Asynchronous Byzantine Consensus with 2f+1 Processes’

Miguel Correia
Universidade de Lisboa
Faculdade de Ciéncias

Lisboa, Portugal

mpc@di.fc.ul.pt

ABSTRACT

Byzantine consensus in asynchronous message-passing sys-
tems has been shown to require at least 3f + 1 processes
to be solvable in several system models (e.g., with failure
detectors, partial synchrony or randomization). Recently
a couple of solutions to implement Byzantine fault-tolerant
state-machine replication using only 2f + 1 replicas have ap-
peared. This reduction from 3f + 1 to 2f + 1 is possible
with a hybrid system model, i.e., by extending the system
model with trusted/trustworthy components that constrain
the power of faulty processes to have certain behaviors. De-
spite these important results, the problem of solving Byzan-
tine consensus with only 2f + 1 processes is still far from
being well understood. In this paper we present a method-
ology to transform crash consensus algorithms into Byzan-
tine consensus algorithms with different characteristics, with
the assistance of a reliable broadcast primitive that requires
trusted/trustworthy components to be implemented. We ex-
emplify the methodology with two algorithms, one that uses
failure detectors and one that is randomized. We also define a
new flavor of consensus and use it to solve atomic broadcast,
showing the practical interest of the transformations.

Categories and Subject Descriptors

D.4.7 [Operating Systems]|: Organization and Design—
Distributed Systems

General Terms

Algorithms, Performance

Keywords

Distributed algorithms, Consensus, Byzantine fault tolerance

*This work was partially supported by the EC through Al-
ban scholarship E05D057126BR, and by the FCT through
the Multiannual and the CMU-Portugal Programmes, the
project PTDC/EIA-EIA/100581/2008 (REGENESYS) and
the project PTDC/EIA-EIA/100894,/2008 (DIVERSE).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Giuliana S. Veronese
Universidade de Lisboa
Faculdade de Ciéncias

Lisboa, Portugal

giuliana@lasige.di.fc.ul.pt

Lau Cheuk Lung
Dep. Informatica Estatist., CT
Univ. Federal Santa Catarina

Florianopolis, Brazil

lau.lung@inf.ufsc.br

1. INTRODUCTION

Consensus is an important distributed computing problem,
both in theoretical and practical terms. The problem consists
in making a set of processes to agree on one of the values
that each one of them proposes. From a theoretical point of
view, consensus has been used to show important impossibil-
ity and possibility results, the most well-known of which is
probably the Fischer-Lynch-Paterson (FLP) impossibility of
solving consensus deterministically in an asynchronous sys-
tem if one process can fail [13]. From a practical point of
view, the problem has been shown to be equivalent to several
distributing computing problems [17, 8], so an implementa-
tion of a consensus algorithm can be used as a building block
of distributed systems [16].

Distributed algorithms depend strongly on the system mo-
del considered. A realistic model for many of the current
large-scale, open distributed systems is the asynchronous By-
zantine message-passing system model. The time model is
asynchronous in the sense that no bounds are assumed for
the communication and processing times. The fault model is
Byzantine, meaning that some of the processes can fail ar-
bitrarily, even maliciously. The impossibility of solving con-
sensus deterministically in this system model comes trivially
from the FLP impossibility result, but the problem is solvable
in several variations of this basic system model.

Consensus in the asynchronous Byzantine message-passing
model has been shown to require n > 3f + 1 processes, where
f is the maximum number of faulty processes, to be solvable
in several variations of the basic system model, e.g., with
failure detectors [10, 1]!, partial synchrony [12] or random-
ization [3]. Reducing the ratio n/f is important theoreti-
cally, but also in practice as reducing the number of pro-
cesses/processors has an impact on the cost of a real system.

Recently a few solutions to implement Byzantine fault-tole-
rant state-machine replication using only n > 2f + 1 replicas
have appeared [7, 5]. This reduction from 3f +1 to 2f +1 is
possible with a hybrid system model, i.e., by extending the
asynchronous Byzantine system model with components that
can not fail in a Byzantine way. These trusted/trustworthy
components constrain the power of the adversary in the sense
that the services they provide can not be corrupted and be-
come faulty. We call these components simply wormholes

'Baldoni et al. present a sophisticated algorithm that assumes
f < min(|(n —1)/2],C), where C is the maximum number
of faulty processes allowed by the certification algorithm [1].
However, as they point out, “known certification techniques
assume n — C' = [2%E1].” This means that in practice their
algorithm also requires n > 3f + 1.

using Verissimo’s nomenclature [22]. Systems with worm-
holes are no longer homogeneous but hybrid: most of the
system is still asynchronous Byzantine but the wormhole is
trusted /trustworthy by construction.

