
The CRUTIAL Architecture
for Critical Information Infrastructures ?

P. Verissimo Y. Deswarte1 A. Bondavalli
N. F. Neves A. Abou El Kalam2 A. Daidone
M. Correia

FCUL- U. Lisboa Université de Toulouse University of Florence
Lisboa, Portugal 1 LAAS-CNRS, 2 IRIT, ENSEEIHT-INPT Florence, Italy

Toulouse, France
{pjv,nuno,mpc}@di.fc.ul.pt yves.deswarte@laas.fr
anas.abouelkalam@enseeiht.fr bondavalli@unifi.it

daidone@dsi.unifi.it

Abstract. In this chapter we discuss the susceptibility of critical information in-
frastructures to computer-borne attacks and faults, mainly due to their largely
computerized nature, and to the pervasive interconnection of systems all over
the world. We discuss how to overcome these problems and achieve resilience
of critical information infrastructures, through adequate architectural constructs.
The architecture we propose is generic and may come to be useful as a reference
for modern critical information infrastructures. We discuss four main aspects:
trusted components which induce prevention; middleware devices that achieve
runtime automatic tolerance and protection; trustworthiness monitoring mecha-
nisms detecting and adapting to non-predicted situations; organization-level se-
curity policies and access control models capable of securing global information
flows.

1 Introduction

The largely computerized nature of critical infrastructures on the one hand, and the per-
vasive interconnection of systems all over the world, on the other hand, have generated
one of the most fascinating current problems of computer science and control engineer-
ing: how to achieve resilience of critical information infrastructures. In this chapter, we
are concerned with the susceptibility of the latter to computer-borne attacks and faults,
i.e., with the protection of these infrastructures.

We propose an architecture and a set of techniques and algorithms aiming at achiev-
ing resilience to faults and attacks in an automatic way. Although we focus on the com-
puter systems behind electrical utility infrastructures as an example, the architecture
we propose is generic and may come to be useful as a reference for modern critical
information infrastructures.
? This work was mainly supported by the EC, through project IST-FP6-STREP 027513 (CRU-

TIAL) and NoE IST-4-026764-NOE (ReSIST), by the FCT through the Large-Scale Informatic
Systems Laboratory (LaSIGE) and the CMU-Portugal partnership.

It is worthwhile recapitulating some of the reasoning behind the blueprint of this
architecture, recently published [23]. Although inspired by previous intrusion-tolerant
system architectures, the CRUTIAL architecture was largely influenced by two facts.
Firstly, the fact that Critical Information Infrastructures (CII) feature a lot of legacy
subsystems (controllers, sensors, actuators, etc.). Secondly, the fact that conventional
security and protection techniques can bring serious problems, when directly applied
to CII controlling devices, by preventing their effective operation. Although they are
very practical problems, we will show ahead that they yielded in fact very interesting
research challenges.

Another relevant fact was that our belief that the crucial problems in critical infor-
mation infrastructures lie with the forest, not the trees, has been confirmed everyday
as new incidents have occurred. That is, the problem is mostly created by the generic
and non-structured network interconnection of CIIs, which bring several facets of expo-
sure impossible to address at individual level. Whilst it seems today non-controversial
that such a status quo brings a considerable level of threat, to our knowledge there had
been no previous attempt at addressing the problem through the definition of a ref-
erence model of a critical information infrastructure distributed systems architecture.
One which, by construction, would lay the basic foundations for the necessary global
resilience against abnormal situations. Our conjecture was that such a model would
be highly constructive, for it would form a structured framework for (1) conceiving the
right balance between prevention and removal of vulnerabilities and attacks; (2) achiev-
ing tolerance of remaining potential intrusions and designed-in faults; and (3) enabling
adaptation and self-awareness mechanisms to overcome unforeseen situations. In this
chapter, we will report some advances in this area.

Finally, and in a related manner, we conjectured that any solution, to be effective,
has to involve automatic control of macroscopic command and information flows, oc-
curring essentially between the several realms composing the critical information in-
frastructure architecture (both intra- and inter-organizations), with the purpose of se-
curing appropriate system-level properties, at organizational level. This has to be ad-
dressed, in an automatic way, through innovative access control models that understand
the organizational reality, and are thus capable of translating the related high-level se-
curity policies into the adequate technical mechanisms such as access control matrices
and firewall filter rule-sets.

The chapter is organized as follows: Section 2 does the Architecture Description.
Then, the Protection Strategies and Services are introduced in Section 3, followed by
the Trustworthiness Monitoring Services in Section 4. The chapter concludes with a
discussion on Access Control for Critical Information Infrastructures, in Section 5.

2 Architecture Description

The CRUTIAL architecture encompasses four aspects. (i) Architectural configurations
featuring trusted components in key places, which a priori induce prevention of some
faults, and of certain attack and vulnerability combinations. (ii) Middleware devices
that achieve runtime automatic tolerance of remaining faults and intrusions, supplying
trusted services out of non-trustworthy components. (iii) Trustworthiness monitoring

mechanisms detecting situations not predicted and/or beyond assumptions made, and
adaptation mechanisms to survive those situations. (iv) organization-level security poli-
cies and access control models capable of securing information flows with different
criticality within/in/out of a CII. It is important to point out that the notion of CII is
hard to formalize. The generic idea is that the CII is the computer systems (or ICT) part
of a critical infrastructure, which is the working definition that we use in this chapter.

Intrusion tolerance mechanisms are selectively used in the CRUTIAL architecture,
to build layers of progressively more trusted components and middleware subsystems,
from baseline untrusted components (nodes, networks). This leads to an automation
of the process of building trust: for example, at lower layers, basic intrusion tolerance
mechanisms are used to construct a trustworthy communication subsystem, which can
then be trusted by upper layers to securely communicate amongst participants with-
out bothering about network intrusion threats. Middleware services and protocols in
the architecture use distinct techniques that address different levels of criticality of the
architecture, such as randomization and wormholes, software or hardware implemen-
tations, and support a diverse set of requirements from the applications: dynamic and
static groups; synchronous, partially-synchronous, and asynchronous execution; toler-
ance from benign accidental faults to malicious coordinated attacks.

CRUTIAL Information Switches (CIS) route the information to and from LANs with
different criticality levels, wherever they are in the infrastructure: intranet, SCADA, In-
ternet gateway. In fact, a lot of the protection and intrusion resilience reside in this class
of components that interconnect the several LANs comprising a CRUTIAL architecture.
But they are more than mere TCP/IP routers: in a simplistic way they could be seen as
sophisticated circuit or application level firewalls combined with equally sophisticated
intrusion detectors, connected by distributed protocols. Collectively they act as a set of
servers providing distributed services relevant to solving our problem: achieving control
of the command and information flow, and securing a set of system-level properties.

Monitoring and diagnosis can be performed at several levels, through diverse mech-
anisms: CIS self-diagnosis, the diagnosis inside the CIS as part of the fault tolerance
policy of the CIS itself; diagnosis on other components in the system (making assump-
tions on the security policy applied inside the CIS); diagnosis on the LANs and their
nodes; diagnostic information gained by processing the security policy decisions, inter-
preting them as error detections. The collected information may be used in order both
to take local decisions and to coordinate CIS activities.

Access control is a key issue. Although several organizations are normally involved and
have to cooperate in the operation of a CII, from the access control point of view, each
organization in a CII should keep its independence and responsibility on its assets and
personnel. We propose that: each organization defines its own security policy (accord-
ing to the OrBAC model), and enforce it with its own authentication and authorization
means; the organizations cooperate through web services, and for each web service, a
contract is signed between the provider and the client; this contract is translated in se-
curity rules (expressed within the Poly-OrBAC model), these rules being implemented
with the involved CIS, and enforced at each step of web service interaction; the interac-
tions are recorded into logs by each involved CIS, and these logs can serve as evidence

in case of dispute: each organization stay liable of all actions initiated by its own per-
sonnel.

2.1 Key Architecture Aspects

The CRUTIAL architecture, despite inspired by previous intrusion-tolerant reference
architectures like MAFTIA [22], extends them significantly to attend the specific chal-
lenges of the critical information infrastructure problem, for example, legacy, global
access control, and above all non-stop operation and resilience.

