
Cryptojacking Detection with CPU Usage Metrics
Fábio Gomes1,2 Miguel Correia1

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa – Portugal
2INTEGRITY S.A., Lisboa – Portugal

fmjgomes@gmail.com miguel.p.correia@tecnico.ulisboa.pt

Abstract—Cryptojacking is currently being exploited by cyber-
criminals. This form of malware runs in the computers of
victims without their consent. It often infects browsers and does
CPU-intensive computations to mine cryptocurrencies on behalf
of the cyber-criminal, which takes the profits without paying
for the resources consumed. Such attacks degrade computer
performance and potentially reduce the hardware lifetime. We
introduce a new cryptojacking detection mechanism based on
monitoring the CPU usage of the visited web pages. This may
look like an unreliable way to detect mining malware since
many web sites are heavy computationally and that malware
often throttles CPU usage. However, by combining a set of CPU
monitoring features and using machine learning, we manage to
obtain metrics like precision and recall close to 1.

I. INTRODUCTION

The world has started to see a shift in the way revenue is
generated online. A few years ago, the only revenue stream
for web sites was provided by embedding advertisements (ads)
on web pages and pop-ups that in some cases made web sites
annoying and others even unusable, leading to the spread of
ad blockers. Although ads remain dominant, administrators
started looking for other ways to monetize their sites and bring
some of the lost revenue back.

This is where cryptocurrencies came in to help. Cryptocur-
rencies exist for more than 10 years now. The first, Bitcoin,
was introduced circa 2008 [1], but today there are many others
[2], [3]. Bitcoin, Monero, Ether, Litecoin, and many other
cryptocurrencies are generated using a mining process. This
process takes much time to generate a single coin and is
expensive since the machine processing power is high. Energy
tends to be expensive and high levels of processing power
lead shorter hardware lifetime, so the choice to do it must be
weighed by each user individually since the investment may
or not make it worth it depending also on the coin current
value and evolution along time.

This brings us to a recent cyber-crime trend: cryptojacking
[4]–[6]. Cyber-criminals saw an opportunity here. If they could
hack web pages and embed mining scripts without getting
detected, they could capitalize on the millions of visits a
day these pages get to obtain profits. Mining cryptocurrencies
in web pages is not illegitimate per se. In fact, it is an
alternative to ads. The issue is that the mining process should
not happen without user consent for the reasons already
mentioned. Needless to say, cryptojacking malware does not
ask users for consent.

We introduce a new cryptojacking detection mechanism
based on the CPU usage of the visited web pages. Our detector
monitors activity in real-time, while the attack is happening
(if there is an attack). The detector obtains a set of CPU
metrics and feeds them into a machine learning algorithm.
By combining a set of CPU monitoring features and using
machine learning, we manage to obtain metrics like precision
and recall close to 1.

A naive approach for detecting cryptojacking in web pages
would be to measure the CPU time consumed and generate an
alarm if it goes above a certain threshold. This would produce
bad results for two reasons. First, some web applications have
high CPU usage for long periods, e.g., video streaming or
conferencing applications. These applications would lead to
false positives in such a simplistic mechanism. Second, the
malware may throttle the CPU usage to keep it below a certain
level, in order to stay below the threshold. This would lead to
false negatives. We solve these two challenges by not using
CPU time as the single metric, but instead using a combination
of features based on a set of CPU metrics. Moreover, we use a
machine learning classifier, that can pick a good combination
of features to detect the phenomenon.

To configure the detector, we obtained an extensive collec-
tion of the CPU metrics measurements with mining algorithms
running, with different loads and different conditions. Then
we applied different machine learning classifiers to see if it is
possible to have a model based on CPU measures with good
performance in terms of metrics like precision, recall, etc. We
excluded the possibility that the malware might use the GPU
for mining. We acknowledge this possibility but we found no
malware cases that exploited browsers and used the GPU for
mining, probably because the JavaScript APIs that allow it are
recent and existing malware is often based on Coinhive [4],
the pioneer on web mining as a substitute for ads.

In our study, we faced a third and unexpected challenge. We
used a specific web search engine to find pages contaminated
with cryptojacking scripts. However, some of these scripts
never run, either because they only run in some browsers or
because they have bugs. Either way, this made it harder to
obtain ground truth to train and evaluate our detector.

Sections II and III explore the topics and research performed
in the mentioned fields of study. Section IV presents our
solution composition. Section V presents the experimental
evaluation and Section VI concludes the paper.978-1-7281-8326-8/20/$31.00 c©2020 IEEE



II. BACKGROUND

This section presents some background on our work.

A. Cryptocurrencies

Cryptocurrencies appeared intending to eliminate the need
for third-party institutions on online money payments and
transfers. As described by Nakamoto [1], the existing ap-
proaches are not a good fit for today’s online conditions.
Nakamoto’s Bitcoin solved that problem but also paved the
way for the appearance of many alternative solutions. There-
fore, hundreds of slightly different new cryptocurrencies have
been appearing1, with the emphasis on different problems,
from faster transactions to better anonymity or stability. This
flourishing ecosystem has also lead to many research in
different aspects of cryptocurrencies, from different networks
[2], [3], [7]–[9] to attacks [10], [11], consensus algorithms
[12], [13], and many other topics.

B. Machine Learning

Brownlee states that we can divide machine learning algo-
rithms into two big groups: supervised and unsupervised [14].
Machine learning classifiers belong to the supervised learning
category, where an input is given, and a specific output is
expected. A classifier has several parameters that have to be
learned from training data. The learned classifier is essentially
a model of the relationship between the features and the class
label in the training set. After the training, the classifier has to
be tested against a different data set to make sure it captured
the relationship between the input and output.

