs showed that CPU and core chipset
faults are frequent [12]. A recent study at Facebook provided
evidence that more recent DRAM fabrication technologies lead
to higher error rates [13]. This shows that the problem, far
from being solved, may indeed become more frequent.

Second, malicious attacks perpetrated by cloud insiders or
external hackers can also cause corruption of the processing
and of its results. For example, a malicious insider in a cloud
that hosts an epidemiological surveillance system can tamper
the diagnosis of patients with tragic consequences. A recent
report mentions malicious insiders as one of the top threats in
cloud computing [14], and alarming instances of this problem
have occurred in companies such as Google [15], [16].
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Third, cloud outages may lead to the unavailability of
MapReduce instances and data loss. Experience shows that
these events are also frequent, with cases of unavailability of
minutes to days in services like Google Drive or Amazon EC2,
to name just a few [17]. Several cases have been reported,
including the disruption of one Amazon EC2 datacenter for
almost five hours in 2015 [18], and the disruption of the
Google Cloud Engine service for some periods in 2016,
affecting customers in all regions [19]. Cloud outages can
interrupt the execution of MapReduce jobs, and the original
framework cannot deal with this type of fault as it is restricted
to work in a single datacenter.

In this paper we propose a novel MapReduce runtime
environment, Chrysaor, that scales out MapReduce compu-
tations to clouds-of-clouds in order to tolerate arbitrary faults,
malicious faults, and cloud outages. Chrysaor is based on
a fine-grained replication scheme that tolerates faults at the
task level. This scheme allows recovering from faults by re-
executing only the tasks that were affected. In previous work
we have proposed a system, Medusa [20], which shared the
goal of allowing MapReduce computations to tolerate the same
type of faults. However, Medusa worked at the granularity of
MapReduce jobs, resulting in a high cost for fault recovery.
For a realistic workload composed of several map and reduce
tasks, the single fault in a task would require the whole job
to be recomputed in Medusa.

The challenge of achieving the form of fine-grained replica-
tion we target in Chrysaor – of tasks, not full jobs – is expo-
nentiated by one of our requirements: not changing the Hadoop
source code. Our goal is for our system to use unmodified
Hadoop runtimes running in the clouds, including commercial
offerings, such as Amazon Elastic MapReduce [21]. As a
result, Chrysaor employs a more sophisticated approach that
involves the creation of “logical jobs” to enable the re-
execution of MapReduce tasks, in order to reduce the cost
of recovery from a fault.

Tolerating cloud faults through replication may be consid-
ered expensive as one expects these faults to be rare. The
reality contradicts this expectation: cloud outages are becom-
ing very common [22], [23]. Moreover, Hadoop MapReduce
is increasingly being used for critical applications such as
medical research and finance, where any incorrectness or
unavailability issues may be unacceptable. Cloud providers
seem to share this concern: Amazon recently launched Cross-
Region Replication to automatically replicate data in different
geographical locations [24]. Motivated by these facts, we
believe the cost of replication to be acceptable for such
critical applications, in order to guarantee that rare faults with
devastating consequences do not occur. Nevertheless, limiting
the cost of replication does not cease to be an important goal
in our design.

We have performed an extensive experimental evaluation
of our system on Amazon EC2. The main conclusion is that
Chrysaor is more efficient in terms of computation (number
and size of replicas executed) by recovering only faulty tasks,
instead of the whole job. This is achieved without incurring a

significant penalty for the baseline case (i.e., without faults)
in most workloads.

In summary, the main contribution of this work is
Chrysaor1, a system that leverages from several Hadoop
MapReduce runtimes spread in different clouds to provide
fault-tolerance against arbitrary and malicious faults, and cloud
outages. Chrysaor fulfills three additional requirements. First,
it requires only minimal modifications to the users’ applica-
tions. Second, it is based on Hadoop but does not involve
modifications to the Hadoop source code. Third, it achieves
its goals at a reasonable cost, as our experimental evaluation
shows. As a result, with Chrysaor users can outsource their
critical computations while being assured that the result is
trustworthy.

II. HADOOP MAPREDUCE

This section briefly introduces MapReduce and its imple-
mentation in Hadoop, as background for our work. Hadoop is
an Apache project that includes the Hadoop kernel, Hadoop
MapReduce, and Hadoop Distributed File System (HDFS).