State machine replication consists in replicating a service in
a set of n servers, f of which may be faulty. Correia et al. use
a wormhole called trusted timely computing base (TTCB) to
help define an order for the execution of the clients’ requests
with only 2f + 1 servers [7]. The TTCB defines an order
for a client’s request when f 4 1 servers show it that they
have the request. More recently, Chun et al. used an attested
append-only memory (A2M) abstraction (or wormhole) with
the same purpose [5]. A2M forces the servers to commit to a
monotonically increasing sequence of operations.

Despite these important results, the problem of solving
asynchronous Byzantine consensus with only 2f 41 processes
is still far from being well understood. There are several rea-
sons for this: the related works that we cited solve consen-
sus but have the solution for this problem submerged in the
complications of a larger problem (state machine replication);
they are based on special-purpose components (TTCB, A2M)
that researchers are not familiarized with.

The main objective of this paper is to contribute to a
better understanding of the problem of consensus with only
2f+1 processes. To reach this objective, the paper presents a
methodology to transform asynchronous consensus algorithms
that tolerate crash faults and require 2f + 1 processes, into
similar algorithms that tolerate Byzantine faults also with
2f 4+ 1 processes. The paper demonstrates the methodology
with two previously existing crash fault-tolerant consensus al-
gorithms: an algorithm by Mostefaoui and Raynal that uses
failure detectors to circumvent FLP [19] and a probabilistic
algorithm by Ben-Or that uses randomization with the same
purpose [2]. The methodology to do this modification, which
is not necessarily generic, consists in enhancing the algorithm
with a set of mechanisms that constrain the power of faulty
processes, allowing the algorithm to reach consensus even if
there is an adversary that tries to break the algorithm’s prop-
erties.

The idea of modifying crash into Byzantine fault-tolerant
algorithms, or improving the fault tolerance, was previously
explored by Neiger and Toueg [20], and Coan [6]. The for-
mer present two transformations for synchronous systems:
one from crash to omission faults and another from omis-
sion faults to Byzantine faults. Coan presents a compiler for
asynchronous algorithms that transforms crash fault-tolerant
algorithms into Byzantine fault-tolerant algorithms, just like
our methodology, but considers only the case of approximate
agreement and does not provide Byzantine fault-tolerant al-
gorithms for 2f + 1 processes, which is the main purpose of
the present paper.

Like previous works, to solve asynchronous Byzantine con-
sensus with 2f + 1 processes we need trusted / trustworthy
components, or wormholes, that provide certain incorrupt-
ible services. However, we use the abstraction provided by
the wormhole to obtain a communication primitive commonly
used in distributed computing: reliable broadcast. This prim-
itive ensures that all processes (i) deliver the same messages
and (i) deliver all messages sent by correct (i.e., non-faulty)
processes. More precisely, we present a reliable broadcast al-
gorithm that imposes no bounds on the number of faulty
processes, unlike previous existing algorithms that require
n>3f+1[3].

Using a 2f + 1 reliable broadcast to solve 2f + 1 Byzantine
consensus is interesting for two reasons. First, it tackles the
difficulty of understanding how a wormbhole assists in solving
a distributed computing problem, by using it to solve a well-
known problem, reliable broadcast. Second, it is important
to understand that it is possible to solve 2f + 1 Byzantine
consensus by relying only on a 2f 4 1 reliable broadcast and
no other “unusual” component (e.g., no other component that
needs a wormhole to be implemented).

The transformation methodology also requires a muteness
failure detector, which detects if a process apparently stopped
following the algorithm [11]. The consensus algorithms pre-
sented are indulgent [15], in the sense that they not violate
their safety properties no matter the behavior of the failure
detector, which is only needed to ensure termination.

The consensus flavor we solve satisfies a weak validity prop-
erty. Therefore, we introduce a new flavor of consensus, en-
dorsement consensus, and use it to solve atomic broadcast
with only 2f 4 1 processes, thus showing that our consen-
sus algorithms are useful to solve a distributed computing
problem with practical interest.