C. Intrusion Detection Systems

Wagner and Soto [15] mention that there are broadly speak-
ing two kinds of intrusion detection systems: network intrusion
detection systems and host-based detection systems. Our in-
terest lies with host-based intrusion detection systems (HIDS)
since they are the most adequate for what we aim with this
research. HIDSs can be further divided into two categories:
signature-based schemes and anomaly-based. Wagner and Soto
claim that signature-based detection is easier to bypass than
anomaly-based detection. However, web applications are very
heterogeneous, so it does not seem practical to obtain a model
of behavior that covers all of them. Therefore, we decided on
a signature-based intrusion detection system, with signatures
created automatically using machine learning.

D. CPU Monitoring

CPU monitoring is not new. Multiple CPU metrics can be
provided to the user, either by the hardware firmware, by
the operating system, or by APIs written for this purpose. In
some cases the motherboard itself may provide more sensors
than those in the CPU. These sensors allow the user to get
different information and some times better reads than those
already given by the CPU. The ideal scenario would be to
get metrics provided by default on most operating systems

1https://coinmarketcap.com/

or hardware, and have with it universal coverage. By taking
this into account, the final solutions that would depend on
the provided metrics would work on the highest number of
systems possible without the need for modifications.

One of the most noticeable changes on a system when it
starts running these mining algorithms based on the browser
is the CPU high usage by the browser process. If it happens
via a web site it will load malicious JavaScript to the client,
otherwise, if the user is not infected via browser it would be
an independent process and the malicious code will be in a
different language.

III. RELATED WORK

Cryptojacking grew much in 2017, 8500% according to the
2018 Symantec security annual report [16], then went down
and is now increasing again.

Rauchberger et al. [17] mention that the best ways to iden-
tify a browser mining a cryptocurrency is by tracking the usage
of the following mining-specific technologies: WebAssembly;
Web workers (a non-trivial amount of them); WebSockets
(probably not the best one since legitimate web apps widely
use it).

MiningHunter [17] is a framework to track mining scripts.
It had an interesting concept in mind, where for every loaded
web site, the metadata, all executed JavaScript, and raw
Websockets traffic are recorded. The stored data is analyzed
and compared with each other, looking for common strings and
functions with the same signature are checked for patterns and
keys that were repeated. After the previous step, the signatures
were matched to figure out which ones belong to the same
mining campaigns.

Saad et al. [18] noticed that during cryptojacking script
execution, the code would establish a WebSocket connection
with a remote server and perform a bidirectional data transfer.
WebSocket communications can be monitored using traffic
analyzers such as Wireshark. However, a major issue when
using traffic analyzers is that browsers encrypt the web traffic
during WebSocket communication making it not that easy to
analyze.

Outguard [19] uses 12 different features to flag pages
as being potentially running cryptojacking. These features
ranged from easily detectable patterns to technologies used
in multiple of these pages. Some of the methods were also
used previously, like Web Workers’ presence and the use of
WebAssembly, but also events like PostMessage Event Load
and MessageLoop Event Load. They also added the CPU
usage as a detection feature, although the only thing that
they checked was if the CPU load was over 50%, which is
problematic, as they acknowledge.

Coinpolice [20] also uses multiple features to detect cryp-
tojacking. The authors used the following methods to cross-
check the presence of a miner: 1) a baseline classifier that
only uses a hard-coded 30% threshold over CPU usage,
2),3) two classifiers based on HPC counters (respectively
using convolutional and recurrent neural networks), 4),5)
two classifiers based on JavaScript/WebAssembly function



execution time series, and 6),7) two classifier based on the
JavaScript/WebAssembly features and throttling-detection fea-
tures. Expanding their CPU threshold to 30% allowed them
to have a broader and more complete mining detection and
introduce the possibility of a higher false positive rate if used
on its own which was not the case.

A code analysis classifier that performed dynamic analysis
of the opcodes [21] was developed using Weka to execute the
classification algorithm. Opcodes are portions of a machine
language instruction that specifies the operation to be per-
formed. They took advantage of the 10-fold-cross-validation
training method, which seems to be the standard for this kind
of machine learning training runs. The previous method was
used to train their chosen algorithm (Random Forest) that
would find the best way, given the supplied training data,
to tie them together and understand what was the constant
across all the examples that allowed it to flag a malicious
script. They concluded having as basis that dynamic opcode
tracing is extremely effective at detecting cryptojacking, as
they obtained 99.9% accuracy.

SEISMIC detects cryptojacking based on semantic signa-
tures of behavior [22]. Moreover, it uses the fact that its de-
tection mechanism provides low false positives to dynamically
block scripts flagged as executing cryptojacking.

Munoz et al. detect cryptojacking by inspecting network
traffic [23]. The detection is based on monitoring Net-
Flow/IPFIX flows that summarize traffic. CryingJackpot is also
based on traffic inspection but in combination with data from
operating system logs, achieving a high F1-Score [24].

As Carreiro finds in his work [25], mining activities are
definitively possible to flag just by observing the CPU and
GPU activities, depending on the kind of miner running on the
system, since they have a recognizable pattern when running.
Temperature is also a good way to detect the presence of a
miner since the CPU and GPU intense activity is linked to
higher temperatures on these components.

IV. THE INTRUSION DETECTION MECHANISM

This section presents our intrusion detection mechanism,
starting with an overview, then with details of the detector’s
modules.