As the term MapReduce suggests, an execution of an
application, commonly known as a job, consists in executing
map and reduce functions. Many cases of computations that
process large amounts of raw data can be solved using this
model [1].

A job is executed in two phases, also called map and reduce.
In each phase, the map or the reduce tasks process input data
and produce an output. Each part of the job input (a split) is
processed by the map function in a map task. Then, the output
of the map tasks is partitioned, sorted and transferred to the
reduce tasks in a phase called shuffle&sort. Finally, the reduce
tasks run the reduce function and save the final output.

In Hadoop, MapReduce jobs are submitted to and managed
by a central service called resource manager (previously called
JobTracker). The role of the resource manager is to assign the
execution of (map and reduce) tasks to node managers (previ-
ously called TaskTrackers). The framework is composed of the
resource and node managers. The resource manager arbitrates
the use of resources in the system, and the node manager is
responsible for managing containers where tasks run. When
a job is submitted, the resource manager reserves resource
containers, monitors the nodes, and tracks the progress of the
job.

HDFS is the main distributed storage used by MapReduce
applications. By default the input files for a MapReduce job
reside in HDFS and are divided into blocks that are replicated
in a set of hosts for fault tolerance. By default, each map
task saves its output in the local file system (to avoid the
unnecessary burden of data replication) and the final job output
is saved in HDFS (then replicated for fault tolerance).

Hadoop tolerates faults by (i) monitoring and restarting
tasks when servers, node managers or the tasks themselves
crash; and (ii) adding checksums to the files in HDFS to

1Medusa was a Greek mythology figure that had snakes in place of hair.
Chrysaor was one of the sons of Medusa and his name meant “he who bears
a golden sword”.
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detect data corruption in disks. However, these mechanisms
only work in a single cloud and deal only with crash faults.

III. PRELIMINARIES

This section presents the system model and the problem
Chrysaor aims to solve.

A. System model

The system is composed by a set of distributed processes
(see Figure 1): the client that request the execution of job,
the proxy (also called Chrysaor) that submits the job to
the resource manager, the resource manager that governs
the execution of jobs and tasks in a cloud, and a set of
node managers that execute map and reduce tasks. We do
not consider the components of HDFS in the model, as the
algorithm is mostly orthogonal to that service. For simplicity
we consider that each cloud contains exactly one MapReduce
runtime.

We say that a process is correct if it follows the algorithm,
otherwise we say it is faulty. We also use these two words to
denominate a task (map or reduce) that, respectively, returns
the result of applying the map/reduce function to the input
(correct) or some other result (faulty). We assume that clients
are always correct, because they are not part of the MapReduce
execution. If clients were faulty, the job output would be
necessarily incorrect. We also assume that the proxy is always
correct because it runs at the client side, e.g., in the same
host as the client or in a host under the same administration.
Resource managers and node managers can fail arbitrarily:
they can return wrong results (e.g., processing corruption,
or malicious insider) or even stop executing (e.g., due to a
cloud outage). A cloud is faulty if it becomes partitioned
from the rest of the processes, it is compromised by a
malicious attacker, or suffers an outage (e.g., due to a natural
disaster, a disconnection from the Internet, or another severe
communication problem).

Our algorithm is configured with two parameters f and t. In
distributed fault-tolerant algorithms f is usually the maximum
number of faulty replicas, but in our case the meaning of f
is different and weaker: f is the maximum number of faulty
replicas that can return the same wrong output given the same
input. t is the number of faulty clouds that the system tolerates
before the service becomes unavailable. The rationale is that
f is the maximum number of replicas that can be faulty and
still allow the system to find out that the correct output of the
MapReduce computation is O. If the system selects the correct
output by picking the output returned by f+1 task replicas, it
will never select O′ (the wrong result) because it is returned
by at most f replicas. Similarly to the usual parameter f , our
f has a probabilistic meaning (hard to quantify): it means that
the probability of more than f faulty replicas of the same task
returning the same output is negligible.

The other parameter, t, is the maximum number of clouds
that may fail arbitrarily (including outages and malicious
faults). We assume there are at least 2t+ 1 clouds, to ensure
that there are always enough clouds to execute the job.