Given the severity of threats expected, some key components are built using archi-
tectural hybridization methods in order to achieve extremely high robustness:

– Trusted-trustworthy operation [22] is an architectural paradigm whereby compo-
nents prevent the occurrence of some failure modes by construction, so that their
resistance to faults and hackers can justifiably be trusted. In other words, some
special-purpose components are constructed in such a way that we can argue that
they are always secure, so that they can provide a small set of services useful to
support intrusion tolerance in the rest of the system. This concept is in line with,
but richer than, recent technological concepts like trusted computing or trusted plat-
form modules.

Another interesting aspect of this work is related with the mechanisms that we had
to develop, to preserve the large legacy composition of CII and keep changes to a min-
imum:

– Fully-transparent intrusion tolerance aims at preserving the complete illusion of
a standard system to legacy components. It is implemented by innovative replica
control and communication algorithms. Any SCADA and corporate network tech-
nologies stay unchanged, the only modification foreseen being the requirement of
IPsec at communication level, but this is considered a trend anyway [4].

Another innovative aspect of this work is our approach to achieve resilience. This
goes further to mere intrusion tolerance, and can be seen as a specialization of this
kind of architecture to critical infrastructures. The problem is addressed through two
paradigms:

– Proactive-resilience to achieve exhaustion-safety [20], and ensure perpetual, non-
stop operation despite the continuous production of faults and intrusions. This is not
a requirement of many intrusion-tolerant systems, but it is definitely of importance
for unattended operation, as is desired of the control part of CII.

– Trustworthiness monitoring to perform surveillance of the coverage stability of the
system, that is, of whether it is still performing inside the assumed fault envelope
or beyond assumptions made [2]. In the latter case, dependable adaptation mecha-
nisms are triggered to stabilize coverage and thus, the operational guarantees. This
is of extreme importance for situations of instability, either caused by accidental
events or malicious attacks, and we believe it can be a key to lower the risk of
cascading and/or escalating failures.

Finally, the desired control of the information flows is partly performed through
advanced protection mechanisms:

– the OrBAC firewall is an adaptation of the classical firewall rule-set operation to en-
force an organization-based access control model (OrBAC) [11] for implementing
global-level security policies. OrBAC allows the expression of security policy rules
as high level abstractions, and it is of importance for homogenizing the diverse se-
curity policies of organizations involved in a CII into one policy that controls the
global information flow.

In summary, the mechanisms and algorithms in place achieve system-level prop-
erties of the following classes: trustworthiness or resistance to faults and intrusions
(i.e., security and dependability); timeliness, in the sense of meeting timing constraints
raised by real world control and supervision; coverage stability, to ensure that variation
or degradation of assumptions remains within a bounded envelope; dependable adapt-
ability, to achieve predictability in uncertain conditions; resilience, read as correctness
and continuity of service even beyond assumptions made.

2.2 Main Building Blocks

The overall picture of a CRUTIAL system, shown in Figure 1, was detailed in [23].

� � �
� � �

� � � 	 � �
 � �
 � � � � � � �

 � � � � �
 � � � � �

� � �

� � �

 � �
 � � � �
 � � � � � � �

�

�

� � � �

� � � �

� � � �

� � � �

� �

� � � �

� � �

� � �

� � �
� � � � � � �
� � � � � � �

� � � � � � � �

� � �

� � �

� �

� � � � � � �
 �

 � � � � �
 � � � � �

 � � � � �
 � � � � �� � � � � � �
 � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

Fig. 1: CRUTIAL overall architecture (WAN-of-LANs connected by CIS)

We view the system as a WAN-of-LANs. There is a global interconnection network,
the WAN, that switches packets through generic devices that we call CRUTIAL Infor-
mation Switches (CIS), which in a simplistic way could be seen as sophisticated circuit
or application level firewalls combined with equally sophisticated intrusion detectors,
connected by distributed protocols. The WAN is a logical entity operated by the CII

operator companies, which may or may not use parts of public network as physical
support. A LAN is a logical unit that may or may not have physical reality (e.g., LAN
segments vs. Virtual LANs (VLANs)). More than one LAN can be connected by the
same CIS. All traffic originates from and goes to a LAN. As example LANs, the reader
can envision: the administrative clients and the servers LANs; the operational (SCADA)
clients and servers LANs; the engineering clients and servers LANs; the PSTN modem
access LANs; the Internet and extranet access LANs; an historian network (to store
monitoring data); etc.

CIS collectively act as a set of servers providing distributed services relevant to
solving our problem: achieving control of the command and information flow, and se-
curing a set of necessary system-level properties. In consequence, no traffic set to enjoy
CRUTIAL-level protection can go from one LAN to another without crossing a CIS.

3 Protection Strategies and Services

We now discuss the failure assumptions underpinning the architecture design, concern-
ing the main architectural devices: WAN, LAN, CIS. Shadowing in the figure symbol-
izes untrusted areas:

– The WAN interconnect (heavily shadowed) is assumed to have arbitrary behavior,
which is akin to saying it can be totally compromised.

– The CII facilities (lightly shadowed) are assumed to have varying faulty behavior,
from arbitrary to crash failure.

– Inside the facilities, the LAN is the unit of failure. This is akin to assuming that
some LANs will be completely trusted (e.g., by construction, or by recursive use
of intrusion tolerance), whereas other LANs may even be arbitrary (e.g., in conse-
quence of insider threats).

– Overall, we assume that faults (accidental, attacks, intrusions) continuously occur
during the life-time of the system, the only limit being that a maximum number of
f malicious (or arbitrary) faults can occur within a given interval. Note that this is
weaker than assuming that only f faults may occur during the whole life-time of
the system.

– CIS components are trusted to securely switch information flows as a service to
edge LANs as clients.

– LANs trust the services provided by the CIS, but are not necessarily trusted by the
latter.

The assumptions described above have a few implications on the protection strate-
gies chosen. Let us start by the CIS construction:

– The CIS is a main target to any hacker having understood the CRUTIAL architec-
ture, since the CIS is supposed to be a trusted component. We recognize this threat
by assuming that a number of CIS or components thereof can be corrupted.

– In order to be trusted, the CIS must be trustworthy. As such, the CIS itself must
be made intrusion-tolerant, prevent resource exhaustion providing perpetual oper-
ation (i.e., can not stop), and be resilient against assumption coverage uncertainty,
providing survivability.

– The CIS is thus implemented as a set of redundant units (multiple-box physically
replicated hardware units, or single-box logically replicated software units), de-
pending on the level of resilience to attain.

– Given the nature of malicious faults, which can be made common-mode, CIS con-
struction and or reconfiguration may be based on diversity techniques (ex. n-version
programming, obfuscation, etc.).

– The CIS also has proactive recovery mechanisms, so that each component is peri-
odically rejuvenated in such a way that if it suffered an intrusion, then the intrusion
is no longer present after the rejuvenation process.

– The CIS is further monitored by special run-time trustworthiness monitoring mech-
anisms, which make sophisticated sanity checks. Reactive recovery may for exam-
ple be triggered immediately an successful attack or failure is detected. Adaptation
mechanisms may also be parameterized by these monitors.

� � � � � � � 	
 � � � �

� � � � � � � �

� � � � � � � � � 	 � �
 �

� � � � � � � � � 	
 � �

� � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � �
 � � � � � � � �

� � � � � � �
 � � � �

� � � � � � � � � � � � �

	
 � 	 � � � � � � �
� � � � � � � � � � �

	
 � 	 � � � � � � �
� � � � � � � � � � � � �

� � � � � � � 	
 � � � �

� � � � � � � � � 	 � �
 �

	 	 	 	 	 � � � � � � � � � � � � � � � � 	
 � �

� � � � � � � � � � � � � � � � � � � � � � � � � �
 � � � � � � �
 � � � �

� � � � � � � � � � � � �

� � � � �

� � � � � �
	
 � 	 � � � � � � �
� � � � � � � � � � �

� � � � � � � �

Fig. 2: Building trust in CRUTIAL (CIS level)

As exemplified in Figure 2a, a simplex (i.e., non intrusion-tolerant) CIS, once at-
tacked, becomes under the control of the attacker and can fail. In the figure, attack
traffic will go through the compromised CIS and hit the station computer and control
networks in the CII. On the other hand, an intrusion-tolerant CIS (Figure 2b) despite
corruption of one or more components, will continue providing correct service, as long
as not more than a quorum f of component failures occur. CIS can be physically or log-
ically replicated, examples of this incremental intrusion tolerance strategy are discussed
in [1]. The figure shows a triple with a corrupted replica (f = 1): despite attacked by
unauthorized traffic, voting between all replicas discards these messages, only letting
normal traffic through to the station computer.