A. Detector Overview

Our intrusion detection tool was designed to run inside
virtual machines. For now, it is set up to check if a web page
executes cryptojacking scripts. For that purpose, the detector
is started by executing a Python script composed of four
modules, represented in Figure 1. This architecture is modular
and it aims to work well once exported and used in different
machines.

The script will first run a webpage crawler that will visit
the page and download all its scripts. While the page visit is
happening, our tool will be running a CPU monitoring module
that gathers all the selected metrics that are later supplied to
the machine learning classifier. Before feeding the data into
the classifier, it is put in the format the classifier consumes

by the Arff parser, that returns a file in the Attribute-Relation
File Format (ARFF) format. The job of the classifier is to
assign to a class – cryptojacking / no cryptojacking – the input
obtained from the CPU monitoring component with the help of
a classification algorithm. We tested many of such algorithms,
so we used the the Weka tool [26]. Weka computes with the
chosen algorithm a result with the presence or not of any kind
of cryptojacking miner that would later be supplied to the user.

 

Machine Learning Classifier 

 

Intrusion Detection System 

Webpage Crawler 

ARFF Parser 

CPU Monitoring 

Fig. 1: Intrusion detector architecture

There were multiple steps to take into account to reach the
previously mentioned solution, described next.

B. Webpage Crawler

The logical division we did was the following. First, there
was the need to crawl the chosen pages; for each of the
use cases (for training and testing), different lists would be
supplied in both cases. In the first list (training set), each
dataset’s results would already be known, but in the second
list (testing set), the results would not be known. The testing
set would be a group of web pages accessible online. The
crawling would be performed by a simple script that would
go through each page individually and sequentially loading all
the initial page resources. For the crawler, we chose to use a
project publicly available on GitHub called Puppeteer-Cluster
[27]. The project has a practical way of handling the top Alexa
list [28], which is the list we used to perform the crawl, trying
to find pages containing cryptojacking infected pages.

C. CPU Monitoring

Metrics are gathered by retrieving the CPU values for each
web page when it is loaded. For training purposes, each page is
loaded then left running for a specific time before it is halted.
While the page is being loaded, the second stage is happening.
The CPU behavior is being recorded and all the chosen metrics
are being stored in individual files, so they can be further used
and compiled in later stages to files that are later processed
by the machine learning algorithm (arff files). We ended up
choosing the mpstat command line tool to monitor the CPU.
It monitors the activity of each processor core independently.
It also calculates the averages among all the processors, which
can be helpful to some of our observations. The tool outputs
several CPU metrics; it is customizable in terms of metrics



by core and by time interval at which the reading should be
done.
mpstat allowed the following metrics to be extracted from

the different CPU cores independently:
• %usr: CPU utilization at user level (application).
• %nice: CPU utilization at user level with nice priority.
• %sys: CPU utilization at system level (kernel);
• %iowait: time that the CPU or CPUs were idle during

which the system had an outstanding disk I/O request;
• %irq: time spent by the CPU or CPUs servicing hard-

ware interrupts;
• %soft: time spent by the CPU or CPUs servicing soft-

ware interrupts;
• %steal: time spent in involuntary wait by the virtual

CPU or CPUs while the hypervisor was servicing another
virtual processor;

• %guest: time spent by the CPU or CPUs running a virtual
processor;

• %idle: time that the CPU or CPUs were idle and the
system did not have an outstanding disk I/O request.

To make the metric gathering faster, we used Amazon EC2
instances, 4 to be precise. All only with one CPU core, with
512 MB RAM and 40 GB internal storage. mpstat had the
options to read the CPU usage by core and give an average
of all the cores; to read in all the environments with different
cores we ended up reading the average value for all the cores
in any machine. The miner throttling system also referred to
the overall average and not the average by CPU core.

Figure 2 shows the CPU average consumption while the
page sohu.com is downloaded and running. That page was
chosen for this purpose since it did not have any trace of
a cryptominer running. The page takes close to 15 seconds
to load, and the CPU consumption is not steady. CPU time
shows multiple peaks and some reduction on average, except
for peaks that continue to appear when a routine or script is
executed. Figure 3 shows the CPU consumption of a mining
script running in a browser configured with different throttles,
from being limited to 25% of the CPU to having all the CPU
for him.

Fig. 2: CPU behavior while the sohu.com page is being loaded

Fig. 3: CPU behavior while mining at different with different
throttling

D. Arff Parser

The next step of the process was to develop a script that
transforms the data stored on the individual files to put them
in a format that Weka understands and interprets as valid.

Weka needs to receive the metrics from a specific file
format, known as an arff file. These files are divided into a
header part that describes how the data is subdivided in the
next section. The file header is as big as the number of fields
we are sending for evaluation. The name of the fields does not
matter; it just needs them to be different from each other. Next,
the data, where there is a label as a first positional element.
After it the data we are trying to evaluate, the number of fields
will vary depending on the number of seconds we are trying to
evaluate and the number of CPU metrics we want to evaluate.
The last positional value of each line is the classifier that, in
our case, will be a binary value, 1 which marks the presence
of a miner and 0 otherwise. It could be a list of values, and
it could be composed of strings instead of integers, but there
was no advantage to this approach in our case.

E. Machine Learning Classifier

This is the last and one of the most critical stages. We used
Weka to evaluate which classifier better fits our training values
so that later we could apply the chosen classifier to classify
the testing values. The classifier values (1 or 0) will only be
attributed to training values: 1 will mean a miner is running,
and 0 will mean no miner is running. The algorithm will need
to know the result of what it is evaluating to create a pattern
and further classify unknown values. The last position of the
testing values has the character “?” attributed, since the result
is unknown. To choose the classifier that better fits the data, a
number as big as possible of classifiers available within Weka,
that can be applied to our data, will be used. Their precision
rates will be taken into account when choosing the best option.