Chrysaor
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Resource 
Manager

Resource 
Manager

Node 
Manager

Cloud C

Resource 
Manager

Resource 
Manager

Node 
Manager

Cloud B

Resource 
Manager

Resource 
Manager

Node 
Manager
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Fig. 1: MapReduce in a multi-cloud system.

Chrysaor does not rely on assumptions about processing
and communication delays per se. On the contrary, the orig-
inal MapReduce makes assumptions about such times for
termination (e.g., they assume that heartbeat messages from
correct node managers do not take indefinitely to be received).
Therefore, Chrysaor also makes these assumptions implicitly.

We assume that processes are connected by reliable chan-
nels, so no messages are lost, duplicated or corrupted. In
practice this is provided by TCP connections. We assume the
existence of a hash function that is collision-resistant, i.e., it
is unfeasible to find two inputs that produce the same output
(e.g., SHA-256).

B. Problem formulation

We aim at tolerating (i) arbitrary and malicious faults, and
(ii) cloud outages, when running MapReduce jobs in multi-
cloud systems. To tolerate f faults, a basic approach is to
create 2f + 1 replicas of each task (i.e., the task running in
each cloud), spread them in 2t + 1 clouds, and compare the
2f + 1 outputs of each task. If at least f + 1 outputs are
identical, the tasks that produced them must be correct and
this must be the correct output, due to the definition of f . The
proxy can replicate all tasks, verify all outputs, and obtain the
correct output of the job.

This basic approach is expensive in terms of computation.
Even if there is no fault, each job is executed 2f + 1 times.
Therefore, our objective in this work is to design a proxy that
ensures the MapReduce job running in multiple distributed
clouds to tolerate cloud faults while (i) minimizing the amount
of processing; (ii) ensuring efficient completion of the entire
MapReduce job; (iii) and tolerate faults at the task level.

IV. CHRYSAOR

To tolerate arbitrary/malicious faults and cloud outages,
tasks need to be replicated in a few clouds for ensuring
the existence of f + 1 identical outputs, thus the correctness
of the result. Let us first describe briefly how our previous
system works [20]. Medusa has a proxy that works similarly
to a middleware node in a multi-cloud environment. In that
solution, a full job execution is comprised of two phases.
The first phase runs a vanilla MapReduce job in each cloud,
which holds a copy of the data to be processed. The second
phase runs a global MapReduce job that aggregates the outputs
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from all clouds to generate the final job result. If insufficient
identical results are obtained, additional vanilla MapReduce
jobs are executed.

In Chrysaor, the proxy still works as a middleware node,
but now it has the advantage of just relaunching failed tasks,
instead of having to relaunch a whole job in case of no
majority.

A. Chrysaor overview and logical jobs

Our solution involves defining the concept of logical job.
To perform fine-grained replication, more specifically to re-
execute faulty tasks, we would like Hadoop MapReduce to
provide an API to control the execution of a job (e.g., to pause
it), but such an API is not available. There would be two ways
to solve this limitation: (i) by modifying the Hadoop source
code to provide such control; (ii) or to split a job into parts that
from the point of view of Hadoop are still jobs (as Hadoop
can only execute jobs). We opted for the latter solution.

Chrysaor executes jobs that are divided into two logical jobs
that are launched and managed by the Hadoop framework in
each cloud. From the Hadoop viewpoint, each logical job is a
complete MapReduce job. From the Chrysaor viewpoint, the
first logical job is dedicated to execute solely map tasks, whilst
the second logical job is dedicated to the execution of reduce
tasks (preceded by identity map tasks, as will be explained
next). These logical jobs are replicated in different clouds.

The end of the Chrysaor map phase corresponds to the end
of the first logical job, so by default Hadoop would write the
output in HDFS. This has a penalty in terms of performance,
so in Chrysaor this output is written in a RAM disk (a virtual
disk in RAM memory). The second logical job will read the
stored data and will execute the reduce tasks. Since it is not
possible to run a job in Hadoop starting from the reduce tasks
(another API limitation), we need to use identity map tasks
that output the same input data that reduce tasks consume.