Let us look at the services running in or among CIS:

– The local services implemented on the CIS servers enjoy the CIS intrusion tol-
erance to secure the desired properties in the presence of malicious traffic and/or
commands.

– The distributed services implemented on sets of CIS servers are subject to possibly
Byzantine attacks. In consequence, cooperating CIS must be interconnected with
intrusion-tolerant protocols, in order to correctly implement the desired services.

Consider that the CIS boxes in the next figures represent intrusion-tolerant logical
CIS. That is, to any services running locally on top of a logical CIS, the latter appears as

being fail-controlled, in a good example of recursive use of intrusion-tolerance featured
by this architecture. As exemplified in Figure 3a, services running on an intrusion-
tolerant CIS are trusted to run correctly, despite faults or attacks. As such, these services
are trusted-trustworthy, that is, trusted because they are trustworthy.

On the other hand, some services may need to be run cooperatively amongst CIS,
and thus be subject to attacks at the WAN interconnect level. If one generalizes the
distributed intrusion tolerance concept to CIS interconnection, one will run specialized
intrusion-tolerant algorithms amongst CIS, which end-up achieving what is portrayed
in Figure 3b: a trusted-trustworthy communication fabric amongst CIS, overcoming the
initial untrusted basic WAN interconnect.

� � � � � � � � 	
 � � � � � � � � � � � �
 � � � �
 �

� � �

� � �

� � � � � � � � 	
 � � � � � � � � � � � � �
 � � � �
 �

� � 	 � � � 	
 � � � 	 � � � 	 �
�
 	 � � �

� � �� � � � � � �
 � � 	 �

! 	 	 � � �
 �

� 	 � 	 � � � � � � 	
 �

� � � � �
� � � � � 	
 � � � � � � � � � �

� � 	 � � � � 	 �

� � 	 � � � �
 	 � � �

� � � � � � 	 � � " " � �

� � � � 	 # � � $
 �
� � � � � 	 � � " " � �

� � � � �
� 	 � � " " � �

% � � � � � 	 �

 � � � � � � � � 	
 �
� � � � � 	
 � � � � � � � � � � �

� 	 � � � � 	 �

� � � � � 	
 �
� � � � � � � � � �

� � �

Fig. 3: Building trust in CRUTIAL (WAN level): a) Trusted Local CIS Services; b)
Trusted Global CIS Services

4 Trustworthiness Monitoring Services

The main diagnostic problems that can be found in a modern power grid distributed
infrastructure as CRUTIAL are the following:

– The use of SCADA sub-systems which were not designed to be widely distributed
and remotely accessed, and that do not cover security issues (they grew-up as stand-
alone systems). SCADA systems are not going to be redesigned or rebuilt, so they
cannot be modified in order to comply with the information infrastructure needs.

– Some of the components/sub-systems used within the infrastructure already imple-
ment monitoring and/or recovery techniques that could in some way work “against”
the needs of the infrastructure itself. It is hence necessary to coordinate all the mon-
itoring and/or recovery activities in order to favor the infrastructure needs (some-
times despite of component/sub-system needs).

– The use of large grained components: there are many interactions among sub-
components, so it is difficult to link a single error with a well focused fault. Two
kind of actions may follow: i) if the detected error is severe enough to require
immediate action, then determine the set of all components that could harbor the
originating fault, as well as the specific commands able to bring each component

to a correct, consistent state; ii) otherwise, if it is not beneficial, as soon as an er-
ror (or deviation) is observed, to immediately declare an entire component “failed”
and to proceed to repairing or replacing it; it is thus better to collect streams of data
about error symptoms and deviation detection, and proceed to fault assessment by
observing component behavior over time.

– The heterogeneity of the environment where diagnosis is performed: many differ-
ent entities will coexist in the system, so each component needs specific diagnos-
tic solutions (station sub-systems need to exchange values in order to perform the
secondary power control, whilst the substation web service provides visibility of
selected information over internet).

– The goodness of a component could be related to the quality of the service provided,
rather than on the absence of faults.

– The infrastructure has to be distributed by its very nature, so it is exposed to com-
munication and coordination problems, as well as to those caused by hardware or
operating system ones; it is not possible to manage these problems at the compo-
nent level, but it is necessary to do that at middleware level (or at least at application
level). In order to provide fault tolerance to distributed component based applica-
tions, it is necessary to implement mechanisms which take into account the fault
tolerance policies implemented by the different components within the system, and
to add the necessary coordination support for the management of fault tolerance at
application level.

4.1 The Diagnosis Framework

The diagnosis framework adopted to tackle these challenges involves the following ac-
tors (see Figure 4):

Component
Monitored

Detection
Deviation

behavior
"observable" external
"hidden" internal state

observation of external behavior

Diagnosis
State MC internal state based

on imperfect information

judgement about the

Imperfect accuracy
Incomplete coverage

symbols describing the
perceived MC external behavior

MC

SD

DD

Fig. 4: The diagnosis framework

Monitored Component (MC). It is the system component under diagnosis. The mon-
itored component, when first introduced in the system, works properly; during sys-
tem lifetime, the monitored component could be affected by some faults that might
compromise its functional behavior. The internal healthy state1 of the component
is therefore “hidden”, whilst the external behavior is “observable”. Since the same
observed incorrect behavior could be caused by different faults, it is an ambiguous
indicator of the healthy internal health state of the component itself.

Deviation Detection (DD). It is the entity introduced in the system in order to observe
the monitored component external behavior and to judge whether it is suitable or
not. Unsuitable component behavior could be the result of the manifestation of an
internal or external fault affecting the monitored component or it could be deter-
mined by a change in the requirements of the application that is using the compo-
nent monitored services. In the literature on fault tolerance, a wide variety of error
detection mechanisms are available, which are classified in different categories ac-
cording to several criteria, among which the type of checks they perform, the im-
plementation support (hw or sw), the system components they are tailored to, the
applicability time (on-line or off-line) [19]. The deviation detection mechanism has
indeed incomplete coverage and imperfect accuracy, so it can raise false positives
(when it detects an inexistent deviation) and false negatives (when it does not detect
an existent deviation). In critical systems both false positives and false negatives are
undesired: false positives led to an early depletion of system resources, while false
negatives drastically decrease the system dependability.

State Diagnosis (SD). Basing on information coming from the deviation detection me-
chanism, the state diagnosis mechanism has to guess the internal state of the com-
ponent. Deviation detection information is an imperfect judgment describing the
instantaneous external behavior of the monitored component; the state diagnosis
mechanism has to trace the monitored component deviations over time in order to
decide whether the monitored component services continue to be beneficial or not
for the rest of the system, deviations notwithstanding.

The diagnosis framework requires two information flows:

– MC↔DD: the deviation detection mechanism has to observe the monitored com-
ponent.

– DD↔SD: the state diagnosis mechanism has to collect deviation detections per-
formed by the deviation detection mechanism.

Each of the above information flows could be managed following a proactive or a re-
active schema: in the proactive schema, the entity interested in fresh information has to
ask for it, whilst in the reactive schema the entity that generates information has to send
it to the entity interested in it. More interaction patterns can be found in [17].

The above solutions have different balances in terms of QoS vs. cost of the data fed
to the SD mechanism: continuous monitoring is very costly and probably too aggressive

1 The “internal state” is something related to the component situation with respect to faults;
there is no relationship between the above “internal state” and the possible component states
related with the work performed by the component itself.

in terms of the overhead it induces on the system; buffered asynchronous monitoring
is cheaper then the continuous monitoring for the interaction cost, but requires storing
capabilities in the DD mechanism and negatively affect the promptness of the SD; the
failure triggered synchronous monitoring combines the advantages of the continuous
monitoring (timeliness of the input data and no need for storage) and of the buffered
asynchronous monitoring (reduction in communication cost), but can be impaired by
omission faults in the DD.