We started by training our algorithm using k-fold cross-
validation. The cross-validation method is better than others to
our approach since it helps to have a better and more realistic



estimate on how the model is expected to behave against data
not used in the training set.

During the experiments, we tested multiple classifiers to
find those that provide better results given our dataset. The
following classifiers were those that we ended up having better
results with, although we evaluated many others. The first two
algorithms were applied to multi-instances, which allows for
a single label to be applied to multiple values (relational bag),
whereas the final two were applied to single instances.

• TLC, Two-Level Classification [29] uses a single decision
tree to obtain propositional data. TLC represents regions
with assigned attributes in their space. Each attribute
represents the number of instances in the bag that can
be found in the corresponding region. Together also
considering the bag’s class label, the meta-instance can be
used with a standard propositional learner to learn each
region’s influence on a bag’s classification.

• MISVM, Multiple-Instance Support Vector Machine [30]
is a machine learning approach that leads to mixed-
integer quadratic programs that can be solved heuristi-
cally. The algorithm first assigns the bag label to each
instance in the bag as its initial class label. After that
applying the algorithm SMO to compute the support
vector machine (SVM) for all instances in positive bags,
finally, reassign the class label of each instance in the
positive bag according to the result and iterate them until
the labels stop changing.

• RandomSubSpace, Random Subspace Method [31], con-
structs a decision tree based on the classifier improving
the generalization accuracy as it increases in complexity.
The classifier consists of multiple trees constructed sys-
tematically by pseudorandomly selecting subsets of the
feature vector components, meaning constructing trees in
randomly chosen subspaces.

• SMO, Sequential Minimal Optimization [32], substitutes
all the missing values in the dataset with binary values,
normalizing them. It is a very scalable algorithm since
it breaks Quadratic problems in small ones solvable
analytically.

V. EXPERIMENTAL EVALUATION

We explored our scheme by monitoring different numbers of
cores for different time frames to understand how to configure
our detector. We use the usual concepts of true positive
(TP, cryptojacking well detected), false positive (FP, wrongly
detected), true negative (TN, no cryptojacking not flagged),
and false negative (FN, missed cryptojacking). We also use
common metrics: TP rate, FP rate, precision, recall, f-measure,
MCC (Matthews correlation coefficient), ROC area (or area
under ROC curve), and PRC area (area under precision-recall
curves).

A. Training Dataset Composition

We started gathering the training metrics by dividing them
into different groups. We would gather the metrics 60 times
for the specified amount of time in each experiment, which

varied between 15 and 60 seconds. The groups and sub-groups
in which we divided our training dataset is the following:

• running a cryptominer while no one is working on the
computer – We did this at different CPU consumption
rates (20%, 50%, 75%, and 100%), giving a total of 240
runs (60x4);

• running a cryptominer while someone is working on the
computer – We did this at different CPU consumption
rates (20%, 50%, 75%, and 100%) giving a total of 240
runs (60x4);

• no one is working on the computer, and no miner is
running – This is the control group which will give us
the CPU normal usage;

• someone is working on the computer but no miner is
running – The idea is to have entropy and understand
the difference between mining and normal user usage.
The usage described was essentially browsing different
web pages, running some java programs, and some bash
scripts.

In later runs, we decided to add some more values of pages
not running any miner script to make sure the algorithms had
a chance to establish a difference between the presence or not
of a miner.

B. 1 CPU core for 15 seconds

We started by configuring our detector to monitor 1 core
and obtain metrics for periods of 15 seconds.

After all the metrics gathered, parsed, and compiled into an
arff file divided into relational bags, we ran all the algorithms
in Weka that could be applied to our values. Looking at
the initial results, we ended up choosing the algorithm with
better precision values among all the existing classifiers, which
was the TLC classifier. Evaluating the results, we obtained
better result than anticipated for a first experiment, with an
average precision of 92.5%. While not being a good result
for a final solution, it suggested that it could be possible to
have a working solution at the end of our trials with some
improvements. Also, we got only an average of 7.5% false
positive rate.

We started by training our algorithm, using a 10-fold cross-
validation. Table I shows the training results we extracted from
Weka for the algorithm with the best values given our training
set. Weka performs after the training step a validation with the
classifier and the training data to verify if the newly trained
classifier will be able to classify the supplied values correctly.
The classifier was called (TLC). The first training values were
gathered by loading the pages for 15 seconds on a 1 core
machine.

We obtained a reasonable result for a first run. At this point,
we started to adapt our crawler to go through the chosen
dataset, the top 12500 Alexa web sites.2 For this purpose, we
initiated four EC2 instances, all from a single image. After
running the first sample, we realized that some web sites
were not responding or were dead. We ended up running the

2https://www.alexa.com/topsites



TABLE I: Training results using the metrics for 15 seconds and the TLC algorithm

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

0 No cryptojacking 0.940 0.090 0.913 0.940 0.926 0.850 0.966 0.943
1 cryptojacking 0.910 0.060 0.938 0.910 0.924 0.850 0.966 0.963
Weighted Avg. 0.925 0.075 0.925 0.925 0.925 0.850 0.966 0.953

crawlers against 12500 web pages, where only 11489 ended
up being useful to our work. We parsed all the results and
compiled them into two files: one containing all the relational
bags of the web pages; and the second with all the web pages
URLs, so that we could match each result to each web page.
This was also the approach for the rest of our experiments;
there were two lists, one with CPU results and another with
the crawled pages’ URLs.