During the execution of map and reduce tasks, each task will
generate one digest of the output that our application will use
to validate the result. In case there are enough identical results,
the proxy will consider that the task has ended successfully.
In contrast, if there are not enough identical results, Chrysaor
creates a new logical job to run just the faulty task(s).

B. Chrysaor operation

Chrysaor has the capability to deal with accidental and
malicious faults in the map and reduce tasks. In this section
we explain the operation of Chrysaor in steps: first without
faults, second with arbitrary faults, and finally with malicious
faults. We consider f = 1 and t = 1 in the examples.

a) Chrysaor without faults: Figure 2 depicts a successful
job execution in Chrysaor without faulty tasks. The scenario
contains two MapReduce runtimes in two clouds. It assumes
that input data is replicated in both clouds before the execution
begins.

When the client (not represented in the figure) requests
Chrysaor to execute a job, t + 1 = 2 clouds (clouds A and
B) are selected by the proxy (Chrysaor in the figure) to run
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2. fetch digests from map outputs
3. vote map output
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5. fetch digests from reduce outputs
6. vote reduce output
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Input data
Output data
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Fig. 2: Chrysaor executing a job in two clouds without faults

the first logical job (step 1). Chrysaor executes max (f, t) + 1
replicas of each logical job, which in this case means 2
replicas, one per cloud as f = t = 1 (max returns the
maximum of two numbers). During execution, each map task
creates a digest of the map output. The digests are fetched
(step 2) and compared by Chrysaor to check if all map task
replicas produced the same results (step 3). This is the case
(we are considering no faults), and so the second logical job
is launched (step 4).

The second logical job will read the data that was stored
previously, run the identity map tasks, and do the shuffle&sort
phase before the reduce tasks start. The reduce tasks will
produce the final output and the corresponding digest that
will be fetched by our system (step 5). Again, Chrysaor will
compare the results (step 6). As there are no faults, the results
are the same and the job execution terminates successfully.

b) Chrysaor with arbitrary faults: This section explains
the case when a map or reduce task returns a wrong output.
The alternative case of a task not returning a result at all is
not as interesting because it is handled autonomously by the
Hadoop runtime: the resource manager of the cloud where
the task is being executed simply re-executes the task in the
already selected clouds.

Chrysaor detects that the result of a task is wrong when
it observes that replicas of the task return different results,
i.e., that there are no max (f, t) + 1 identical results (2 in the
example). Notice that it does not know which of the replicas is
faulty, only that one of them is faulty as there is disagreement
on the result. In that situation, Chrysaor creates a logical job
with that task in both clouds and re-executes it.

Chrysaor cannot differentiate if a fault that affected the
task was accidental or malicious. If it was accidental, the

4



Chrysaor

M

2.

7.

Actions:
1. launch 1st logical job
2. fetch digests from map outputs
3. vote map output
4. relaunch 1st logical job
5. fetch digests from map output
6. launch 2nd logical job
7. fetch digests from reduce outputs
8. vote reduce output

M

1.

2.

6.

4.

5.

M

Mid
R

Execution of the job
Re-execution of the job

Mid
R

Input data
Output data
Wrong output data

M M

Cloud A Cloud B Cloud C

M

3., 8.

Fig. 3: Chrysaor executing a job in two clouds with a map task
re-execution in another cloud due to a fault

re-executions may be done in the same clouds: if the faults
are intermittent, they will eventually no longer affect the
same tasks; if they are permanent, the Hadoop runtime will
eventually choose other node managers (and other nodes). If
the fault is intentional – malicious – it may affect a whole
cloud so it is advisable to use another cloud.

Chrysaor allows configuring how to deal with such faults,
but the key idea is that it can try a few times to re-execute
the tasks in the same clouds, then pick additional clouds if no
agreement is reached. Specifically, there is a threshold Tfaults

that is defined by the user. When Tfaults occur, Chrysaor
considers that there may be malicious faults and it picks an
additional cloud to execute tasks (next section).