The traditional diagnostic problem is the identification of failed components in a
usually large set of homogeneous ones; fine grained components are the target of diag-
nosis, therefore, one-shot diagnosis of a collected syndrome2 is performed. Literature
shows that many over-time diagnostic mechanisms are available; each approach can be
mapped on the schema presented earlier and described involving only one component
and its deviation detection mechanisms. Two approaches are relevant:

Heuristic diagnosis. Heuristics are typically simple mechanisms suggested by intu-
itive reasoning and then validated by experiments or models. Most heuristic diag-
nosis solution are based on a count-and-threshold approach [14], as exemplified
by alpha-count [3] a heuristic designed to discriminate whether a monitored com-
ponent is affected by a transient fault (the component is healthy but is temporally
behaving bad) or by a permanent fault (the component is physically damaged and
need maintenance). The idea behind the alpha-count heuristic consists in counting
error signals collected over time, raising an alarm when the counter passes a prede-
fine threshold. When non-error signals are collected, the counter is decreased using
a decreasing factor. Suppose J(t) is a Boolean error signal coming from the devia-
tion detection mechanism at time t (“0” means no-error detected, “1” means error
detected) and suppose that K is the internal parameter that decreases the counter
value when a “no-error” signal is collected; the alpha counter α(t) is formally de-
fined as follow:

α(0) = 0

α(t) =
{

α(t−1) ·K if J(t) = 0
α(t−1)+1 if J(t) = 1 (0≤ K ≤ 1)

Every time the counter is evaluated, it is also compared with a predefined threshold
value αt in order to discriminate if an alarm has to be raised (α(t) ≥ αt) or not
(α(t) < αt). Extended analyzes about parameter tuning are available in [3] while
applications and variants are described in [2] [18].

Probabilistic diagnosis. Probabilistic diagnosis mechanisms (e.g. [6] based on HMM
- Hidden Markov Models and [16] based on Bayesian inference) are tailored to
evaluate the probabilities of the monitored component being in each of the “inter-
nal” state envisioned in the fault model, based on symbols coming from the devi-
ation detection mechanism. Probabilistic diagnostic mechanisms compute a state
occupancy probability vector f (t) at time t, using the symbols coming from the
deviation detection mechanism at time t and the state occupancy probability vector
f (t−1) at time t−1. The idea behind probabilistic diagnosis is to use the Bayesian

2 A syndrome is a vector of Boolean deviation detection results.

inference. Suppose to have a conjecture x on which we are uncertain (we believe
in x being true with probability p(x)); we aim to update our belief in x when some
new, relevant evidence is observed. Both evidence and conjecture are described as
events, that is, subsets of the set of all the possible outcomes of some experiment.
Using the Bayes’ theorem we can write that in general:

p(x |evidence) · p(evidence) = p(evidence |x) · p(x)

Interpreting the left-most probability in the above equation as the “posterior” proba-
bility of conjecture x (taking into account the observed evidence) and the right-most
probability as the “prior” probability of conjecture x, we can write

pposterior(x |evidence) =
pprior(x) · p(evidence |x)

p(evidence)

Given a set C of mutually exclusive conjectures such that their union has proba-
bility 1 (e.g. healthy states of a monitored component), the above formula allows
us to update the posterior probability of conjecture x given some evidence (e.g. the
outcome of deviation detection) using the following formula:

pposterior(x |evidence) =
pprior(x) · p(evidence |x)

∑cong∈C pprior(cong) · p(evidence |cong)

Both approaches solve the problem with the same computational cost, but diagnosis
based on HMM accounts for higher modularity and relies on a richer framework to
solve diagnostic problems (e.g., helps in case of incomplete information on the involved
parameters).

Diagnosis activity has to be performed at different granularity levels (Fault Replace-
ment Unit), depending on the controllability of control on the monitored component
(e.g., when dealing with COTS and legacy subsystems) and on the cost/efficacy ratio
of the detection/diagnosis/reconfiguration operations. On one side, fine grained diagno-
sis is very helpful since it allows replacement of smaller parts of the system, avoiding
wasting still useful subparts of the components under diagnosis. However, fine grained
diagnosis incurs in higher costs from the point of view of setting up diagnosis activities.
Opposite trends are instead shown by a coarse grained approach.

When diagnosis needs to be performed in a large system it is not practical to have a
centralized SD entity that has to gather and analyze all the deviation detections in order
to diagnose the system; this kind of centralized state diagnosis should be ultra-reliable
and communication links to all the parts of the system should be guaranteed. Therefore,
methods for distributed diagnosis are mandatory in which every system node decides
independently about the system (e.g. which are the healthy nodes and which the faulty
ones).

Considering a distributed system comprised by completely connected nodes, the
Hybrid Fault-Effect Model [28] can be assumed, so that all fault classification is based
on a local classification of fault-effects (to the extent permitted by the deviation detec-
tion mechanism of the sub-system itself) and on a global classification, thus developing
a global opinion on the fault-effect. Diagnosis is thus performed using a two-phase
approach on a concurrent, on-line and continual basis:

1. Local detection and diagnosis, aiming to diagnose the sub-system itself.
2. Global information collection and global diagnosis, obtained through exchange of

local diagnosis. Since each sub-system may have a different perception of the errors
observed on the remote sub-systems, each node has some private values (the results
of private diagnosis on remote sub-systems) and the goal is to ensure consistent
information exchange and agreement against Byzantine behavior. An agreement
(or consensus) algorithm is thus needed in order to solve the problem.

In the general case, the necessary conditions to achieve consensus in spite of up to f
arbitrarily faulty nodes are:

– at least 3 f +1 nodes in the system.
– at least f +1 rounds of message exchange.

Under the assumption of authenticated messages [8], which can be copied and for-
warded but not altered without detection, the condition on the minimal number of nodes
can be relaxed to f +2.

4.2 Diagnosis in CRUTIAL

The CRUTIAL infrastructure is organized as a WAN-of-LANs (see Section 2.2), where
each LAN is connected to the WAN by a CIS. Given that the computers inside the
LANs cannot be modified/updated, all the diagnosis activity has to be performed inside
the CIS. The following diagnosis scenarios arise:

– CIS self-diagnosis (local view): CIS monitors both itself (e.g. to diagnose hardware
or software faults) and its LAN (e.g. to “measure” its level of trustworthiness).

– CIS distributed diagnosis (global view): CISes construct a common view about
the “state” of a certain CIS in the infrastructure (e.g. related to the liveness and
trustworthiness of a specific CIS)

CIS self-diagnosis From a local viewpoint the CIS is a sophisticated application level
firewall (combined with equally sophisticated intrusion detectors) which is required to:

– be intrusion-tolerant;
– prevent resource exhaustion providing perpetual operation;
– be resilient against fault assumption coverage uncertainty providing survivability.

In order to comply with the above requirements, the CIS has a hybrid architecture and
is replicated (with diversity) in n replicas. Each CIS replica is built using a synchronous
and secure local wormhole and an asynchronous and insecure payload.

Two monitoring/failure detection scenarios arise:

1. internal monitoring: monitoring performed inside a single replica, trying to detect
local failures;

2. external monitoring: monitoring performed on the perceived behavior of the other
replicas.

The internal monitoring has to be performed on the following components/services (so
far, components/services that need to be monitored were not definitely identified):

– Hardware components (e.g. network interfaces, processing units, memory mod-
ules. . .) which are supporting the replica. The monitoring activity on these com-
ponents makes sense only when physical replication is used; in case of logical
replication, these components need to be monitored in the host system running
the replicas.

– Software components belonging to several architectural levels in the payload or in
the operating system.

Several signals coming from many architectural levels are collected and processed over
time: an example of signal coming from low architectural levels (O.S.) is related to a
CPU fan that is working too slow or a temperature sensor that is signaling the CPU is too
warm. An example of signal coming from a higher architectural level is an application-
generated exceptions or error return code.