The contributions of the paper are mainly the following:
from a theoretical point of view, it shows that a 2f+1 reliable
broadcast primitive is enough to solve 2f 4+ 1 asynchronous
Byzantine consensus, with the assistance of a muteness fail-
ure detector; from a practical point of view, it presents a
methodology to transform asynchronous crash consensus al-
gorithms into asynchronous Byzantine consensus algorithms
with different characteristics keeping the number of processes
of n > 2f 4 1; this reduces the number of processes needed
to tolerate the same number of faulty ones that isn =3f+1
in asynchronous Byzantine systems; the paper also presents
two 2f + 1 asynchronous Byzantine consensus algorithms.

2. PRELIMINARIES
2.1 Asynchronous Byzantine System Model

The system is composed by a set of n processes II = {p1, p,
...pn}. A process is said to be correct if it follows its algo-
rithm, otherwise it is said to be faulty. Faulty processes can
deviate from the algorithm arbitrarily, i.e., we assume the
existence of Byzantine faults [18]. However, no more than
[=125"] can be faulty (in the tight case n = 2f + 1).

Processes communicate by message-passing. Every pair
of processes is linked by an authenticated reliable channel,
which does not allow the creation, modification or dropping
of messages. In a malicious environment this involves either
physically secure communication channels or the use of cryp-
tographic mechanisms, which requires the additional assump-
tion of a computationally bounded adversary.

The system is asynchronous, which means that there are
no bounds on the processing times or communication delays.
However, we assume the existence of failure detector modules
in each of the processes. Failure detectors (FDs) give hints
about faulty processes. The original FDs were used to suspect
that processes crashed [4]. In this paper we consider mute-
ness failure detectors, which suspect that a process is mute,
either because it crashed or is Byzantine and stopped sending
messages according to the algorithm [11]. Unlike crash FDs,
muteness FDs depend on the algorithm, A.

We consider a class of muteness FDs that is inspired in
Chandra and Toueg’s eventually perfect FD, which we call
eventually perfect muteness FD, Q MP 4. Failure detectors of

this class satisfy the following properties:

o Mute strong A-completeness. Eventually every process
that is mute to any correct process p is permanently
suspected by p.

e Fventual strong A-accuracy. There is a time after which
correct processes are not suspected by any correct pro-
cess.

This FD is stronger than FDs used in previous Byzan-
tine consensus algorithms [11, 1], but the two properties are
satisfied in partition-free partially synchronous systems [12].
Doudou et al. provide an implementation Zp of the muteness
failure detector Q.M 4 that they introduce [11]. Although
that FD satisfies only eventual weak A-accuracy, it is simple
to show that Zp is also an implementation of 0 MP 4 in the
same system model.

2.2 Reliable Broadcast

The basic system model of the previous section is extended
with a reliable broadcast primitive. The reliable broadcast
problem consists essentially in making all correct processes
deliver the same messages [3]. Furthermore, if the process
that broadcasts the message is correct, then all correct pro-
cesses deliver the message, and no two messages with the
same identifier are delivered by any correct process. For-
mally, a reliable broadcast algorithm can be defined in terms
of the following properties [17] (we consider that the sender
also delivers the messages it broadcasts):

e RB1 Validity. If a correct process broadcasts a message
m, then some correct process eventually delivers m.

e RB2 Agreement. If a correct process delivers a message
m, then all correct processes eventually deliver m.

e RBS3 Integrity. For any identifier i¢d and sender p, every
correct process g delivers at most one message m with
identifier ¢d from sender p, and if p is correct then m
was previously broadcast by p.

Bracha presented a reliable broadcast algorithm that needs
n > 3f+1 processes [3]. A proof that 3f +1 is the minimum
number of processes was provided by Toueg [21].

Consider that there is a set of trusted/trustworthy worm-
holes T = {w1, wa, ...w, } and that process p; has access ex-
clusively to wormhole w;. Each wormhole w; has a public-
private key pair (Kuj, Kr;). The private key K,; is known
only by w; and is used to produce digital signatures. Every
correct process knows the correct public key K,; of every
wormhole w;. The wormholes provide a single service that
can be abstracted as a function that is called by the processes
(for wormhole wj): o « sign;(id, msg) . The function takes
as parameters a message identifier id and a message msg. It
returns either the signature o € S of (id,msg) or L ¢ S,
where S is the set of possible signatures. The signature is
returned if id > id’, where id’ is the identifier given as pa-
rameter in the previous call to the function; otherwise L is
returned.