If a faulty result is detected at the end of the second logical
job, it is necessary to relaunch the faulty reduce task. This
involves re-running not only the reduce task but also the
identity map tasks that precede it. The job ends successfully
when all reduce task replicas produce the same result.

c) Chrysaor with malicious faults: When Chrysaor is
dealing with malicious faults or cloud outages, it has to execute
tasks in another cloud until it obtains max (f, t) + 1 equal
results. As already explained, Chrysaor is not able to detect
that there is malicious behavior; it simply starts using a new
cloud when the threshold Tfaults is exceeded.

Figure 3 depicts the re-execution of a job when map tasks
suffer a malicious fault and Tfaults is exceeded (e.g., because
Tfaults = 0). Something similar would happen if there was
a cloud outage. Cloud C is going to be used to execute the
extra replica. At the end of the first logical job (step 3), there
is a task that did not return equal results forcing the system
to re-launch the same job in cloud C (step 4). The validation
of the digests in cloud C (steps 5, 6) will allow the system to
obtain the correct result and show that A may be malicious as
it did not provide the correct result. Again, at the end of the

execution of the second logical job, Chrysaor reads the digests
(step 7). If the execution has ended correctly, the solution has
the capability to validate the results and find which cloud is
compromised.

In case of a malicious fault at the end of the second logical
job, i.e., in the reduce tasks, it is necessary to execute a new
full job in the new cloud, and wait to validate the output result.
This is the worst case scenario in terms of performance. If
more clouds were necessary and were not available, Chrysaor
would abort the execution and inform the client.

C. Chrysaor implementation
On the contrary of the rest of Section IV that explains

Chrysaor at design level, here we explain its implementation.
The proxy (Chrysaor) is installed in the client machine. It

interacts with the resource manager in each cloud using the
RabbitMQ message broker [25]. The proxy suspects that there
was a cloud outage when its connection to a resource manager
times-out.

Besides the proxy, Chrysaor provides a Java library that is
installed in each resource manager. Although Hadoop supports
map and reduce functions written in a few languages, the cur-
rent implementation of Chrysaor supports only Java. Hadoop
is not modified, which leads to each resource manager still
being a single point of failure in its cloud. The framework is
configured to store temporary outputs in RAM disk.

The server-side Java library has the goal of intercepting
certain calls done by the executing jobs to the Hadoop API
in order to execute Chrysaor server-side code. The calls
are intercepted using AspectJ during the execution of the
MapReduce job. AspectJ is an aspect-oriented extension to
Java that allows, essentially, adding hooks that force calls
to external methods in certain conditions, without requiring
modifications to the original source code [26].

For an user to take advantage of Chrysaor, she has to do
minor modifications to her application. The user does not need
to modify the Java code of the map and reduce functions to
use Chrysaor. The updates are related to the definition of the
identity map function. The user can create his own identity
map code, or use the template that is available in the Chrysaor
library. The identity map code has to take as inputs a key and
values with the same types (classes in Java) as those returned
by the job’s map function.

Chrysaor intercepts write calls that are made inside the map
and reduce functions to update the digest for each key and
value produced by the task [27]. When the task ends, it invokes
the cleanup method. The cleanup call is intercepted by the
Chrysaor server code to save the digest locally. The set of
digests produced by the replicated tasks will be used to detect
incorrect results.

The job is launched using the run method from the Job-
Client interface provided by the Hadoop API. JobClient pro-
vides facilities to submit jobs and track their progress.

V. EVALUATION

The objective of our experimental evaluation is to answer
the following questions: (1) How does the performance of
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Chrysaor compares with its nearest system, Medusa, and with
vanilla MapReduce in a baseline scenario without faults?
(Section V-B.1); (2) What is the gain of the fine-grained fault-
tolerance introduced in Chrysaor? (Sections V-B.2 and V-B.3);
(3) How does the type of job affect Chrysaor’s performance?

Section V-A describes the experimental setup as well as
the configuration of our solution. Section V-B reports on the
performance of Chrysaor, considering both the presence and
absence of faults during job execution.

A. Experimental setup
To answer the aforementioned questions we evaluate

Chrysaor in a real-world scenario. We have configured a
testbed in Amazon EC2 to run all experiments. This service
provides a distributed networked infrastructure-as-a-service
for computation and storage in the cloud. We considered
three common applications provided by Hadoop’s Gridmix
benchmark [28]: WordCount, WebdataScan, and Sort. This
choice aims to ensure application diversity in terms of com-
munication and computation requirements. We have applied to
all the applications the slight modifications required to run our
system (cf. Section IV-C). We run each experiment 10 times,
reporting in the figures the average results, and the 5th and
95th percentiles.

