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Abstract

This paper presents the architecture of a secure group
communication system with the fortress model of trust, where
the participants of the group equally trust one another. We
consider that only a small part of the system, a component
called the Trusted Timely Computing Base, has to be entirely
trusted. All other components can be corrupted. The overall
system will tolerate a certain number of faults of its compo-
nents and remain behaving correctly.

1. Introduction

Group communication is a well known communication
paradigm. The first group communication systems devel-
oped had a benign failure model in mind. More recently,
a few systems were designed considering malicious faults,
such as attacks performed by a hacker [13, 14, 3]. How-
ever these systems still have some important drawbacks. For
instance, they all assume that the operating system can be
considered to be a Trusted Computing Base, i.e., that it does
not fail and does not perform attacks on user processes. With
current operating systems that is a very optimistic assump-
tion.

This paper presents work in progress on the specification
of a secure group communication system that tries to address
some of the problems of current systems. The paper de-
scribes the architecture and design principles of the system,
but leaves the specification of protocols and algorithms for
another opportunity. The system considers afortress model
of trust, i.e., that processes are equally trusted by one another
and that the system guarantees the security of their commu-
nication. Our system is being developed within the MAFTIA
project middleware architecture [4, 18].

�This work was partially supported by the EC, through project IST-1999-
11583 (MAFTIA), and by the FCT, through the Large-Scale Informatic Sys-
tems Laboratory (LASIGE) and the project POSI/1999/CHS/33996 (DE-
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The system considers a hybrid failure model, where dif-
ferent components of the system have different failure mod-
els. For example, the network can fail arbitrarily (e.g.,
can perform arbitrary attacks) while software components
of the system are fail-controlled (bounded type and number
of component failures). We consider that only a small part
of the system, a distributed component called theTrusted
Timely Computing Base (TTCB), has to be entirely trusted.
Since it is small, its correctness can be verified.

2. Middleware Architecture of MAFTIA

In this section we briefly describe the features of the mid-
dleware architecture of MAFTIA that are most relevant to
the description of our system.

2.1. Failure Model

A crucial aspect of any system architecture is the failure
model upon which it is conceived and component interac-
tions are defined. There are essentially two different kinds
of failure model: controlled failure assumptions (component
failures are qualitatively and quantitatively bounded) and ar-
bitrary failure assumptions (there are no bounds on compo-
nent failures). Hybrid assumptions combining both kinds of
failure assumptions would be desirable. Generally, they con-
sist of allocating different assumptions to different subsets or
components of the system, and have been used in a number
of systems and protocols. Hybrid models allow stronger as-
sumptions to be made about parts of the system that can jus-
tifiably be assumed to exhibit fail-controlled behavior, whilst
other parts of the system are still allowed an arbitrary behav-
ior. However, this is only feasible when the behavior of every
single subset of the system can be modeled and/or enforced
with high coverage.

A first step in this direction is the definition of a composite
failure model specifically aimed at representing the failures
that may result from several classes of malicious faults. A
second step is the definition of a set of techniques that act



at different points within this composite failure model and
which, combined in several ways, yield dependability vis-
à-vis particular classes of faults. MAFTIA identified two
guiding principles:

� the sequence: attack+ vulnerability! intrusion!
failure

� the recursive use of fault tolerance and fault prevention

Vulnerabilities are the primordial faults existing inside the
components, essentially design or configuration faults. At-
tacks are malicious interaction faults that attempt to activate
one or more of those vulnerabilities. An attack that success-
fully activates a vulnerability causes an intrusion, an erro-
neous state in the system. If nothing is done to process the
intrusion, failure of one or more security properties will oc-
cur.

The composite failure model is a basis for achieving the
objective of a well-founded hybrid failure model. Given a
component for which a controlled failure assumption was
made, coverage of such an assumption can be achieved with
a recursive use of fault tolerance and fault prevention. The
component can be constructed through the combined use
of removal of internal vulnerabilities, prevention of some
attacks, and implementation of intrusion tolerance mecha-
nisms internal to the component, in order to prevent the com-
ponent from exhibiting failures. Looked upon from the out-
side, at the next higher level of abstraction, the level of the
outer system, the would-be component failures we prevented
restrict the system faults the component can produce. In fact
we have performed fault prevention, that is, we have a com-
ponent with a controlled behavior vis-`a-vis malicious faults.
This principle establishes a divide-and-conquer strategy and
can subsequently be used in the construction of fault-tolerant
systems.