This service is simple but it precludes a faulty process from
obtaining two different messages with the same identifier cor-
rectly signed. Algorithm 1 uses this service to solve reliable
broadcast with any number of faulty processes. The worm-
hole can be implemented inside a secure coprocessor, a smart-
card or another hardware board. Further discussion on the
implementation of wormholes can be found in papers on the
topic, e.g., [7, 5].

The reliable broadcast algorithm is similar to the classi-
cal crash fault-tolerant reliable broadcast algorithm [17]. In
relation to Bracha’s algorithm, it has one less communica-
tion step due to the use of the wormhole and requires no
bounds on the number of faulty processes. The algorithm
is requested to broadcast a message by calling RELIABLE_
BROADCAST(id, msg) (first line) and a message is delivered
when DELIVER(7, id, msg) is called by the algorithm (line 3,
6). Basically the sender sends the message to all processes
and all processes send an ECHO message also to all processes.
The wormbhole is used to prevent a faulty sender from sending
two different messages with the same identifier as explained
above. Function verify(id, msg, o, Ky;) verifies if the signa-
ture o was obtained with message (id, msg) and key K,; (line
4).

Algorithm 1 Reliable broadcast algorithm (at process p;)

Function RELIABLE_BROADCAST(id, msg)
Task T1:

1: o « sign;(id, msg)
2: Vj # 4 : SEND INITIAL(i, id, msg)» to p;
3: DELIVER(%, id, msg)

Task T2: {execute only once per message broadcast}

4: when (message INITIAL(j, id, msg), or ECHO(j,id, msg, o) is re-
ceived) and (verify(id, msg, o, Ky;)) do

5: Vk # j : SEND ECHO(j, id, msg, o) to pg

6: DELIVER(], id, msg)

7: end when

A proof of correctness of the algorithm is provided in the
extended version of the paper [9].

3. METHODOLOGY AND CONSENSUS

Informally, consensus is the problem of making a set of
processes to agree on a value. A process p is said to propose
a value v € V for an execution of the consensus algorithm
when it calls * 2FBC_CONSENSUS(v) (with * equal to MR
or BO). The process is said to decide a value v when the
algorithm calls DECIDE(v). There are several definitions of
Byzantine consensus in the literature. In this section we con-
sider the following definition, which is the most common for
crash consensus [17, 19, 14], and is also much used for Byzan-
tine consensus [10, 1]. Byzantine asynchronous multi-valued
consensus is defined in terms of the following properties:

e MVC1 Validity. If a correct process decides v, then v
was proposed by some process.

e MVC2 Agreement. No two correct processes decide dif-
ferently.

e MVC3 Termination. Every correct process eventually
decides.

This section presents the methodology to transform crash
consensus algorithms into Byzantine consensus algorithms.
The section starts by introducing the methodology with the
Mostefaoui and Raynal’s crash fault-tolerant consensus algo-
rithm (MR_Consensus for short) [19].

3.1 Mostefaoui and Raynal’s Algorithm

Algorithm 2 is the modified algorithm, MR_2FBC. Like the
original algorithm, MR_Consensus [19], it is based on a rotat-
ing coordinator. Each round (lines 3-13) one of the processes
is selected to be the coordinator (line 4) and tries to im-
pose its estimate as the decision (line 5). Each round has two

phases. In the first (lines 5-7), the coordinator disseminates a
PHASE] message with its estimate of the value to be decided.
In the second phase (lines 8-12), each process disseminates
a PHASE2 message with the estimate of the coordinator or
1 ¢ V. If a correct process receives n — f PHASE2 messages
with the same value, it decides this value and disseminates
this decision using a DECISION message (line 11).