WordCount. The first application we evaluated is related to
Web indexing. Running WordCount in a multi-cloud system
can be considered as building the inverted indexes of a multi-
site web search engine for each search site (i.e., cloud). Each
cloud runs a local MapReduce job to parse the documents, and
to build a search index that supports frequency-inverse doc-
ument frequency style ranking functions (TF-IDF). This can
be achieved by running WordCount as a vanilla MapReduce
job in each cloud. To ensure the same search results can be
retrieved as in a single-cloud search engine, the input data
need to be replicated in each cloud.

WebdataScan. This application has the goal to extract value
from big data, an increasingly important tool for decision-
making. WebdataScan extracts a small amount of relevant data
from a large data set, which is a common form of processing
and data analysis in many systems. The map tasks keep just
a small fraction of the data (0.2%) and the reduce tasks again
return just a small part of their input (5%).

Sort. The last application we evaluated does sorting of big
data, another typical use of MapReduce. Sort is an example
of a benchmark that is computationally-intensive (rather than
communication-bound). In this application the intermediate
key/value pairs are processed in increasing key order. This
ordering makes it easy to generate a sorted output file per
partition, which is useful when the output file format needs to
support efficient random access lookups by key, for instance.

To simulate a real-world scenario, we have set up three
clouds located in different Amazon EC2 sites (Oregon, North
Virginia, and California). Each cloud is composed of one
resource manager (master) and four node managers (slaves).
The hosts are general purpose instances that provide a balance

of compute, memory, and network resources. Each instance
contains a 2.3 GHz Intel Xeon E5-2686 processor for a total
of 8 vCPUS per server. Each server has 12GB of memory,
and 150GB of Elastic Block Store (EBS) space. The clouds
are protected from the outside world using firewalls, so it is not
possible to access them without proper credentials or specific
configurations.

We compare the performance of Chrysaor, Medusa, and
vanilla MapReduce in terms of the time it takes to complete the
entire job (makespan). Medusa is the only system to tolerate
arbitrary and malicious faults, and cloud outages (at the job
level). So we use it as a baseline.

Based on the observation that the faults we consider in this
paper, despite potentially having devastating consequences, are
rare, we consider f = t = 1 in our experiments.

B. Experimental performance

a) Performance without faults: We start by analyzing
the performance of Chrysaor without faults. In Figure 4a,
we check the performance of the WordCount application with
several sizes of input data, ranging from 1GB to 8GB. The
choice of these input sizes is based on the fact that the
MapReduce jobs that run in Microsoft or Yahoo! production
clusters typically operate over input sizes under 14GB [29].
When compared with Medusa, we see that Chrysaor got
slightly worse results. The reason is that in WordCount the
map tasks produce a map output larger than the input data,
so the identity map tasks will compute large data, with a
considerable overhead. As result, Chrysaor is 5% to 27%
slower than Medusa in the reported cases.

The WebdataScan application is mostly centered in the map
side. As such, less time was spent in the second logical job.
As consequence, a full execution in Chrysaor spends a similar
amount of time in the map and reduce tasks as in Medusa. In
other words, the identity map tasks and the digests produced
while the tasks run did not introduce visible delay as in the
WordCount application. Thus, we can see in Figure 4b similar
results between Chrysaor and Medusa.

In the Sort application (see Figure 4c), Medusa got worse
results in comparison to Chrysaor, due to the fact that gener-
ating digests after job execution in Medusa delays the entire
execution (it involves invoking an HDFS command to access a
file). In contrast, the digests are generated while the output is
being produced in our new solution. Due to the large output
that is produced, the characteristics of Chrysaor wins over
Medusa. For instance, in the case of 4GB, Chrysaor was 16%
faster. It was not possible to run a use case with 8GB of input
data due to lack of memory. Anyway, the trend is clear in
showing the advantage of Chrysaor for this type of application.
Overall, generating a digest while the output is being produced
is shown to be better than generating a digest after the reduce
tasks finish. Importantly, this gain would not be made possible
in Medusa. It is the new architecture introduced in Chrysaor
of a fine-grained approach that allows this optimization.