2.2. Synchrony Model and the TTCB

The Timely Computing Base is a distributed component
that is both a timely execution assistant and a timing fail-
ure detection oracle, that assists the execution of applications
with time requirements in asynchronous environments [17].
The Timely Computing Base is a “small” synchronous com-
ponent embedded in an asynchronous payload system. It is
composed by local parts in hosts (e.g., hardware coproces-
sors or applications running in a real-time kernel [5]) inter-
connected by a real-time channel or network. The difficulty
of a synchronous component providing useful services for
an asynchronous one was approached with the definition of
three basic services: duration measurement, timely execu-
tion, and timing failure detection.

The Timely Computing Base was defined with a be-
nign failure model in mind. In MAFTIA we extend the
Timely Computing Base model to environments with ma-
licious faults [18]. We call the new component the Trusted
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Figure 1. TTCB architecture

Timely Computing Base (TTCB). Like the Timely Comput-
ing Base, the TTCB is timely, but also secure (tamperproof)
by construction. It is the only component in our system with
that characteristic. The architecture of the TTCB is similar to
that of the Timely Computing Base (Figure 1). The Timely
Computing Base timeliness relied on that component being
simple enough to be readily validated. The same applies to
the TTCB: it is simple enough for its timeliness and trust-
worthiness to be validated.

The TTCB has trusted versions of the Timely Computing
Base services: trusted duration measurement, trusted timely
execution, and trusted timing failure detection. The output of
those services can be signed by the TTCB since everylocal
TTCB has a private key for which the corresponding public
key is distributed to processes that may need it (e.g., using
a Public Key Infrastructure). This key pair can be used for
strong authentication of a local TTCB or the host where it
resides. The TTCB is the correct place to save a long-term
key since it is the only component completely trusted.

The TTCB implements some additional services in re-
lation to the Timely Computing Base. The objective is to
have a minimal set of secure functions that assist in a use-
ful manner the implementation of building blocks for trusted
distributed systems. In this paper we describe how these ser-
vices can be useful to implement our system modules. The
new services are:

� Trusted random number generation. This service gen-
erates trustworthy random numbers. These numbers are
basic for building cryptographic primitives and it is es-
sential that they are really random.

� Trusted absolute timestamping. This service provides
a timestamp, either authenticated (signed with a TTCB
private key) or not. The timestamp is meaningful to any
local TTCB since clocks are synchronized. In the orig-
inal Timely Computing Base they were not synchro-
nized but this is an important feature for some security
services, e.g., Kerberos authentication protocol.

� Trusted block consensus. This service achieves consen-
sus between local TTCBs on a fixed size block of data.



It may be used to perform simple but crucial decision
steps in more complex payload protocols.

� Trusted block equality test. This service is used to test
if data that should be equal in a set of sites is corrupted.
Every site proposes a value (block) and receives the list
of sites that have a value different from the majority.

� Local authentication (and key establishment). This ser-
vice is used for a participant or process to authenticate
the TTCB and obtain a shared key with it. This key
can be subsequently used to guarantee the integrity and
confidentiality of their communication, therefore estab-
lishing a secure channel between them.

� Distributed authentication (and key establishment).
This service can be used for two or more distributed par-
ticipants or processes to authenticate themselves mutu-
ally through the TTCB. A shared key is established.

2.3. Architecture of a Node

The architecture of MAFTIA middleware in a node is di-
vided in two levels: participant and site. It is represented
in Figure 2. The runtime environment —composed by the
operating system, the protocol kernel1 and the TTCB— is
not represented for simplicity. The division in participant
and site levels is the materialization of a form of clustering
used in MAFTIA: a site is a cluster of participants. This
clustering is used in our system as a way to handle scale. A
participant-group is mapped into asite-group, composed by
all sites where there are participants2. Site level protocols
handle inter-site communication. This level has access to,
and depends on, a physical networking infrastructure. The
participant level offers support to local participants engag-
ing in distributed computations. It multiplexes and demulti-
plexes participant communication into the site group.