Algorithm 2 MR_2FBC Byzantine consensus algorithm
(code for process p;)

Function MR_2FBC_CONSENSUS(v;)

Task T1:

1: r; <~ 0 {round number}
2: est; «+ v; {current estimate of the value to be decided}
3: while true do

c¢i «— (r; modn)+1; r;«—r;+1 {c; = coordinator}
{————— phase 1: coordinator to all —————— }
5: if (¢; =) then RELIABLE_BROADCAST PHASEL(r;, est;) end if
6: wait until (message PHASE](7;, —) is received from Pe; OF De;

is suspected by p;’s FD module)

7: if (valid message PHASEl(r;,v) received from pe;) then
auzr; — v else auxr; — L end if
{ phase 2: all to all }

8: RELIABLE_BROADCAST PHASE2(7;, aux;)

9: wait until (valid messages PHASE2(7;, —) are received from at

least n — f processes) and (Vj : valid message PHASE2(r;, —) is
received from p; or pj; is suspected by p;’s FD module)

10 Vj:if (valid message PHASE2(7;, v) received) then R;[j] «— v
else R;[j] — L end if

11: if (Fv # L: #,(Ri) > n— f) then est; «— v; Vj # i : SEND
DECISION(7;, est;) to p;; DECIDE(est;) else

12: if (Jv#L:#,(R;))>mn—2f) then est; «— v end if
end if

13: end while

Task T2:

14: when valid message DECISION(r, est) is received do

f + 1 messages due to the validation mechanism}
15: Vj # i : SEND DECISION(r, est) to p;; DECIDE(est)
16: end when

{no need of

Some of the modifications to MR_Consensus are clear: reli-
able channels are substituted by authenticated reliable chan-
nels and message disseminations are substituted by the reli-
able broadcast primitive (lines 5, 8). Notice that the identifier
(id) of a message disseminated is composed by the message
type (e.g., PHASEL) and the round number.

Another modification is that we use the message validation
mechanism introduced by Bracha [3] to prevent some of the
attacks that might be done by faulty processes. In several
places the algorithm only takes into account messages that
are valid (lines 7, 9, 10, 14). Informally, a message is said to
be valid if it is justified by the messages previously received
by the process. For instance, line 14 seems to be wrong since
the process p; should require DECISION messages from f + 1
processes, for at least one to be sent by a correct process, be-
fore deciding in line 15. However, the validation mechanism
ensures that the condition in that line is true only if the DECI-
SION message might have been sent by a correct process, i.e.,
if p; received n — f PHASE2 messages with the same estimate
est (lines 9-11).

The definition of wvalid message is identical to Bracha’s.
Each step k of the algorithm has the following basic for-
mat: the process disseminates a message to all other pro-
cesses, waits for a set S of messages from the other processes,
and obtains the content of the next message using a protocol
function F(k,S). A message that is delivered by the reli-

able broadcast primitive (messages PHASEl and PHASE2) or
by a reliable channel (messages DECIDE) at step k is called
a k-message. Each process p; maintains a set of messages
VALID; such that:

e VALID}! = { delivered I-messages }
e for k> 1,m% € VALIDY if there exist n— f (k-1)-mes-
sages mi, ..., mn—y such that m} = F(k, {m1, ..mn—s})

The main difference from MR_2FBC to MR_Consensus is
line 9. In MR_Consensus, processes wait until they receive
messages from n— f processes (line 8 of Fig. 1 at [14]). Clearly
it is not possible to block waiting for more messages as f
processes can be faulty. However, there is an important dif-
ference between the crash and the Byzantine fault models:
while in the crash fault model (thus in MR_Consensus) all of
those n — f messages are sent by processes that follow the
algorithm, in the Byzantine fault model (thus in MR_2FBC)
f of those messages can be sent by faulty processes. In the
worst case, with n = 2f + 1 and f Byzantine processes, in
every round that set of n — f messages contains f + 1 mes-
sages, f of which sent by Byzantine processes®. The behavior
of these f faulty processes is constrained by the message val-
idation mechanism, but they can do a simple attack that is
undistinguishable from correct behavior: to send always L as
their estimate, pretending that their FD modules suspect of
the coordinator (lines 6-8).

To deal with this problem, line 9 must “know about” all
processes before continuing. More precisely, line 9 waits for
messages from n — f processes, but also either for messages
or to suspect of the rest of the processes. This ensures that
eventually p; receives messages from all correct processes, as
there is a time after which correct processes are not suspected
by any correct process (eventual strong A-accuracy). This is
also the reason why we need a stronger FD than previous
Byzantine consensus algorithms, that require only eventual
weak A-accuracy [11, 1]. While those algorithms require only
that the coordinator is eventually not suspected, MR_2FBC
requires that eventually no correct process is suspected, i.e.,
eventual strong A-accuracy.