The internal monitoring activity has hence to identify compound system conditions
which could require diverse corrective actions; for example, repeated application errors
could be interpreted as manifestation of software aging requiring rejuvenation, or could
be correlated with lower level signals (the CPU is too warm because the CPU fan is
working too slow), requiring another kind of reconfiguration (e.g. replacing the CPU
fan). The rationale behind internal monitoring and failure detection is to try to stop the
replica before it starts to behave incorrectly.

The external monitoring is performed by each replica on the perceived behavior
of the other replicas, given that a replica is not guaranteed to always behave correctly.
The monitoring activity is performed at service level, so that each service is in charge
of detecting whether its peers running in the other replicas seem correct or not. An
example of middleware service monitoring its peers on other replicas is the Protection
Service.

CIS LAN Diagnosis The CIS monitors over time the nodes in its protected LAN to
evaluate their trustworthiness. The evaluated trustworthiness level is used to request
maintenance actions on the protected node (e.g. replacing hardware, refreshing the soft-
ware, changing passwords. . .).

A trustworthiness indicator for each protected node N is defined (it could be multi-
dimensional) and modified based on the following events:

– the instance of the security policy applied within the CIS itself to the outgoing
traffic detects that N is trying to violate the security policy (e.g. trying to send
something without being allowed to do it);

– the instance of the security policy running on a remote CIS detects that a message
sent by N to one of its protected nodes was rejected. The CIS distinguishes whether
an incoming packet really comes from a station computer (instead from an hacker
in the WAN) using the LAN Traffic Labeling service (the CIS protecting the source
node signs the label). The signed label is hence a proof of the source of the packet.

The LAN Diagnosis service collects over time the above detections in order to evaluate
the trustworthiness indicator of each protected node. If protected trustworthiness indi-
cator of node N goes over a given threshold, the LAN Diagnosis service alerts its peers
about N being un-trustable (so that they can possibly take adequate countermeasures).

CIS Distributed Diagnosis The several replicas that made up a single CIS are required
to perform the same operations; this simplifies somewhat the task of checking their cor-
rectness on the run. Each single CIS, as seen from the WAN, is a different logical entity,
in terms of actions, services and requests toward other CISes. In the ordinary informa-
tion flow there is no simple comparison rule check that can be performed, to catch on
the fly a mischievous partner. On the other hand, if a CIS becomes compromised, in-
ternal redundancy and resilient architecture notwithstanding, then necessarily the basic
hypothesis on the fault occurrence has been broken: more than f replicas are out of
order together. Of course, this is the catastrophic case, whose probability has to be low-
ered down to a target level by choosing proper redundancy figures. However, a local
catastrophe (regarding a single LAN controlled by a compromised CIS) not necessarily
should imply the downing of the entire system. In fact, on the WAN side, all CISes
attempt to maintain a common view of two parametric descriptors its partners’ health:
Liveness and Trustworthiness.

Liveness is checked in two ways: i) passively, by monitoring normal network traffic
from the target; ii) if the former is not frequent enough, exert a form of resilient ping, by
means of a simple challenge/response protocol. Trustworthiness is built up by checking
the formal correctness of the messages coming from the target, as well from any access
violation detected by the Protection Service.

5 Access Control for Critical Information Infrastructures

Because Critical Information Infrastructures (CII) become more and more complex and
accessible via the Internet, they are more and more vulnerable to security threats. More-
over, due to the interdependencies between CIIs, simple failures can have dramatic
consequences. In this context, security issues in CIIs become obvious and serious. Sev-
eral works was dedicated to study the causes; the results have shown that one of the
most common problems is the lack of specific security policies, in particular in modern
SCADA environments [12].

Basically, a security policy is defined by the Common Criteria as the set of laws,
rules, and practices that regulate how an organization manages, protects, and dis-
tributes sensitive information [15]. In this respect, a security policy is specified through:
the security objectives that must be satisfied, e.g., “classified information must not be
disclosed to a competing organization”; and the rules expressing how the system may
evolve in a secure way, e.g., “the owner of an information is allowed to grant a read
access right on its data to other organizations”.

Nevertheless, by itself, the security policy does not guarantee a secure and cor-
rect functioning of the system. The security policy can indeed be badly designed or
intentionally / accidentally violated. Consequently, it is important to express the pol-
icy according to a security model; a model helps to: abstract the policy and handle its

complexity; represent the secure states of a system (i.e., states that satisfies the security
objectives) as well as the way in which the system may evolve; verify the consistency
of the security policy and detect the possible conflicting situations; etc.

Addressing these issues, this work progressively derives an access control model, a
secure architecture and applies our approach to secure CIIs. To do so, we first identify
the security requirements of a CII and we confront them to existing access control
models. Note that even if we take our examples from electric power grid, the same
approach and results can be applied to any kind of CII.

Globally, a CII can be seen as a WAN connecting several organizations involving
different actors and stakeholders (e.g., power generation companies, substations, en-
ergy authorities, maintenance service providers, transmission and distribution system
operators) and various LANs. LANs are composed of one or more logical and phys-
ical systems and are interconnected through specific Switches, called CIS (CRUTIAL
Information Switches). The general architecture is presented in Section 2.

In this respect, we can identify some security-related requirements such as:

1. Secure cooperation between different organizations, possibly mutually suspicious,
with different features, functioning rules and policies.

2. Loosely coupled organizations: each organization controls its own security policy,
applications, etc., while respecting the global functioning of the whole system. In
other words, we need a global security policy that manages the communication
between partner organizations while keeping each CII responsible for its own assets
and users.

3. Coherence and consistency: as no SCADA system operates in isolation, the global
as well as local security policies should be compatible.

4. Decentralization: it is desirable that the enforcement and administration of the se-
curity policies be decentralized. Actually, a centralized approach is not interesting
since CIIs involve the cooperation between independent organizations. Inversely,
handling the collaboration between the organization subsystems while keeping some
local self-determination seems more interesting.

5. Heterogeneity: the different CII organizations have their own structure, services,
OS, and local objects. These entities’ structures may be different from an organiza-
tion to another.

6. Granularity vs. scalability: on the one hand, security rules must be extensible in
size, structure, and number of organizations; on the other hand, internal authen-
tication as well as local access controls should be managed by each organization
separately.

7. Fine-grained access control: access decisions should take the context (e.g., specific
situations, time and location constraints) into account. Moreover, as the context
may change often and as certain reactivity is required in these systems, organiza-
tions should support dynamic access rights.

8. Users-friendliness and easiness of rules administration: as the global system links
several organizations geographically distributed and as it handles a large amount
of information and a big number of user, the access right management should be
sufficiently user-friendly to manage this complexity without introducing errors.

9. Remote accesses: as organizations control large installations, the security policy
should define if and how outsiders and users from a partner organization can con-
nect to the automation system and to resources belonging to each organization. For
example, it is important to define how vendors can access the system remotely for
off-site maintenance and product upgrades, but also how other organizations par-
ticipating in the CII can access local resources.

10. Compliance with the specific regulation: for example, in the United-States, NERC
1200 [5] specifies requirements for cyber-security related to electric utilities.

11. Confidentiality, integrity and availability: contrarily to other systems where mostly
confidentiality (military systems), integrity (financial systems) or availability is
needed, in the organization we often need these three properties (confidentiality
of each organization’s data, e.g., invitation of tenders, but also integrity and avail-
ability of data such as the voltage/frequency measurements).

12. Enforcement of permissions, explicit interdictions as well as obligation rules. In
fact, explicit prohibitions can be particularly useful as we have decentralized poli-
cies where each administrator does not have details about the other parts of the
system. Moreover, explicit prohibitions can also specify exceptions or limits the
propagation of permissions in case of hierarchies. Similarly, obligations can be
useful to impose some internal / external, manual / automatic actions that should be
carried out by users or automatically by the system itself.

13. The security policy must be vendor- and manufacturer-independent. As technolo-
gies change and new acquisitions occur, the policy must remain effective. When
vendor- or technology-specific statements are used, the maintenance burden for the
policy increases. Then, the policy would be changed any time there is a new pur-
chase or an advance in technology. If the security policy is not updated, it becomes
obsolete, which would not be acceptable in such systems.