The lowest layer of the architecture is the Multipoint Net-
work module, MN, created over the physical infrastructure.
Its main properties are the provision of multipoint address-
ing and a moderate best-effort error recovery ability, both
depending on topology and site liveness information.

In the site level, the Site Failure Detector module, SF, is
in charge of assessing the connectivity and correctness of
sites, and the MN module depends on this information. The
SF module depends on the TTCB to perform its job, and
therefore detects the failure of other sites reliably. The Site
Membership module, SM, depends on information given by
the SF module. It creates and modifies the membership and
the view of site-groups. The Communication Support Ser-
vices module, CS, implements basic cryptographic primi-

1By protocol kernel we mean a runtime environment for communication
protocols such as Ensemble [16] or Appia [1].

2More precisely, a participant is a groupmember if it receives messages
from the group. If it only sends messages then it is asender and its site does
not have to belong to the group [4].
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Figure 2. Architecture of a MAFTIA node

tives, group communication with several reliability and or-
dering guarantees, and other core services. The CS module
depends on information given by the SM module about the
composition of the groups, and on the MN module to access
the network.

In the participant level, the Participant Failure Detector
module, PF, assesses the liveness and (optionally) the cor-
rectness of local participants. The Participant Membership
module, PM, performs similar operations as the SM, on the
membership and view of participant-groups. The PM mod-
ule monitors all groups with local members, depending on
information propagated by the SM and by the PF modules,
and operating cooperatively with the corresponding modules
in the concerned remote sites. The Activity Support Services
module, AS, implements building blocks that assist partici-
pant activity, such as replication management and transac-
tional management.

3. The Group Communication System Archi-
tecture and Security

The group communication system implements the
fortress model of trust, i.e., it allows a set of participants
that equally trust each other to communicate in a trusted way.
The architecture of the system is a composition of nodes with
the structure described in the previous section. The current
section describes how the system is made trustworthy. The
components of the system, with the exception of the TTCB,
are made fail-controlled with the use of fault tolerance and
prevention techniques.

Failure assumptions always have a degree of coverage,
i.e., a probability of being held per unit of time. We want
to build a system with a high coverage of the failure as-
sumptions —low probability of system corruption— based
in components with different coverages. The single compo-
nent that we consider to have a 100% coverage is the TTCB.
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The group communication system security architecture
has several main components (Figure 3):

Network The physical payload network is fail arbitrary, i.e.,
it can engage in any attack against hosts. The level of
threat posed by the network can be reduced using, e.g.,
a firewall, but in general its failure model will remain
arbitrary since other hosts on the inner side of the fire-
wall may still engage in the same kinds of attacks.

Runtime Environment There is a runtime environment
(operating system + protocol kernel + local TTCB) in
every host, so it is not a single component but a class of
components. The figure does not represent it for sim-
plicity.

Site Level This component is the set of all site levels of all
nodes of a site-group (see Figure 3)

Participant Level This component is the set of all local par-
ticipant levels of all nodes of a site-group (see Figure 3).

The runtime environment has to be made trustworthy be-
cause it has the ability to arbitrarily change the code and
data of any process and the communication between protocol
modules3. In the next section we will discuss how this can
be achieved. We assume that the assumption of the runtime
environment being trusted has a high coverage but, never-
theless, the runtime can still be corrupted. So, both the site
level and participant level components have to be made se-
cure against attacks coming from the runtime and from the
network (sections 3.2 and 3.3). We assume that the system
can be corrupted in a host but that the overall site level and
participant level components are trusted. This last assump-
tion has a coverage that is higher that the coverage of the
assumption that the runtime environment is not corrupted.

In a host where the system (either the site or participant
levels) is corrupted, it may not be possible to prevent the
participants from seeing incorrect behavior. To handle these
failures the participants on other sites can, e.g.: envelope
their communication in long-running atomic transactions;
simply to crash the group; or require intervention.