We found 1837 possible pages containing cryptojacking
malware running on them, given the 11489 active crawled
pages sample of 15.99% of the active sample. We found this
unrealistic since it was a much higher number than those
observed in all the related work. Therefore, we decided to
analyze a small sample of the pages manually. We noticed no
miner was running and the pages did indeed yield a higher
CPU usage for a while longer than the 15 seconds. This
observation made us change the way we gathered the metrics.
We decided to extend the metric gathering stage and to extend
it for 60 seconds, instead of 15 seconds (next section).

C. 1 CPU core for 60 seconds

We did a second experiment changing the amount of time
each page is visited, increasing it to 60 seconds so a new set
of metrics was gathered. After all the results were parsed and
applied to the algorithm previously selected (TLC), we had an
even better performance, which made sense. By increasing the
amount of time we gather metrics, a higher number of values
could be used to trace a pattern and then apply it to unknown
pages. Table II shows the results we obtained.

We jumped from an average of 92.5% to 98.3%. With the
increased precision, we expected better results when evaluating
the new 60 seconds sample of the 12500 pages against the
newly created training model. If we compare it to the false
positive rate we had a promising result of 1.6% on average.

In the second run, of the 12500 web pages, only 11593
responded successfully, a few more than the last time. Of
the total sample, we got 982 pages marked as being running
mining scripts. Although this still looks like a significant
number, it is close to a 50% reduction from the last run,
associated with a low false positive rate made us believe our
results may be accurate. We ended up analyzing some pages by
hand to make sure they were running scripts or not. We chose a
small sample of the first 10 web pages flagged as being mining,
which was the following: http://friv.com; http://vnexpress.net;
http://wiley.com; http://orange.fr; http://gamib.com; http://tempo.co;
http://rockstargames.com; http://news.com.au; http://telekom.com;
http://filgoal.com. After a careful evaluation of these pages
sample, we excluded 3 since they did not yield a high CPU
usage; we did not understand why the model flagged these

pages since even the first crawl results did not have a high
CPU usage all through the time. If they had, then a miner
running, there were several reasons why we would not find it
at the time of result evaluation, the top two being: (i) (i) the
miner was removed before the evaluation; (ii) the miner only
loaded from time to time, to some users.

Page tempo.co was a dead-end; it indeed had a higher CPU
usage for a longer time frame, but it dropped a few seconds
after the metrics stopped being recorded. news.com.au had a
higher CPU usage but it was due to the number of resources
loaded, which was also the same reason for telekom.com and
filgoal.com. The only 2 remaining to analyze were number 1
and number 5. These pages indeed had a high CPU usage.
We started by loading the page and understanding what it
was doing. The first page was an online game web page
doing computation on the client-side. It is usual for such
web pages to have high CPU usage and stable if not many
interactions are applied. To make sure nothing is running in
the background unwanted, we carefully downloaded all the
resources that made up the page and analyze them, looking
for scripts that could indicate a miner. Nothing was found; we
ended up running the page on a local webserver to check if the
behavior, but it was a dead end. There was nothing apparent
that made us think there was a miner present. The model
failed once again. Page 5 was also disappointing; it showed
high CPU usage indeed, but it was just an image modeling
changing as time passed and even simpler scripts, again not
running what we thought it was.

D. Average of the cores for 60 seconds

At this stage, we realized that there should be some CPU
metrics of web pages publicly available in our training dataset.
These pages loaded a higher amount of resources making the
CPU have a higher usage for longer than usually observed,
while still not running any malicious scripts: http://tmall.com;
http://sohu.com; http://taobao.com; http://jd.com; http://alipay.com.

These pages were those that got flagged in the first run
against the Alexa top pages. We ended up choosing them as
a good real-world indication of pages that run for longer on
a higher CPU consumption while not having any malicious
cryptojacking present. So the new data was once again put to
the test with the set of existing algorithms. Table III shows
which algorithms better fit our models. The names of the
algorithms are abbreviated in the table. They are: (1) mi.MISVM;
(2) mi.MITI; (3) mi.QuickDDIterative; (4) mi.SimpleMI; (5) mi.TLC;
(6) mi.MIBoost; (7) mi.MILR; (8) mi.MIRI; (9) mi.MIWrapper; (10)
mi.MIEMDD.

A new algorithm came with better performance: MISVM.
It performed slightly better than TLC, although close in terms



TABLE II: Training results using the metrics for 60 seconds and the TLC algorithm

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

0 No cryptojacking 0.988 0.021 0.976 0.988 0.982 0.967 0.992 0.980
1 cryptojacking 0.979 0.012 0.989 0.979 0.984 0.967 0.992 0.993
Weighted Avg. 0.983 0.016 0.983 0.983 0.983 0.967 0.992 0.987

TABLE III: Training precision (%) results for the average of the cores using the metrics for 60 seconds

Dataset (1)mi.MISVM (2)mi.MI (3)mi.Qu (4)mi.Si (5)mi.TL (6)mi.MIBoost (7) mi.MILR (8)mi.MIRI (9)mi.MIWrapper (10)mi.MIEMDD

cpu(100) 99.10 97.80 87.62 53.28 98.29 53.28 96.44 97.80 53.28 53.28

of false negatives. Table IV shows an in-depth analysis of the
MISVM algorithm with the training set provided to it.

Something remaining to do was to test against the Alexa
top pages. After evaluating the crawled web page values with
the new algorithm, we ended up with 851 pages, with a
positive result (presence of a cryptocurrency miner). Some of
the previously flagged pages were dropped, which was a good
sign. We chose once again the 10 first pages flagged to get
evaluated.