By comparing Chrysaor with vanilla MapReduce, we see
that Chrysaor was overall 25% to 50% slower. A performance
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Fig. 4: Detail of job execution without faults

penalty is unavoidable due to the cost of replication that is
necessary to guarantee fault-tolerance. Importantly, however,
we observe that doubling the number of tasks does not increase
the performance penalty by that same amount.

In summary, the main cost of Chrysaor are the identity
maps. When we compare our solution with Medusa, we
notice that for applications that require identity map tasks that
handle large amounts of data, as in the WordCount example,
the penalty introduced by our system is non-negligible. In
contrast, applications such as WebdataScan that spend less
time executing identity map tasks, do not suffer and behave
similarly to the baseline case. Finally, the Sort application is
an example of a class of MapReduce jobs where Chrysaor
improves over Medusa even in the baseline case without faults.
In particular, when the cost of generating digests is high, the
advantage introduced by our architecture of enabling this cost
to be amortized as the system runs results in an effective gain.

b) Performance with arbitrary faults: In this section,
we want to understand the behavior of the system when
arbitrary faults occur in the map and reduce tasks. Medusa
and Chrysaor behave differently when they are dealing with
arbitrary faults. The faults were injected using a configuration
setup that tampers randomly the digests of the map or reduce
tasks. In the case of Chrysaor we leveraged AspectJ to inject
the faults.

Chrysaor is the only system that responds immediately to a
fault at the task level, so its behavior is different if the fault
affects a map or a reduce task. When an arbitrary fault happens
in a map task, the corrupted task will be relaunched in the
same clouds. When it happens in a reduce task, it is necessary
to relaunch again all the identity map tasks to re-execute the
faulty task(s). When dealing with arbitrary faults, we consider
the threshold Tfaults to be greater than 1 in order to re-execute
the faulty task in the same cloud. Medusa always re-executes
the full job when there is a fault, so its performance is the
same if the fault compromises a map or a reduce.

Figure 5 depicts the execution time in the case of accidental
faults for the three applications. When a fault happens in the
map side, Chrysaor has always the best performance, up to
56% better than Medusa. Dealing with faults at the task level
brings this important benefit.

When we analyze the reduce tasks, we have different results

depending on the application. In the case of WordCount (see
Figure 5a), Chrysaor was slower when a fault happened in the
reduce tasks, whereas in the case of WebdataScan (Figure 5b)
we see that both systems reached similar results. In this
application, re-executing our solution with the identity tasks
took the same time as re-executing the full job. Finally, in
the Sort application (Figure 5c), Chrysaor was always faster.
Again, in the case of an arbitrary fault generating the digests
whilst the output is being produced continues to be a better
solution than generating the digest at the end of the job.

One important result from this analysis is the fact that
Chrysaor was always faster when the faults affected map
tasks. In most MapReduce jobs the number of map tasks (one
per input slice) is much larger than the number of reduce
tasks, which means that in the common case our solution will
outperform Medusa in the presence of arbitrary faults.

c) Performance with malicious faults: When the system
deals with a malicious fault, it re-executes the faulty tasks
in a new cloud (as at least one cloud is deemed malicious).
In this section, the system used Tfaults = 0 in order to use
immediately a new cloud without trying first re-execution in
the same clouds.

There are different scenarios of execution when we test
Chrysaor with malicious faults. In case of a malicious fault
in the map side, the algorithm chooses to execute all the map
tasks in a new cloud. It is only after this process that the
system can check which cloud is compromised, and decide
to continue with the correct ones. When a malicious fault is
detected in the reduce tasks, a new cloud is chosen to execute
the whole job before finding the compromised cloud.

The results are presented in Figure 6. As in the previous
section, Chrysaor got the best results when dealing with faults
that occurred in the map tasks. Again, our solution can be up
to 60% better when compared with Medusa. As before, the
results are not as positive when a fault happens in the reduce
tasks. Observing Figure 6a, we see that Chrysaor was slower
than Medusa. The reason is the need to execute a large identity
map task in the new job that runs in the additional cloud.