Recall that the protocol function F'(k,S) is the function
used to obtain the next message to be sent. The function
comes trivially from the algorithm pseudo-code. The notion
of step used to define the protocol function in this case is a
phase. The formal specification of the function can be found
in the pseudo-code itself. For instance, to obtain a PHASE2
message, if p; received a valid PHASEL(r;, v) message from the
coordinator of round r then the function returns v, otherwise
it returns L.

A proof of correctness of the algorithm is provided in the
extended version of the paper [9].

3.2 The Methodology

The transformation of Mostefaoui and Raynal’s algorithm
into a 2f 4+ 1 Byzantine consensus algorithm illustrates the
application of the methodology for increasing the fault toler-
ance of crash algorithms. The methodology consists in doing
the following modifications, then prove the correctness of the
resulting algorithm:

Communication channels: communication channels are sub-
stituted by authenticated reliable channels. These channels

2This is not the case with 3f 4+ 1 Byzantine consensus algo-
rithms as they wait for 2f + 1 messages, a majority of which
must come from correct processes.

constrain the power of the adversary in the network in the
sense that these channels do not allow the creation, modifi-
cation or dropping of messages.

Broadcast communication: broadcasts are substituted by
reliable broadcasts. This mechanism constrains the power of
the adversary by preventing it from delivering different mes-
sages with the same identifiers to different processes. This
requires the reliable broadcast algorithm of Section 2.2.

Message validation: message receptions are enhanced with
message validations, i.e., when a message is received it is only
considered if it is valid as defined in Section 3.1. The objective
is to force the adversary to conform to the algorithm.

Reception quorum: receptions of messages from quorums
of n — f processes are substituted by: reception of messages
from at least n— f processes plus the FD suspicion of all other
processes (line 9 in Algorithm 2). This requires an eventually
perfect muteness FD, O MP 4.

The process of applying the methodology is straightforward
as shown in the next section.

3.3 Ben-Or’s Algorithm

The objective of this section is to show how to apply the
methodology, now that it was introduced. This section presents
a transformation of Ben-Or’s asynchronous crash-tolerant bi-
nary randomized consensus algorithm [2] into an asynchronous
Byzantine binary randomized consensus algorithm, BO_2FBC.

The application of the methodology consisted of picking the
original algorithm and modifying it following the list above.
Then, we simply proved that the resulting algorithm satisfies
the properties of Byzantine consensus.

The result can be found in Algorithm 3. Notice that Ben-
Or’s consensus is a binary consensus, i.e., ¥V = {0,1}. Notice
also that the consensus is randomized so there is a random
action (line 13). The definition provided for multi-valued
consensus in Section 3 is still valid, except for the termination
that becomes probabilistic with probability 1.

The BO_2FBC algorithm is straightforward and uses a no-
tation similar to the previous one (although we retained some
of Ben-Or’s notation also), so we skip a detailed textual de-
scription of how it works. The original algorithm was ran-
domized so it had no failure detectors, but BO_2FBC uses
QOMP4 due to the methodology of transformation (lines 4
and 10). A proof of correctness of the algorithm is provided
in the extended version of the paper [9].

4. 2r+1 ATOMIC BROADCAST

The previous section shows that it is possible to solve asyn-
chronous Byzantine consensus problems with 2 f+1 processes,
using a reliable broadcast algorithm that needs 2f+1 (or less)
processes and an eventually perfect muteness FD (O MP4).
The flavor of multi-valued consensus solved in Section 3.1
is often used to show that a certain combination of mecha-
nisms can be used to solve consensus, but it is particularly
weak and not very useful to solve other distributed computing
problems. This section introduces a novel flavor of consensus
that can be solved with 2f 4+ 1 processes, and shows how it
can be used to solve atomic broadcast.