14. Audit and assessment: the security policy will define the logging requirements such
as what will be logged, when, where, etc. In particular, an audit will determine if
the protections which are detailed in the policy are being correctly put in practice
on the system; it also checks if the contracts / agreements established by the partner
organizations are well-respected.

To satisfy these requirements, we propose a secure architecture where each orga-
nization defines its own security policy and enforces it into its CISs (see Section 2).
CISs are thus responsible for checking if local actions are in accordance with internal
security policies, but also if inter-organization flows are done according to the global
policy and to the contracts established by partner organization. Finally, CISs keep log
files as evidence in case of abuse or conflict. In this respect, the first question that arises
is how the security policies will be specified and what security model will be adapted
to organizations?

An analysis of classical access control policies and models shows that unfortunately,
none of these policies and models satisfies the CIIs security-related requirements. For
instance, HRU represents the relationships between the subjects, the objects and the ac-
tions by a matrix M [9]. M(s,o) represents the action that s is allowed to carry out on o.
It is thus necessary to enumerate all the triples (s,o,a) that correspond to permissions
defined by the policy, which is very complex in large systems. Moreover, when new en-

tities are added to or removed from the system, it is necessary to update the policy, still
adding to the complexity. Consequently, models associated to discretionary access con-
trol policies (including HRU) are not capable of managing huge, multi-organizational
and decentralized systems such as CIIs.

Role Based-Access Control (RBAC) is more flexible: roles are assigned to users,
permissions are assigned to roles and users acquire permissions by playing roles [7].
Even if RBAC is suitable for a large range of organizations, it does not cover all the
requirements of a CII, in particular it does not define how users of an organization can
play roles in another organization.

5.1 OrBAC

In [11] we have defined the OrBAC (Organization-based Access Control) model as an
extension of RBAC that details permissions while remaining implementation indepen-
dent. Our first goal was to express the security policy with abstract entities only, and
thus to separate the representation of the security policy from its implementation. In-
deed, OrBAC is based on roles as the abstraction of users (like in RBAC [7]), views
as the abstraction of objects (like in VBAC [24]), and activities as the abstraction of
actions (like in TBAC [21]).

Actually, in OrBAC, an organization is a structured group of active entities, in which
subjects play specific roles; an activity is a group of one or more actions; a view is a
group of one or more objects; and a context is a specific situation that conditions the
validity of a rule.

As a user can play several roles in several organizations, the Role entity is used
to structure the link between the subjects and the organizations. In fact, contrarily to
RBAC that considers a binary relation between roles and subjects, OrBAC consider the
ternary relationship Empower (org, r, s): it means that org employs subject s in role r. In
the same way, the objects that satisfy a common property in a certain organization are
specified through views (the Use(org, view, object) relationship), and activities are used
to abstract actions in organizations (the Consider (org, activity, action) relationship)
(Figure 5).

Now, once the relationships between the different system’ entities are defined, we
can specify the security rules. Actually, an OrBAC security rules have the Permission
(org, r, v, a, c) form: in the context c, organization org grants role r the permission to
perform activity a on view v. Obligation and Prohibition are defined similarly (Obliga-
tion (org; r; v; a; c) and Prohibition (org, r, v, a, c)).

Actually, two security levels can be distinguished in OrBAC (Figure 5):

– Abstract level: the security administrator defines security rules through abstract en-
tities (roles, activities, views) without worrying about how each organization im-
plements these entities.

– Concrete level: when a user requests an access, concrete authorizations are granted
(or not) to him according to the concerned rules, the organization, the played role,
the instantiated view / activity, and the current parameters (e.g., the context).

The derivation of permissions (i.e., runtime instantiation of security rules) can be
formally expressed as indicated in (Figure 5):

∀org ∈ Organization,∀s ∈ Subject,∀α ∈ Action,∀o ∈ Object, ∀r ∈ Role, ∀a ∈ Activity,
∀v ∈ View, ∀c ∈ Context
Permission(org, r, v, a, c) ∧ // a security rule in its abstract form
Empower(org, s, r) ∧ // in org, the role r is played by a subject s
Consider(org, α , a) ∧ // in org, the activity a correspond to an action α

Use(org, o, v) ∧ // in org, the view w corresponds to an object o
Hold(org, s, α , o, c) // in org, the context c is true for s, α and o
→ is-permitted(s, α , o) // runtime decision allowing s carrying out α on o

This rule means: if in a certain organization, a security rule specifies that “role r can
carry out the activity a on the v when the context c is True”; if “r is assigned to subject
s”; if “action α is a part of a”; if “object o is part of v” and, if “the context c is True;
Then s is allowed to carry out α on o.

Fig. 5: The ORBAC model.

As rules are expressed only through abstract entities, OrBAC is able to specify the
security policies of several collaborating and heterogeneous organizations (e.g., in a
CII), if they are considered as “sub-organizations” of a “global organization” with a
single OrBAC policy. In fact, the same role, e.g., “operator”, can be played by several
users belonging to different sub-organizations; the same view, e.g., “TechnicalFile”,
can designate a TF-Table or a TF1.xml; and the same activity “read” could correspond
in a particular sub-organization to a “SELECT” action (if the sub-organization has a
database system) while in another sub-organization it may specify an OpenXMLfile()
action.

In our context, OrBAC present several benefits and satisfies several security require-
ments of CIIs:

– Rules expressiveness: OrBAC defines permissions, interdictions, obligations, and
constraints (by means of contextual conditions).

– Abstraction of the security policy: OrBAC has a structured expression of the policy;
it separates the specification of the policy from its implementation. Consequently,
OrBAC greatly reduces the cost of administering security policies as well as making
the process less error-prone.

– Scalability: thanks to its abstraction levels, OrBAC has no limitation in size or
capacity. It can define an extensible and huge policy. It is then easily applicable to
large-scale environments.

– Loose coupling: each sub-system can manage its own local OrBAC security policy,
as far as it respects the global policy.

– Evolvable: a local policy in OrBAC is evolvable. It easily handles changes in orga-
nizations.

– User-friendly: the specification and update of a local OrBAC security policy is
easily managed at the local organization level.

– Standardized: OrBAC has a growing community. Many research tracks are being
conducted (see www.orbac.org).

However, OrBAC is centralized and does not handle collaborations between orga-
nizations, while these aspects are very important in CIIs. In fact, as OrBAC security
rules have the Permission(org, r, v, a, c) form, it is not possible to represent rules that
involve several independent organizations, or even, autonomous sub-organizations of
a particular collaborative system. Moreover, it is impossible (for the same reason) to
associate permissions to users belonging to other partner-organizations. As a result, if
we can assume that OrBAC provides a framework for expressing the security policies
of several organizations, it is unfortunately only adapted to centralized structures and
does not cover the distribution, collaboration and interoperability needs of current CIIs.

Moreover, the enforcement of the policy to access control mechanisms is not treated
in OrBAC. It is thus necessary to describe suitable architecture and implementation of
the studied system’s security.

To cover these limitations, we suggest enhancing OrBAC with new concepts and
calling on some mechanisms of the Web Services (WS) technology [10]. In fact, WS
is a set of technologies that provide platform-independent protocols and standards used
for exchanging heterogeneous interoperable data services. Software applications writ-
ten in various programming languages and running on various platforms can use WS to
exchange data over computer networks in a manner similar to inter-process communica-
tion on a single computer. WS also provide a common infrastructure and services (e.g.,
middleware) for data access, integration, provisioning, cataloging and security. These
functionalities are made possible through the use of open standards, such as: XML for
exchanging heterogeneous data in a common information format [26]; SOAP acts as a
data transport mechanism to send data between applications in one or several operating
systems [25]; WSDL is used to describe the services that an organization (e.g., a CII)
offers and to provide a way for individuals and other organizations to access those ser-
vices [27]; UDDI is an XML-based registry/directory for businesses worldwide, which
enables businesses to list themselves and their services on the Internet and discover
each other [13].