All pages were once again free of any detectable cryp-
tominer. They either loaded a higher number of resources
ending up consuming more CPU, or had heavier scripts that
maintained a high usage. Our choice to add some real-world
examples paid off; we needed to feed the algorithm with some
real-world pages to find the difference between them and those
running miners.

There was something extra noticeable. While choosing only
to look for the average values of the CPU usage we made a
mistake. With a closer look, we noticed although the CPU
usage average was high in most of these cases not all the
cores had the same value, while our training set of running
miners maintained the same average value on all the cores.
This discrepancy could still lead us to a working solution. We
still had one last question to answer: was there any connection
between the number of CPU cores used and the possibility of
getting an algorithm that detects malicious CPU power usage?

E. 2 CPU cores for 60 seconds

At this stage, we recompiled arff files, but instead of just
looking for the average values of all the CPUs we also included
the CPU values of 2 CPU cores independently.

This realization brought a new problem, a new set of
training metrics, and a new swipe thorough all the Alexa top
pages needed to be done. Since most of the metrics were
gathered using EC2 instances that had only 1 CPU core.
A small sample of metrics was gathered in a local virtual
machine, a Linux machine (Kali Linux distribution) with 2
CPU virtual cores. The metrics gathered this way were those
recorded while the researcher was working on the machine to
introduce some entropy, so it would look like someone was
using the computer in day to day activities.

When the first set of metrics was recorded, we were only
looking for the average values of the CPU, and looking at these
values, there was no difference between having a machine with

1, 2, or 4 cores since the cryptominer only looked for the
average value of the CPU to guide itself to the value preset
by the person controlling the miner. It was required to re-
record a big set of the metrics we had previously used in our
experiments. More than half of these training values.

Besides the training values, all the top 12.5k pages needed
to be rerecorded using more capable EC2 instances. Therefore,
instead of using t2.nano instances, we ended up using 4
t2.medium instances, which had a price close to 9 times higher
than the nano instances previously rented. The new instances
had as mentioned 2 CPU cores and 4 GB of RAM, which we
did not need for our experience, but it was not possible to
downgrade. These instances were left running for a few days
while all the new pages were being crawled.

All the metrics were retrieved, parsed and compiled inside
a single arff file, with relational bags. Table V shows the
precision of the algorithm with our new training data. The
number of false positives was once again calculated, so we
could find out if this new model would be a good fit (see
Table VI).

After observing the previously mentioned tables with the
same set of algorithms we used in the previous runs, we
had MISVM as the best choice for the mining detector. By
evaluating the percentage of correct results, 98.82%, and the
average percentage of false positives of 2%, we realized it is
still a good result. Although not critical for our evaluation, the
false positive rate represents the number of pages falsely set
as running malware, which could induce the user in error.

The new training metrics ended up having worse perfor-
mance than the previous runs, which was also a dead end for
a good way to predict the presence of a miner.

F. 4 CPU cores 60 seconds

After a careful evaluation of the results and metrics gathered
across all experiments, we ended up finding a link among all
the results that could be tied to a miner. A computer with
a higher number of CPU cores (say 4) does not use all the
cores at full capacity or at the same level. Even when running
pages that load a higher number of scripts, or scripts that are
more CPU intensive. However, once the CPU starts running a
miner, the values across all the cores become closer. Even
if one of the cores goes down for a second, another core
takes its place. The average of the processors is approximately
constant, something that does not happen on a page without



TABLE IV: Training results for the average of the cores for 60 seconds

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area
0 No cryptojacking 1.000 0.017 0.981 1.000 0.991 0.982 0.992 0.981
1 cryptojacking 0.983 0.000 1.000 0.983 0.992 0.982 0.992 0.992
Weighted Avg. 0.991 0.008 0.991 0.991 0.991 0.982 0.992 0.987

TABLE V: Training results for the precision (%) collecting the metrics for 60 seconds and 2 CPU cores

Dataset (1)mi.MISVM (2)mi.MI (3)mi.Qu (4)mi.Si (5)mi.TL (6)mi.MIBoost (7) mi.MILR (8)mi.MIRI (9)mi.MIWrapper (10)mi.MIEMDD

cpu(100) 98.82 98.12 50.77 53.23 97.71 53.23 92.90 98.13 53.23 53.59

TABLE VI: Training results for the false positives number collecting the metrics for 60 seconds and 2 CPU cores

Dataset (1)mi.MISVM (2)mi.MI (3)mi.Qu (4)mi.Si (5)mi.TL (6)mi.MIBoost (7) mi.MILR (8)mi.MIRI (9)mi.MIWrapper (10)mi.MIEMDD

cpu(100) 0.02 0.02 0.92 0.00 0.02 0.00 0.08 0.02 0.00 0.87

a miner. In the web pages without miner, even when CPU
consumption is high, the percentage of each core being used
is not constant. The CPU consumption value by core of mining
pages only varies by 1 or 2 percent among them. With this
in mind, we ended up taking the last set of metrics using
a local virtual machine with 4 CPU cores, to validate these
observations.

A local virtual machine was used running a Linux distri-
bution (Kali Linux), giving it the above-mentioned number
of virtual cores. Here we gathered the training metrics using
the same methods mentioned earlier while also maintaining
the different CPU mining loads. There was also an error that
led to a decrease in the amount of training data supplied
to the classifier, reducing them by roughly half. Values with
entropy added were removed, and the training data present was
composed of a higher number of examples with cryptojacking
present.