The Validity property MVCI1 states that the value that is
decided is one of the values proposed (Section 3). However,
it does not say if that process is correct. Suppose we want
to solve some problem that involves solving several multi-
valued consensuses: it is perfectly possible that all values
decided in those consensus are proposed by faulty processes,

Algorithm 3 BO_2FBC Byzantine consensus algorithm
(code for process p;)

Function BO_2FBC_CONSENSUS(v;)

{current estimate of the value to be decided}

1: est; — v;

2: step 0: 7; — 1 {round number}

3: step 1: RELIABLE_BROADCAST PHASEL(7;, est;)

4: step 2: wait until (valid messages PHASEL(r;, —) are received
from at least n— f processes) and (Vj : valid message PHASEL(r;, —)
is received from p; or p; is suspected by p;’s FD module)

5: if (more than n/2 messages have the same value v) then

6: RELIABLE_BROADCAST PHASE2(7;, v, decision)

7: else

8: RELIABLE_BROADCAST PHASE2(7;, L)

9: end if

10: step 3: wait until (valid messages PHASE2(T;, —) are received

from at least n— f processes) and (Vj : valid message PHASE2(7r;, —)
is received from p; or pj; is suspected by p;’s FD module)

11: if (there is one decision message PHASE2(r;, v, decision)) then
est; «— v
12: else if (there are n - f decision messages

PHASE2(7;, v, decision)) then DECIDE(v)
13: else est; «— 1 or 0 each with probability 1/2
14: step 4: r; «— r; +1; go to step 1

turning them useless. The solution to this difficulty is to use
another flavor of consensus with a different validity property
(the other properties, MVC2/MVC3 remain the same), so we
introduce a new form of consensus, endorsement consensus,
and present an algorithm that solves the problem using only
2f + 1 processes. The idea behind endorsement consensus is
to consider that a correct process can have a notion about
which values are adequate decisions for the consensus. More
formally, each process p; has a set E; of values that it en-
dorses, i.e., that it considers to be adequate decisions for the
consensus. The problem is defined in terms of MVC2, MVC3
and the following property:

e [C1 Validity. If a correct process decides v, then v was
endorsed by some correct process.

The problem assumes that the endorsement sets satisfy
the following properties: Initial endorsement. For any cor-
rect process p;, F; contains always at least the value proposed
by p;i (vo,). Increasing endorsement. For any correct process
pi, for any two instants of time during the execution of the
algorithm t1,t2, if t2 > t; then F;, D Ej;,, where E;; and Ej,
are the values of E; at the two instants. Fventual endorse-
ment. For any pair of correct processes p; and p;, eventually
vo, € Ej;. This last property means that all proposals of
correct processes are eventually endorsed by all correct pro-
cesses. Notice that this is not something that is guaranteed
by an algorithm that solves the problem, but something that
has to be satisfied for the algorithm to solve the problem,
i.e., an assumption. This is precisely what happens with the
atomic broadcast algorithm that we see next.

An algorithm that solves this flavor of consensus is Algo-
rithm 2 with a single modification, substituting line 7 by:

7: if (valid PHASEL(r;, v) received from pe,)

then aux; +— v else aur; — L end if

We call this algorithm MR_2FBEC. The idea is that cor-
rect processes p; only disseminate a message PHASE2 if the
estimate of the coordinator (v) is in E;, besides the message
being valid as already in Algorithm 2. A proof of correctness
of the algorithm is provided in the extended version of the

paper [9].

Byzantine atomic broadcast can be defined similarly to re-
liable broadcast (properties RB1-3 above) plus an additional
order property:

e ABJ Total order: If two correct processes deliver two
messages M; and Ms then both processes deliver the
two messages in the same order.

This problem has been shown to be equivalent to con-
sensus in several system models [17, 8]. A transformation
from consensus into Byzantine atomic broadcast with only
2f + 1 processes, which we designate by HT_2FBAB, is pro-
vided by a combination of: the transformation of consen-
sus and reliable broadcast into atomic broadcast presented
in [17]; algorithm MR_2FBEC, which substitutes the consen-
sus used in the transformation; in every process p;, the set
E; = R_delivered.

The transformation provided in [17] is for crash faults. The
idea is the following. When the algorithm is requested to do
atomic broadcast of a message, it does reliable broadcast of
that message. When a process receives such a message, it
inserts it in the R_delivered set. When there are messages in
that set that have still not been ordered, each process pro-
poses the set of those messages to a consensus. Consensuses
are done in an ordered fashion and messages within a consen-
sus can be trivially ordered (e.g., in lexicographical order), so
this provides a total order of messages.

In Hadzilacos and Toueg’s transformation the consensus
always decides a value proposed by a process that is not ma-
licious, because there are no malicious processes in the crash
system model. In our case we have to deal with that case,
which is where the endorsement consensus comes in: it only
lets values endorsed by correct processes to be decided by the
consensus, thus ordered by the atomic broadcast algorithm.
More precisely, given a set S; of messages pending to be or-
dered, proposed by some process p;, this set is only decided
if at least once correct process endorses this set, i.e., if it re-
ceives these messages from the reliable broadcast algorithm
(remember that E; = R_delivered). We skip the proof of
correctness of HT_2FBAB.