Web services (WS) have several benefits that could be interesting in our context:

– Interoperability and heterogeneity: WS support data exchanges between different
platforms.

– Resources sharing: WS are adapted to applications where organizations share their
resources.

– Standardized mechanisms: WS use open protocols and standards (e.g., HTTP, XML).
– Easiness: a small amount of code and resources is necessary to develop and carry

out a WS.
– Compatibility with OrBAC: it is easy to couple web services with OrBAC.

5.2 PolyOrBAC

At this stage, we have demonstrated that OrBAC as well as WS could be suitable for
CIIs. The question that takes place is: how adapting OrBAC as well as WS mechanisms
to specify and enforce secure collaboration between CIIs. To answer this question, we
have defined the PolyOrBAC [10], a global access control model that can be perfectly
applied to CIIs.

Actually, PolyOrBAC distinguishes two phases:

First phase publication and negotiation of collaboration rules as well as the corre-
sponding access control rules. First, each organization determines which resources it
will offer to external partners. Web services are then developed on application servers,
and referenced on the Web Interface to be accessible to external users.

Second, when an organization publishes its WS at the UDDI registry, the other
organizations can contact it to express their wish to use the WS. To highlight the Poly-
OrBAC concepts, let us take a simple example where organization B offers WS1, and
organization A is interested in using WS1 (Figure 6).

Third, A and B negotiate and come to an agreement concerning the use of WS1.
Then, A and B establish a contract and jointly define security rules concerning the access
to WS1. These security rules are registered – according to an OrBAC format – in a
database (connected to the A and B’s CIS) containing the Security policy. For instance,
if the agreement between A and B is “users from A have the permission to consult B’s
measurements in the emergency context”, B should:

– have (or create) a rule that grants the permission to a certain role (e.g., Operator)
to consult its measurements: Permission(B, Operator, Measurements, Consulting,
Emergency); note that every user playing the Operator role will have this permission

– create a “virtual user” PartnerA that represents A for its use of WS1
– add the Empower(B, PartnerA, Operator) association to its rule base.

In parallel, A creates locally a “virtual object” WS1 image which represents WS1, and
adds a rule in its OrBAC base to define which of A’s roles can invoke WS1 image to use
WS1.

Second phase: runtime access to remote services.
Let us first precise that we use an AAA (Authentication, Authorization and Account-

ing) architecture: we separate authentication from authorization; we distinguish access
control decision from permissions enforcement; and we keep access logs in CISs. Ba-
sically, if a user from A (let us note it Alice) wants to carry out an activity, she is first
authenticated by A. Then, protection mechanisms of A check if the OrBAC security
policy (of A) allows this activity. We suppose that this activity contains local as well
as external accesses (e.g., invocation of B’s WS1). Local accesses should be controlled

according to A’s policy, while the WS1’s invocation is both controlled by A’s policy (Al-
ice must play a role that is permitted to invoke WS1 image), and by B’s CIS, according
to the contract established between A and B. If both controls grant the invocation, the
execution of WS1 is executed under the control of B’s OrBAC policy (in B, PartnerA
plays role Operator that is permitted to consult measurements).

More precisely, when Alice is authenticated and authorized (by A’s policy) to in-
voke WS1, an XML-based authorization ticket “T 1” is generated (based on the positive
decision) and granted to Alice.

T 1 contains the access-related information such as: the virtual user played by Alice:
“PartnerA”; Alice’s organization: “A”; the contract ID; the requested service: “WS1”;
the invoked method, e.g., “Select”; and a timestamp to prevent replay attacks.

Note that T 1 is delivered to any user (from A) allowed to access to WS1 (e.g.,
Jean, Alice). When Alice presents its request as well as T 1 (as a proof) to B, B’s CIS
extracts the T 1’s parameters, and processes the request. By consulting its security rules,
B associates the Operator role to the virtual user “PartnerA” according to Empower(B,
PartnerA, Operator)3. Finally, the access decision is done according to Permission(B,
Operator, Measurements, Consulting, Emergency) ∧gmpower(B, PartnerA, Operator).

PolyOrBAC offers several benefits:

– Peer to peer approach: we use a decentralized architecture where organizations mu-
tually negotiate their common rules; each organization is responsible for its users
authentication and is liable for their use of other organizations’ services; it also
controls the access to its own resources and services.

– Independence: all security rules are specified in OrBAC independently by each
organization, and the organizations remain loosely coupled (through jointly agreed
rules, expressed by contracts).

– Information non-disclosure: the WS technology allows communications between
organizations without intimate knowledge of each other’s IT systems; moreover,
even if remote accesses are possible, it is not necessary to know the internal struc-
ture of the other organizations.

– Extensible structure: the OrBAC extensibility and the WS standards facilitate the
management and the integration of new organizations (with their users, data, ser-
vices, policy, etc.).

5.3 A scenario

Let us now apply PolyOrBAC to a real electric power grid scenario: in emergency con-
ditions, the TS CC (Transmission System Control Center) can trigger load shedding
on the DS (Distribution System) to activate defense plan actions (e.g., load shedding
activities) on the Distribution Grid. More precisely, the TS CC (Transmission System
Control Center) monitors the Electric Power System and elaborates some potentially
emergency conditions that could be remedied with opportune load shedding commands
applied to particular areas of the Grid.

3 Let us recall that Empower(B, PartnerA, Operator) has been added after the negotiation phase
(phase 1).

Fig. 6: The exchanged commands and signals.

Actually, as indicated in Figure 6, during normal operation, the Distribution Sub-
stations (DSS) send signals and measurements (voltage, Frequency, etc.) to the Trans-
mission System Control Center TS CC (via the Distribution System Control Center DS
CC); in the same way, the Transmission Substations (TSS) send signals and measure-
ments (voltage, frequency, etc.) to the TS CC (steps 1, 2 and 3 in Figure 6).

At the TS CC level, when the TSO (Transmission System Operator) detects that
a load shedding may be needed in the near future, it sends an arming request to the
Distribution System CC (step 4 in Figure 6).

Fig. 7: The different WS invocations.

Consequently, the DSO (Distribution System Operator) selects which distribution
substations (DSS) must be armed (these substations are those on which the load shed-

ding will apply if a load shedding is necessary), and then sends arming commands to
those DSS. The DSO has naturally the permission to arm or disarm any DSS in the
depending area of the DS CC.

If a Transmission SS (TSS) detects an emergency, it triggers (sends) a load shedding
command to all the distribution substations (DSS) of its area. Of course, only the DSS
already armed will execute the load shedding command.

In this scenario, we distinguish four organizations (TS CC, a TSS, DS CC and a
DSS), two roles (TSO and DSO) and four web services (Figure 7): Arming Request,
Arming Activation, Confirmed Arming and Load Shedding Activation.

WS1-Arming Request Provider: DS CC
Client: a user (TSO) or a process at TS CC

WS2-Arming Activation Provider: DSS
Client: DSO or a virtual user at DS CC

WS3-Confirmed Arming Provider: TSS
Client: a virtual user at TS CC

WS4-Load Shedding Activation Provider: DSS
Client: a user (automatic controller) at TSS

Table 1: The different WS of our scenario.

Basically, when negotiating the provision/use of WS1 between TS CC and DS CC,
on the one hand, TS CC locally stores the WSDL description file and creates a new
object as a local image of WS1 (whose actions correspond to WS1 invocations), and on
the other hand, DS CC creates a virtual user (playing a role authorized to invoke WS1)
to represent TS CC.

