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ABSTRACT
Most cloud computing services execute software on behalf
of their users. Many war stories and several studies suggest
that such software execution is threatened by accidental ar-
bitrary faults and malicious insiders. We present two lines
of work to protect software execution in the cloud. The
first replicates tasks to protect MapReduce executions from
the effects of accidental arbitrary faults. The second uses
hardware-based security to protect software execution from
malicious insiders.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability–Fault-tolerance;
C.2.0 [Computer-Communication Networks]: General–
Security and protection; C.2.4 [Distributed Systems]: Dis-
tributed applications

General Terms
Cloud computing, MapReduce, Malicious insiders

1. MOTIVATION
Many companies and organizations are moving their sys-
tems to the cloud. A recent report states that the adoption
of cloud computing has the potential to generate over 763
billion euros of cumulative economic benefits over 2010-2015,
just in the five largest European economies1. However, both
accidental faults and security events keep plaguing cloud of-
ferings and possibly slowing down cloud adoption.

Many subsystems of the cloud are designed to tolerate both
hardware/software crashes and the corruption of data stored
in disks, which are very common problems [2]. However,
other accidental arbitrary faults that can affect the correct-
ness of the results of software executing in the cloud are
known to happen. A recent study of DRAM errors in a
large number of servers in Google datacenters for 2.5 years

1http://uk.emc.com/microsites/2011/cloud-dividend/
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concluded that these errors are more prevalent than previ-
ously believed, with more than 8% DIMMs affected by errors
yearly, even if protected by error correcting codes (ECC) [8].
A Microsoft study of 1 million consumer PCs shown that
CPU and core chipset faults are also frequent [5].

The malicious insider is for long known to be a difficult secu-
rity problem [4]. Two recent stories show that the problem
can happen in the cloud. A Google engineer was fired early
2010 after the company discovered that he has read Gmail
messages and even contacted a group of teens that used
Gtalk. Another critical event happened in a cloud storage
company called CyberLynk when an ex-employee accessed
the company systems and deleted a whole season of a TV
series from which there was no other copy (March’11).

2. ACCIDENTAL ARBITRARY FAULTS
MapReduce is a framework developed by Google for pro-
cessing large data sets [3]. Google’s implementation is not
openly available, but an open source version called Hadoop
is used by many cloud computing companies [9]. Some
cloud providers like Amazon (AWS) and Microsoft (Win-
dows Azure) are also providing MapReduce as a service.
MapReduce consists basically in executing first a large set
of map tasks, then a typically small number of reduce tasks.
In Hadoop a job execution is controlled by the JobTracker
and tasks are executed by TaskTrackers. In Hadoop input
and output data is stored in the HDFS filesystem.

Hadoop (and Google’s) MapReduce mostly tolerates crashes
of map and reduce tasks. If a task stops abnormally, a time-
out expires and a new instance of the same task is created.
Additionally, data is stored in disk together with checksums,
which allow its corruption to be detected. On the contrary, it
does not tolerate accidental arbitrary (or Byzantine) faults,
which can affect the correctness of its results.

A simplistic solution to make MapReduce tolerate arbitrary
faults would be the following. Consider that f is the maxi-
mum number of replicas of the same task that fail. First, the
JobTracker would start 2f + 1 replicas of each map task in
different servers and TaskTrackers. Second, the JobTracker
would start also 2f +1 replicas of each reduce task. Each re-
duce task would fetch the output from all map replicas, pick
the most voted results, process them and store its output
in HDFS. In the end, the client would pick the most voted
output. An even more simplistic solution would be to run a
consensus, or Byzantine agreement between each set of map



task replicas and reduce task replicas. This would involve
even more replicas (typically 3f + 1) and more messages
exchanged.

In a recent paper we proposed an efficient arbitrary fault-
tolerant Hadoop MapReduce [1]. The first above-mentioned
simplistic solution is expensive because it replicates every-
thing 2f + 1 times: task execution, map task inputs read-
ing, communication of map task outputs, and storage of
reduce task outputs. We used a set of techniques to avoid
these costs: Deferred execution: arbitrary faults (excluding
crashes) are uncommon, so the JobTracker starts only f + 1
replicas of the same task; the reduce tasks check if they all
return the same result; if a timeout elapses or results do not
match, more replicas are started. Tentative reduce execu-
tion: waiting for f+1 map results introduces delay; to avoid
it, the JobTracker starts executing the reduce tasks just after
receiving the first copies of the required map outputs; in par-
allel the matching of the inputs is validated; in the unlikely
case of not matching, the reduce task is restarted. Digest
outputs: sending map outputs can be expensive, so reduces
pick only one output and f hashes for each map. Tight stor-
age replication: reduce tasks are already replicated so they
write their results in HDFS only once, instead of using the
typical HDFS replication factor of 3.

An experimental evaluation shows that with f = 1 the exe-
cution of a job with our algorithms uses twice the resources
of the original Hadoop, instead of the 3 or 4 times more
that would be achieved with the direct application of com-
mon Byzantine fault-tolerance paradigms. We believe this
cost is acceptable for critical applications that require that
level of fault tolerance.

3. MALICIOUS INSIDERS
Clouds based on the Infrastructure as a Service (IaaS) model
provide users virtual machines (VMs), storage or network-
ing. Here we are interested in execution, thus on VMs, in
which cloud users can execute web application servers and
other software. The cloud provider has a large set of servers
that run a hypervisor, on top of which user VMs are exe-
cuted. Recently we have shown that an administrator can
easily extract credentials and other confidential data from
cloud user VMs [7]. The problem is that he can access the
administration VM that runs on servers and obtain a snap-
shot of the user VM memory, or access its files.

We proposed a solution to protect the execution of software
in VMs, as well as the data it manipulates [6]. User VMs
reside in the cloud in three places: in servers, in the network
during deployment and migration, and on disk. To protect
their VMs, users keep their VMs encrypted on the network
and disk, and only provide the decryption key to a servers
they can trust. We call these servers a trusted virtualization
environment (TVE). A TVE comprises a hypervisor and a
management VM that do not provide certain operations to
administrators (such as snapshots and volume mount) and
support only trusted versions of others (launch, migrate, and
backup VMs).

Users have to obtain reliable information that a server is a
TVE. This can be done using a measurement of the soft-
ware stack in the server (boot loader, hypervisor, manage-

ment VM). A measurement is a vector with hashes of these
components. To trust it, it has to be provided by a hard-
ware component isolated from the rest of the machine. The
Trusted Platform Module (TPM) is a hardware chip that
can be used with this purpose. During the boot process
each of software module (boot loader, etc.) stores a hash
of the next module in a PCR register in the TPM. When
the user wants to assess if it can trust a server, it runs an
attestation process: the server sends to the user a vector
of PCRs/hashes signed by its TPM; the user verifies the
signature and if the hashes correspond to a trusted configu-
ration. The user sends the server the decryption key or not
depending on the outcome of the attestation.
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