At this point two different solutions were considered. The
first solution involved a legacy arff file without relational
bags but with carefully chosen values that matter the most.
The second did not use any machine learning algorithm, but
involved looking at the averages and deviations of the values
to try to assess if there were high deviations among them.

To find if a miner is running with mpstat and using
Chromium, we just need to look at the value of %usr across
all the cores and make sure the values stay high and with a
value close to each other with a minimal deviation. Of course,
this observation is only viable if we are not running anything
else on the computer that uses the CPU heavily, actually,
this condition was always a problem since it would possibly
produce erroneous results in all the solutions we developed
until now.

Our custom-made solution developed without using ma-
chine learning gave a lower false positive rate of our training
set but it had a big downside. It failed to find dangerous pages
we feed that were running cryptominers at a 100% load, which
are those that should never be missed. By our observations, no
pages in the wild require 100% of the CPU for long periods
of time.

For this iteration, all the values of mpstat were stripped

and only the values of each core for %usr were kept in a list,
without relational bags. The new data sheet was compiled on
a new arff file and a new algorithm chosen.

We had many close results with little to no difference, but
the one that got the better result was meta.RandomSubSpace.
Table VII shows the values we got out of the training, to this
specific algorithm.

Analyzing the values, we got 99.7% precision, which was
a great result, the best one so far, which meant we were
in the right direction. Also we can see we were getting a
false positive rate of 0% on the pages that were running
cryptojacking, having a 100% success rate on them, not
missing a single one, which is a very good result. We have a
perfect false positive rating in one of the values we defined as
the more important, although it would be better to have the
inverse behavior and have a 0% false positive rate at the No
running cryptojacking.

Due to some time constraints and some economic restraints
(instances with 4 cores are expensive) we decided to keep
the sample smaller, and we crawled only the top 2500 Alexa
pages with our previously mentioned crawler. When all the
metrics were gathered the new results were parser with the
same method as the training dataset the only difference being
the last character that instead of indicating a presence or not
of a miner, we used the character “?” to indicate we did not
know if there was anything running or not.

Using this algorithm against the top 2500 Alexa pages
(from which only 2341 did respond), it flagged 83 pages as
potentially be running cryptominers. All the 83 pages were
ruled out since the CPU results were not close enough to signal
a potential miner. We did not understand why these pages
were being flagged since there was no apparent reason for this
behavior. The only page having a higher CPU consumption
was feedly.com. The value was still under 20% and was not
very steady, indicating that the page might just be loading
heavier scripts. Or possibly the mining script (if present) was
not loaded while performing the manual analysis.

The pages were mostly having a low CPU usage (around 5%
or lower). The results gotten were not ideal. We still flagged
83 pages wrongly, 83 out of a sample of 2500 pages (2341



TABLE VII: Training results using the metrics for 60 seconds and 4 cores

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

0 No cryptojacking 1.000 0.004 0.992 1.000 0.996 0.994 0.996 0.976
1 cryptojacking 0.996 0.000 1.000 0.996 0.998 0.994 0.996 0.999
Weighted Avg. 0.997 0.001 0.997 0.997 0.997 0.994 0.996 0.991

of those responded). It is a failure rate of close to 3.4% on
the No Cryptojacking, which is way off the values indicated
in the previous table by Weka.

Since these results were not as close as expected, by
analyzing the values we got from the training results table,
we decided to use the second best algorithm of the previously
mentioned selection, the algorithm SMO.

The results of SMO are slightly worse than those of Ran-
domSubSpace. However, the difference is barely noticeable.
We decided to run it against the same Alexa top 2500 sample,
and we only got 25 pages flagged as having a miner present.
Of those 25, 21 were ruled out since the CPU results were not
close enough to signal a potential miner, we did not understand
the reason why these pages were being flagged there was no
apparent reason for this behavior. The remaining 4 pages were
further analyzed, being the following: http://lanacion.com.ar;
http://windy.com; http://bd-pratidin.com; http://friv.com.

The mentioned pages were mostly having a low CPU usage
(around 10%) but steady values, which only indicates that the
page runs some scripts a little heavier than most pages, all
except the friv.com which had a value of 20%. The mentioned
page was already being flagged previously by another of our
solutions but was once again evaluated carefully and the CPU
values were taken for a longer time frame (240 seconds) which
ruled it out as a potential page to be mining. Although we still
flagged 25 pages wrongly, we managed to keep the value of
failure really low, 25 out of a sample of 2500 pages (2341
of those responded), is a failure rate close to 1% on the No
Cryptojacking corresponding to a 99.2% of true positive rate
on the cyptominer being present as the initial test metrics
indicated. It may be possible some pages were not flagged as
having a cryptominer present since we did not have a 0% false
negative rate when it comes to the No cryptominer metric. But
the described behavior is not possible to know for sure since
we did not know the prevalence of miners in the tested pages
before evaluating them.

VI. DISCUSSION AND CONCLUSION

We have shown that by combining a set of CPU metrics
it is possible to detect browser-based cryptojacking with high
precision. However, it is important to mention that these results
were extrapolated from a classifier evaluated in a laboratory
environment, which may influence the values when evaluated
in a real-world scenario. Some other conclusions were:

• Running cryptojacking shows a discernible pattern on
CPUs with multiple cores.

• A set of machine learning classifiers can detect the
mentioned pattern with high precision.

• On machines running only a detector, if the page was
running a miner we could see the average values of the
CPU to stabilize and showing homogeneous values across
CPU cores.

• Detection performs worse on a machine with multiple
other programs consuming CPU.

Our research may have a broader application than browser-
based miners. We base our work on CPU metrics and patterns,
which are equally influenced by miners not running in the
browser. However, we leave the evaluation of our approach
with non-browser based cryptojacking malware as future work.