Moreover, TS CC adds local rules allowing Alice, a user playing the role TSO, to
invoke WS1 image: Empower(TS CC, Alice, TSO), and Permission(TS CC, TSO, Ac-
cess, TSO Distribution Circuits, Emergency). In this respect, when Alice requests the
access to WS1, the access decision is done according to the following rule:

Permission(TS CC, TSO, Access, TSO Distribution Circuits, Emergency) ∧
Empower(TS CC, Alice, TSO) ∧
Consider(TS CC, rwx, Access) ∧
Use(TS CC, WS1-Image, TSO Distribution Circuits) ∧
Hold(TS CC, Alice, rwx, WS1 Image, emergency) ∧
→ is-permitted(Alice, rwx, WS1 Image)

Besides, at the DS CC side, two rules are added: Empower(DS CC, Virtual User1,
Operator) and Permission(DS CC, Operator, Access, DSO Distribution Circuits, emer-
gency). Consequently, when Alice invokes WS1 Image, this invocation is transmitted
to the DS CC by activating a process (running for Virtual User1) which invokes WS1.
This access is checked according to DS CC’s policy and is granted according to the
rule:

Permission(DS CC, Operator, Access, DSO Distribution Circuits, Emergency) ∧
Empower(DS CC, Virtual User1, Operator) ∧
Consider(DS CC, rwx, Access) ∧
Use(DS CC, WS1, TSO Distribution Circuits) ∧
Hold(DS CC, Virtual User1, rwx, WS1, emergency) ∧
→ is-permitted(Alice, Virtual User1, WS1)

The other Web Services are negotiated and activated in the same way. This example
shows that PolyOrBAC is a convenient framework for the security of Critical Informa-
tion Infrastructures.

6 Conclusion

The chapter presented a distributed systems architecture for resilient critical informa-
tion infrastructures, with respect to both accidental faults and malicious attacks and
intrusions. Several aspects, such as design decisions and innovative mechanisms, were
discussed and explained, in order to guide the reader through the making of such archi-
tectures.

The rationale for this work was based on three fundamental propositions: classical
security and/or safety techniques alone will not be enough to solve the problem; any
effective solution has to involve automatic control of macroscopic command and infor-
mation flows between the LANs composing the CII; and, the unifying paradigm should
be a reference architecture of “resilient critical information infrastructures” performing
the integration of the different realms of a CII system.

The proposed solution encompasses a range of mechanisms of incremental effec-
tiveness, to address from the lower to the highest criticality operations in a CII. Ar-
chitectural configurations with trusted components in key places induce prevention of
some attacks. Middleware software attains automatic tolerance of the remaining faults
and intrusions. Trustworthiness enforcing and monitoring mechanisms allow unfore-
seen adaptation to extremely critical, not predicted situations, beyond the initial as-
sumptions made.

Functionally, the information flow is controlled by basic mechanisms of the firewall
and intrusion detection type, complemented and parameterized by organization-level
security policies and access control models, capable of securing information flows with
different criticality within a CII and in/out of it.

Some of the services running in CIS may require some degree of timeliness, given
that SCADA implies synchrony, and this is a hard problem with malicious faults, so we
plan to do research in this issue. We also take into account that these systems should
operate non-stop, a hard problem with resource exhaustion, since the continued produc-
tion of faults during the life-time of a perpetual execution system leads to the inevitable
exhaustion of the quorum of nodes needed for correct operation.

Acknowledgements

CRUTIAL is a project of the IST programme of the European Commission. Several
institutions participate to the project: CESI RICERCA (Italy), FCUL (Portugal), CNR-
ISTI (Italy), LAAS-CNRS (France), K.U.Leuven-ELECTA (Belgium), CNIT (Italy).

Details about the project can be found at: http://crutial.cesiricerca.it/.
We warmly thank our partners at the project for many discussions on the topics of the
chapter. We also thank our colleagues and students in our research groups for their
collaboration and feedback on this work.

References

1. A. N. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo. Intrusion-tolerant protec-
tion for critical infrastructures. DI/FCUL TR 07–8, Department of Informatics, University
of Lisbon, April 2007.

2. A. Bondavalli, S. Chiaradonna, D. Cotroneo, and L. Romano. Effective fault treatment for
improving the dependability of COTS- and legacy-based applications. IEEE Transactions
on Dependable and Secure Computing, 1(4):223–237, 2004.

3. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni. Threshold-based
mechanisms to discriminate transient from intermittent faults. IEEE Transactions on Com-
puters, 49(3):230–245, 2000.

4. E. Byres, J. Karsch, and J. Carter. NISCC good practice guide on firewall deployment for
SCADA and process control networks. Technical report, NISCC, February 2005. Revision
1.4.

5. North American Electric Reliability Council. Urgent action standard 1200, 2003.
6. A. Daidone, F. Di Giandomenico, A. Bondavalli, and S. Chiaradonna. Hidden Markov mod-

els as a support for diagnosis: Formalization of the problem and synthesis of the solution.
In 25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), pages 245–256,
October 2006.

7. D. Ferraiolo, R. Sandhu, S. Gavrila, D.Kuhn, and R. Chandramouli. A proposed standard
for role-based access control. ACM Transactions on Information and System Security, 4(3),
2001.

8. L. Gong, P. Lincoln, and J. Rushby. Byzantine agreement with authentication: Observations
and applications in tolerating hybrid and link faults. Dependable Computing for Critical
Applications, IFIP WG 10.4, preliminary proceedings, 5:79–90, 1995.

9. M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems. Communi-
cations of the ACM, 19(8):461–471, August 1976.

10. A. A. El Kalam, Y. Deswarte, A. Baina, and M. Kaaniche. Access control for collabora-
tive systems: A web services based approach. In Proceedings of the IEEE International
Conference on Web Services, pages 1064–1071, 2007.

11. A. A. El Kalam, R. Elbaida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège,
C. Saurel, and G. Trouessin. Organization-based access control. In IEEE 4th International
Workshop on Policies for Distributed Systems and Networks, pages 277–288, June 2003.

12. D. Kilman and J. Stamp. Framework for SCADA security policy. Technical report, Sandia
Corporation, 2005.

13. J. H. Lala, editor. Foundations of Intrusion Tolerant Systems. IEEE Computer Society Press,
2003.

14. G. Mongardi. Dependable computing for railway control systems. In Proceedings of the
International Conference on Dependable Computing for Critical Applications, pages 255–
277, 1993.

15. International Standards Organization. ISO/IEC Standard 15408-1, Common Criteria for In-
formation Technology Security Evaluation, v3, Part 1: Introduction and general model, July
2005.

16. M. Pizza, L. Strigini, A. Bondavalli, and F. Di Giandomenico. Optimal discrimination be-
tween transient and permanent faults. In Proceedings of the 3rd IEEE High Assurance System
Engineering Symposium, pages 214–223, 1998.

17. L. Romano, A. Bondavalli, S. Chiaradonna, and D. Cotroneo. Implementation of threshold-
based diagnostic mechanisms for COTS-based applications. In Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems, pages 296–303, October 13-16 2002.

18. M. Serafini, A. Bondavalli, and N. Suri. Online diagnosis and recovery: On the choice and
impact of tuning parameters. IEEE Transactions on Dependable and Secure Computing,
4(4):295–312, 2007.

19. D.P. Siewiorek and R.S Swartz. Reliable Computer Systems: Design and Evaluation. A.K.
Peters, 1998.

20. P. Sousa, N. F. Neves, and P. Verissimo. How resilient are distributed f fault/intrusion-
tolerant systems? In Proceedings of the IEEE International Conference on Dependable Sys-
tems and Networks, June 2005.

21. R. Thomas and R. Sandhu. Task-based authorization controls. In Proceedings of the 11th
IFIP Working Conference on Database Security, pages 166–181, 1997.

22. P. Verissimo, N. F. Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte, R. Stroud, and
I. Welch. Intrusion-tolerant middleware: The road to automatic security. IEEE Security
& Privacy, 4(4):54–62, Jul./Aug. 2006.

23. P. Verissimo, N. F. Neves, and M. Correia. The CRUTIAL reference critical information
infrastructure architecture: A blueprint. International Journal of System of Systems Engi-
neering, to appear 2008.

24. J. Vitek and C. Jensen. A view-based access control model for CORBA. In Secure Internet
Programming, volume 1603 of LNCS. Springer, 1999.

25. W3C. SOAP, version 1.2. W3C Recommendation, June 2003.
26. W3C. Extensible markup language (XML). W3C Recommendation, February 2004.
27. W3C. WSDL, version 2.0. W3C Candidate Recommendation, March 2006.
28. Chris J. Walter, Patrick Lincoln, and Neeraj Suri. Formally verified on-line diagnosis. IEEE

Transactions Software Engineering, 23(11):684–721, 1997.