5. REFERENCES

[1] R. Baldoni, J. Helary, M. Raynal, and L. Tanguy.
Consensus in Byzantine asynchronous systems. Journal
of Discrete Algorithms, 1(2):185-210, 2003.

[2] M. Ben-Or. Another advantage of free choice:
Completely asynchronous agreement protocols. In
Proceedings of the 2nd ACM Symposium on Principles
of Distributed Computing, pages 27-30, Aug. 1983.

[3] G. Bracha. An asynchronous |(n — 1)/3]-resilient
consensus protocol. In Proceedings of the 3rd ACM
Symposium on Principles of Distributed Computing,
pages 154-162, Aug. 1984.

[4] T. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225-267, Mar. 1996.

[5] B.-G. Chun, P. Maniatis, S. Shenker, and
J. Kubiatowicz. Attested append-only memory: making
adversaries stick to their word. In Proceedings of the
21st ACM Symposium on Operating Systems
Principles, pages 189-204, October 2007.

[6] B. A. Coan. A compiler that increases the fault
tolerance of asynchronous protocols. IEEE Transactions
on Computers, 37(12):1541-1553, Dec. 1988.

[7] M. Correia, N. F. Neves, and P. Verissimo. How to
tolerate half less one Byzantine nodes in practical
distributed systems. In Proceedings of the 23rd IEEE
Symposium on Reliable Distributed Systems, pages
174-183, Oct. 2004.

[8] M. Correia, N. F. Neves, and P. Verissimo. From
consensus to atomic broadcast: Time-free
Byzantine-resistant protocols without signatures.
Computer Journal, 41(1):82-96, Jan. 2006.

[9] M. Correia, G. T. Veronese, and L. C. Lung.
Asynchronous Byzantine consensus with 2f+1 processes
(extended version). DI/FCUL TR 09-17, Department
of Informatics, University of Lisbon, November 2009.

[10] A. Doudou, B. Garbinato, and R. Guerraoui.
Encapsulating failure detection: From crash-stop to
Byzantine failures. In International Conference on
Reliable Software Technologies, pages 24-50, May 2002.

[11] A. Doudou, B. Garbinato, and R. Guerraoui. Tolerating
arbitrary failures with state machine replication. In
H. B. Diab and A. Y. Zomaya, editors, Dependable
Computing Systems Paradigms, Performance Issues,
and Applications, chapter 2, pages 27-56. Wiley, 2005.

[12] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288-323, Apr. 1988.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374-382, Apr. 1985.

[14] R. Friedman, A. Mostefaoui, and M. Raynal.
Asynchronous bounded lifetime failure detectors.
Information Processing Letters, 94(3):85-91, 2005.

[15] R. Guerraoui. Indulgent algorithms. In Proceedings of
the 19th ACM Symposium on Principles of Distributed
Computing, pages 289-298, July 2000.

[16] R. Guerraoui and A. Schiper. The generic consensus
service. IEEE Transactions on Software Engineering,
27(1):29-41, Jan. 2001.

[17] V. Hadzilacos and S. Toueg. A modular approach to
fault-tolerant broadcasts and related problems.
Technical Report TR94-1425, Cornell University,
Department of Computer Science, May 1994.

[18] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transactions on Programming
Languages and Systems, 4(3):382-401, July 1982.

[19] A. Mostefaoui and M. Raynal. Solving consensus using
Chandra-Toueg’s unreliable failure detectors: A general
quorum-based approach. In Proceedings of the 13th
International Symposium on Distributed Computing,
pages 49-63, 1999.

[20] G. Neiger and S. Toueg. Automatically increasing the
fault-tolerance of distributed systems. In Proceedings of
the 7th Annual ACM Symposium on Principles of
Distributed Computing, pages 248-262, Aug. 1988.

[21] S. Toueg. Randomized Byzantine agreements. In
Proceedings of the 8rd ACM Symposium on Principles
of Distributed Computing, pages 163-178, Aug. 1984.

[22] P. Verissimo. Travelling through wormholes: A new
look at distributed systems models. SIGACT News,
37(1):66-81, 2006.