The system API has to be designed carefully in order to
avoid attacks from the participants but it cannot do anything

3In fact, only the OS kernel and the protocol kernel have to be made
trustworthy since the TTCB is already so by construction.

if a participant is corrupted and starts to behave differently
than specified. We will not discuss how participants can be
made trustworthy since it is not a problem of the group com-
munication system.

3.1. Runtime Environment

The runtime environment is a “component” that exists in
every site. This component includes:

� Operating system kernel (OS kernel). This subcompo-
nent controls every resource of the host: memory, disks,
I/O, CPU time (scheduling), etc. Therefore, in princi-
ple, if it is corrupted it can arbitrarily modify the code,
data and communication of a program.

� Protocol kernel. Our protocols are being programmed
using a protocol kernel [16, 1]. This kernel manages is-
sues common to all communication protocols, such as
buffers, timeouts and layers. It has full control of the
communication between layers of the protocols and be-
tween hosts so, if it is corrupted, it can arbitrarily mod-
ify the communication between hosts and inside a host.

� TTCB. This component cannot be corrupted so it will
never engage in attacks either inside or outside the host.

This discussion leads us to conclude that we cannot let the
OS kernel be corrupted. From a theoretical point of view, the
trivial solution to protect the kernel would be to consider it
a Trusted Computing Base [2]. However this is impractical
for common operating systems and so we are not interested
in that solution.

We propose to use a combination of different mechanisms
to make the OS kernel fail-controlled:

� Select an OS that is as trustworthy as possible.

� Remove known vulnerabilities (“patching”).

� Use intrusion detection and countermeasures; although
generic Intrusion Detection Systems have a high rate
of false detections and non-detections, privilege escala-
tion attacks (like attacks made on the kernel from lower
privileged processes) are already detected with a high
precision and in run-time [9, 11]. Countermeasures can
range from killing a corrupted process to crashing the
host.

� Protect the host itself, since most attacks against the OS
kernel come from the rest of the host (hackers usually
attack first a user account and later the kernel). Some
common measures are: close unused user accounts;
force the use of strong passwords; deactivate unused
network services (e.g., FTP); intrusion detection and
countermeasures; remove vulnerabilities; etc.

The protocol kernel also has to be protected. If it runs
with kernel privileges it can gain from the protection mea-
sures taken for the OS kernel. However, even if it runs with



those privileges, measures have to be taken to protect it from
buffer overflow and input validation attacks, since the proto-
col kernel processes messages coming from the network or
user processes. These two categories of attacks have to be
handled with techniques such as correct program coding and
disabling the execution of code in the stack. The protocol
kernel can also be protected using code and data protection,
as discussed in the next section.

3.2. Site Level

The composition of all local (node) site levels is a compo-
nent that we call simply the site level (Figure 3). This com-
ponent handles the site-group abstraction (see section 2.3).
Three issues have to be considered: (1) the code and data of
the site level have to be protected from attacks coming from
the OS kernels and the network; (2) joins and leaves of sites
to and from the group have to be secured; and (3) communi-
cation over the network has also to be secured.

Protection of the site level from attacks coming from the
OS kernel (first issue) is a complex problem. The simi-
lar problems of protecting mobile code from malicious sites
and protecting commercial software from reverse engineer-
ing are currently being researched. The ideal solution for all
three problems would be to execute an encrypted program,
that would not be modifiable without detection. Some solu-
tions already exist to do it but the program has to be a polyno-
mial or rational function which is not our case [15]. A partial
solution is toobfuscate the code and data in order to avoid
static analysis [10, 7]. The code and data obfuscation can be
parameterized giving several different instances of the same
program. An interesting solution in our system would be to
instantiate a different version of the site level code in every
site, so that reverse engineering one instance would not lead
to the immediate compromise of the others. Obfuscation has
several problems though: it is prone to dynamic analysis;
understanding one instance can help understand the others;
and it is possible that a program can be corrupted without a
complete understanding of what it does (e.g., by identifying
where system calls are made).

Attacks directly from the network to the site level are
similar to those against the OS kernel, for instance, buffer
overflow and input validation. The solutions are the same as
those described in the previous section.