ACKNOWLEDGEMENTS

This research was supported by national funds through
Fundação para a Ciência e Tecnologia (FCT) with reference
UIDB/50021/2020 (INESC-ID).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical

survey on decentralized digital currencies,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “SoK: Research perspectives and challenges for Bitcoin and
cryptocurrencies,” in 2015 IEEE Symposium on Security and Privacy,
2015, pp. 104–121.

[4] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A first look at
browser-based cryptojacking,” in Proceedings of the 3rd IEEE European
Symposium on Security and Privacy Workshops, Jul. 2018, pp. 58–66.

[5] H. L. J. Bijmans, T. M. Booij, and C. Doerr, “Inadvertently making cyber
criminals rich: A comprehensive study of cryptojacking campaigns at
internet scale,” Proceedings of the 28th USENIX Security Symposium,
pp. 1627–1644, 2019.

[6] S. Pastrana and G. Suarez-Tangil, “A first look at the crypto-mining
malware ecosystem: A decade of unrestricted wealth,” arXiv preprint
arXiv:1901.00846, 2019.

[7] S. King, “Primecoin: Cryptocurrency with prime number proof-of-
work,” 2013.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th ACM Symposium on Operating Systems Principles, 2017, pp.
51–68.

[9] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger Fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the 13th ACM EuroSys Conference,
2018.

[10] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in International Conference on Financial Cryptography and
Data Security, 2014, pp. 436–454.

[11] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking Bitcoin: Routing
attacks on cryptocurrencies,” in Proceedings of the 2017 IEEE Sympo-
sium on Security and Privacy, 2017, pp. 375–392.

[12] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “Blockchain con-
sensus,” in ALGOTEL 2017-19èmes Rencontres Francophones sur les
Aspects Algorithmiques des Télécommunications, 2017.

[13] M. Correia, “From byzantine consensus to blockchain consensus,” in
Essentials of Blockchain Technology. CRC Press, 2019, ch. 3.



TABLE VIII: Training results using the metrics for 60 seconds and 4 cores

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

0 No cryptojacking 1.000 0.008 0.984 1.000 0.992 0.988 0.996 0.984
1 cryptojacking 0.992 0.000 1.000 0.992 0.996 0.988 0.996 0.997
Weighted Avg. 0.994 0.003 0.995 0.994 0.994 0.988 0.996 0.993

[14] J. Brownlee, Master Machine Learning Algorithms: discover how they
work and implement them from scratch. Jason Brownlee, 2016.

[15] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, 2002, pp. 255–264.

[16] Symantec, “Symantec cryptojacking growth 2018 annual
security report,” https://resource.elq.symantec.com/LP=5840?cid=
70138000000rm1eAAA, 2018.

[17] J. Rauchberger, S. Schrittwieser, T. Dam, R. Luh, D. Buhov,
G. Pötzelsberger, and H. Kim, “The other side of the coin: A frame-
work for detecting and analyzing web-based cryptocurrency mining
campaigns,” in Proceedings of the 13th International Conference on
Availability, Reliability and Security, 2018.

[18] M. Saad, A. Khormali, and A. Mohaisen, “End-to-end analysis of in-
browser cryptojacking,” arXiv preprint arXiv:1809.02152, 2018.

[19] A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller, N. Borisov,
M. Antonakakis, and M. Bailey, “Outguard: Detecting in-browser covert
cryptocurrency mining in the wild,” in The World Wide Web Conference,
2019, pp. 840–852.

[20] I. Petrov, L. Invernizzi, and E. Bursztein, “CoinPolice: Detecting
hidden cryptojacking attacks with neural networks,” arXiv preprint
arXiv:2006.10861, 2020.

[21] D. Carlin, P. O’kane, S. Sezer, and J. Burgess, “Detecting cryptomining
using dynamic analysis,” in 16th IEEE Annual Conference on Privacy,
Security and Trust, 2018, pp. 1–6.

[22] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao, “Seismic: Se-
cure in-lined script monitors for interrupting cryptojacks,” in European
Symposium on Research in Computer Security, 2018, pp. 122–142.

[23] J. Z. i. Munoz, J. Suarez-Varela, and P. Barlet-Ros, “Detecting cryp-
tocurrency miners with NetFlow/IPFIX network measurements,” in IEEE
International Symposium on Measurements & Networking, Jul. 2019, pp.
1–6.

[24] G. Gomes, L. Dias, and M. Correia, “CryingJackpot: Network flows
and performance counters against cryptojacking,” in Proceedings of
the 19th IEEE International Symposium on Network Computing and
Applications, 2020.

[25] J. Carreiro, “Identification and analysis of cryptojacking: Performance
effects,” Master’s thesis, Instituto Superior Técnico, Universidade de
Lisboa, 2019.

[26] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The Weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[27] T. Dondorf, “puppeteer-cluster,” https://github.com/thomasdondorf/
puppeteer-cluster.git, 2020.

[28] “Alexa top sites,” https://www.alexa.com/topsites, accessed: 2020-08-06.
[29] N. Weidmann, E. Frank, and B. Pfahringe, “A two-level learning method

for generalized multi-instance problems,” 14th European Conference on
Machine Learning, 2003.

[30] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector ma-
chines for multiple-instance learning,” in Advances in neural information
processing systems, 2003, pp. 577–584.

[31] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 8, pp. 832–844, 1998.

[32] J. C. Platt, “Sequential minimal optimization: A fast algorithm for
training support vector machines,” Microsoft Technical Report MSR-TR-
98-14, 1998.