In the WebdataScan application (see Figure 6b), we confirm
the similarity of results between Medusa and Chrysaor. This
is due to the identity map tasks not being the most important
component of the overall execution time.
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Fig. 5: Detail of job execution with arbitrary faults
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Fig. 6: Detail of job execution with malicious faults

Finally, in Figure 6c we see that the Sort application had
better performance in Chrysaor than in Medusa for all cases.
In this case, the Sort application was 2% to 27% faster in
Chrysaor.

The conclusions to draw in the experiments with mali-
cious faults is similar to those of the arbitrary case. Namely,
Chrysaor is always the best solution when dealing with faults
that occur at the map tasks. However, in case of faults in the
reduce tasks, Chrysaor is only favorable for workloads that do
not involve large execution in the identity step.

VI. RELATED WORK

There has been much research on MapReduce since the
original paper was published in 2004 [1]. The simplicity of
the programming model and the effectiveness provided by
many implementations of MapReduce attracted a lot of enthu-
siasm among distributed computing communities. Since then,
different researchers have tried to improve specific features
of the MapReduce framework to solve particular problems.
For instance, there has been work to support MapReduce
on opportunistic [30], dynamic [31], and heterogeneous en-
vironments [32], [33], or to perform more complex SQL
queries [34] or to manage RDF graphs [35]. These works show
how MapReduce simplifies distributed computation and adapts
well to large real-world environments.

Alternatives to MapReduce have also appeared [36], [37]
to try to enhance its characteristics to enable complex in-
teractions, improve efficiency, and provide a higher level
of abstraction. This is useful when we want to deal with
more complex scenarios. One example is ClusterBFT, which

is a powerful system for Byzantine fault-tolerant data-flow
processing in clouds [38]. This system allows the creation of
more complex direct acyclic graphs and the replication of sub-
graphs to reduce the overhead and improve utilization.

A few systems have been proposed that run MapReduce
in more than one cloud, although none of them is targeted
at tolerating arbitrary faults and/or cloud outages. G-MR
is a Hadoop based framework that can run a sequence of
MapReduce jobs on geo-distributed data across multiple data-
centers [39]. G-MR determines an optimized path to perform
a sequence of MapReduce jobs and uses Hadoop MapReduce
clusters deployed in each data center. Once the output data is
generated in one or more data centers, it is copied to a single
destination where it will initiate the aggregate operation and
return the final result. G-Hadoop is a MapReduce framework
that aims to enable large-scale distributed computing across
multiple clusters [40]. This framework replaces HDFS with
the Gfarm file system, a network file system that can federate
local disks of network-connected nodes from several clusters.
Users can submit their MapReduce application to G-Hadoop,
which executes map and reduce tasks across multiple clusters.

The system most similar to the one proposed in this paper
is Medusa [20], our previous proposal that enables scaling out
MapReduce computations to multiple clouds and to tolerate
the same types of faults we consider here. Similarly to
Chrysaor, that framework did not require any modification to
Hadoop, but it simply replicated entire job executions, then
compared the outcomes and re-executed the entire job in case a
fault was detected. The main differentiating factor of Chrysaor
is in handling faults at a more fine-grained level – at the task
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level. As such, it can react more quickly to faults and avoid
the overhead of re-executing the entire job.

VII. CONCLUSION

We presented a runtime environment called Chrysaor that
allows to scale out MapReduce computation to a cloud-
of-clouds (or multi-cloud) environment. The motivation is
twofold: to tolerate arbitrary and malicious faults that may
corrupt the result of MapReduce jobs at the fine granularity
of a task, and to tolerate cloud outages and other severe faults
in clouds.

Our solution involved the development of a new abstraction
– the logical job – to obviate the need to modify the Hadoop
source code. As such, Chrysaor requires minimal modifica-
tions to the users’ applications and does not involve changes
to Hadoop.

We compared Chrysaor with the closest alternative –
Medusa – and with vanilla MapReduce to understand the
impact of our new scheme. The results from experiments in
Amazon EC2 have shown that our fine-grained solution is
always better in the most common fault case (a fault in a map
task). In addition, despite the unavoidable penalty introduced
by not changing Hadoop, our novel design allows performance
improvements even in the baseline case for particular work-
loads.
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