The integrity of important data in local site level subcom-
ponents, such as site-group membership (SM module), can
be tested using the TTCBtrusted block equality test service.
For example, every second, local site levels of a site-group
can call that service giving a checksum of the membership
data. If a host has data different from the others, all are in-
formed, the host is assumed to be corrupt and it is excluded
from the site-group.

Secure join (second issue) requires authentication —the
site that wants to join has to be who it says it is— and autho-

rization —the site that wants to join has to be allowed to do
it (or not). Authentication can be handled using the TTCB
to mutually authenticate the site that wants to join and the
group. The TTCB’sdistributed authentication service pro-
vides strong authentication of the site. Authorization has to
be agreed by all the sites of the group therefore solving the
problem of one being corrupt.

Secure communication (third issue) is handled using
signed and possibly encrypted messages. The sites have to
share keys to handle message integrity and (optionally) con-
fidentiality. Keys must be changed (rekeyed) whenever a site
joins or leaves a group to avoid that it is able to interfere re-
spectively with past and future communication. Rekeys must
also happen with some frequency. The delay between rekeys
should be decided with several factors in mind: average time
between joins/leaves (that cause a rekey anyway), weight
of the rekey protocol vs. encryption, power of the attacker,
and kind of attack the attacker can perform to break the key
(cipher-text only, known-plaintext, chosen-plain-text).

An additional factor to be considered is the possibility
of the keys being compromised. Key disclosure can be de-
tected, in case the attacker is using them to change messages,
using the TTCB to send checksums and therefore confirming
that messages are not being corrupted. These checksums can
be sent for every message or for a number of messages so a
tradeoff between additional load and delay of detection has
to be considered. Key compromise may have to be handled
using higher level mechanisms such as human intervention
or coordinated atomic transactions.

3.3. Participant Level

Group participants communicate directly with the partic-
ipant level, i.e., it is this component that has the system pro-
gramming interface (see Figure 3). Therefore, this compo-
nent has to: (1) be built to be trustworthy; and (2) handle the
join and leave of participants to and from a group.

The first problem is similar to making the site level trust-
worthy (previous section). The second is similar to secure
site join, but for participants instead of sites. The decision
has to be voted by all group participants in order to pre-
vent a corrupted host from introducing a malicious partici-
pant in the group. The participant has to be authenticated to
the group with information that reliably identifies it: a pair
ID/password or a secret key.

4. Related work

Some secure group communication systems exist already:
Horus [13], Ensemble [14], and Secure Spread [3]. In these
systems, and also in ours, communication and membership
are secured using authentication, encryption and signatures
with long-term and shared keys. However these other sys-
tems assume that their software is not corrupted inside hosts.



This is a strong assumption since trust relies on the security
of a very large and unstructured component, such as a Linux
or W2K machine. Trust in our system relies to a large ex-
tent on the security of a small, therefore provable correct,
component, the TTCB.

Our approach is based on the combination of prevention
and fault tolerance. We use both approaches to make our
model as secure as possible but we accept that assumptions
can fail (e.g., keys disclosed, some modules corrupted) and
those failures have to be tolerated.

On the other hand, these systems classically consider an
asynchronous time model. This can lead to vulnerabilities if
protocols, despite looking time free, use hidden timing as-
sumptions, such as timeouts. Our system uses a partially
synchronous model whose resilience is based on the TTCB.
Finally, a well-founded fault model is sometimes missing
in previous works. The MAFTIA composite failure model
clearly identifies types of faults and can help asserting the
assumption coverage of the system.

Some related work exists in securing a service composed
by a set of distributed processes [8, 6, 12].

5. Conclusion

We described the architecture of a secure group commu-
nication system. The system is secured using a combination
of fault prevention and tolerance techniques. Hybrid compo-
nent failure assumptions were considered and complete trust
is put only on a small component, the TTCB.

Future work will follow several directions. The definition
of the services and API of the TTCB is in progress. A clas-
sification of the sequences of faults that can lead to system
failure (modes of failure) will be done in order to assess the
assumption coverage. This classification will lead to a defi-
nition of the faults handled (prevented or tolerated) by every
component of the system. A class of attacks not discussed
here but that is being studied is denial-of-service.

A more formal definition of our system protocols and
APIs and an implementation using the Appia protocol ker-
nel are in progress.
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